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Abstract

Correspondence matching is one of the most common
problems in computer vision, and it is often solved using
photo-consistency of local regions. These approaches typ-
ically assume that the frequency content in the local re-
gion is consistent in the image pair, such that matching is
performed on similar signals. However, in many practical
situations this is not the case, for example with low depth
of field cameras a scene point may be out of focus in one
view and in-focus in the other, causing a mismatch of fre-
quency signals. Furthermore, this mismatch can vary spa-
tially over the entire image. In this paper we propose a local
signal equalization approach for correspondence matching.
Using a measure of local image frequency, we equalize lo-
cal signals using an efficient scale-space image representa-
tion such that their frequency contents are optimally suited
for matching. Our approach allows better correspondence
matching, which we demonstrate with a number of stereo
reconstruction examples on synthetic and real datasets.

1. Introduction
Computing correspondences between images is a fun-

damental problem in computer vision. Correspondence

matching is key to many applications including stereo and

multi-view reconstruction, optical flow, template matching,

image registration and video stabilization (to name just a

few). In this work we focus on patch-based correspondence

matching, often used for dense stereo reconstruction.

Several metrics have been developed to measure the sim-

ilarity of image patches. One of the most common measures

is normalized cross-correlation (NCC), which forms the ba-

sis for a wide range of matching algorithms. The draw-

back of NCC is that it assumes the input images contain the

same signal content, either all images are true representa-

tions of the original scene signal or all are equally distorted

through defocus, motion blur, under-sampling, etc. How-

ever, in many practical situations we have to compute corre-

spondence of mixed-signals, caused by different amounts of

defocus blur for example. Furthermore, the signal degrada-

tion will vary spatially in most practical situations causing

different mixed-signals for every pixel in an image.

In this paper, we take a pre-processing approach to solve

the signal mismatch problem. Rather than defining new

measures and devising new algorithms for matching mixed-

signals, we believe it is more advantageous to modify the

input signals in an optimal way to enable the wide range

of existing algorithms which assume the signals are already

equalized. To this end, we propose to locally equalize the

image signals before computing correspondence matches.

Given two images patches, our technique involves a fre-

quency equalization step in order to generate patches with

similar spatial signals, and an optimal frequency scaling

step that ensures the patches can be matched reliably. This

is achieved using a notion of local image frequency, which

quantifies the highest spatial frequency in a local region,

and an efficient implementation of scale-space that builds

multi-resolution image patches on demand. The result is a

pair of image patches that contain similar representations

of the real scene, with sufficient local details for accurately

computing cross-correlation.

We demonstrate the power of the proposed signal equal-

ization technique by improving the performance of a naı̈ve

window matching algorithm by an order of magnitude on

several examples of dense stereo reconstruction, using a

synthetic data set with ground truth, and additional real-

world examples. While we focus on stereo, our method can

have significant impact on several other image processing

and computer vision applications that rely on patch-based

correspondence matching. In addition, our method is a gen-

eral pre-processing technique that can benefit a wide range

of existing algorithms.

2. Related Work

Correspondence matching is very common in several do-

mains, including stereo reconstruction [20], multi-view re-

construction [21], optical flow [1], and many more. In this

work we address the general issue of inconsistent spatial

frequency signals between multiple images when perform-

ing correspondence estimation. While there exist many

patch-based correlation measures [10] for stereo, they typ-

ically assume that frequency signals are consistent in the

images before matching. We present a technique for estab-

lishing consistent frequency signals automatically.
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A mismatch of signals between images can occur due to

differently (de-)focused cameras. While some approaches

have been developed for recovering depth from defocus in-

formation [6, 23, 12], we have a different goal, which is

to improve correspondence matching between multiple im-

ages containing different signals. Goesele et al. [8] avoid

the issue by collecting a large set of images from the in-

ternet and then choosing ones that have similar properties,

however this option is only viable for reconstructing well-

known and well-photographed landmarks.

In correspondence matching, it is well-known that signal

content is related to the matching window size, and previous

work has adapted the window to the image content using

disparity uncertainty measures [13], edge information [16],

entropy [5], object boundaries [24], correlation [18], inten-

sity variation [9], or perspective distortion [19, 3]. However,

these approaches do not solve the ”mixed” signal problem,

and in contrast we aim to explicitly locally equalize the sig-

nal of both images before computing correspondences.

Signal analysis in stereo reconstruction is not an entirely

new concept. Klowsky et al. [14] analyze signal content

in patch-based stereo systems, showing that the amplitude

of high-frequency details is diminished in reconstructions,

and they derive a modulation transfer function in frequency

space that can be inverted to restore details. Following this

theory, they show how Gaussian weighting of stereo patch

correspondences links reconstruction to a scale-space rep-

resentation of the underlying surface [15]. While this work

is related, it is orthogonal to our own. Strecha et al. [22]

learn ways of compressing feature descriptors and improve

descriptor invariance under a certain class of degredations.

Our method is complementary to this work, since our sig-

nal equalization approach can be applied before any type of

descriptor matching or learning techniques.

3. Theoretical Considerations
We begin with a theoretical discussion of signal equal-

ization. We aim to equalize two signals G1(ω) and G2(ω),
which are degraded versions of the same signal Ĝ(ω), such

that their frequency contents are both compatible and opti-

mally suited for matching with respect to a given matching

function Ψ. In this paper we focus on the normalized cross-

correlation ΨNCC , one of the most widely used matching

functions, which is defined as:

ΨNCC [g, f ] (t) :=

∫∞
−∞ g(τ)f(τ + t)dτ√∫∞

−∞ g(τ)2dτ
∫∞
−∞ f(τ + t)2dτ

(1)

for two real valued functions g and f . We first discuss the

equalization of two different signals, and then a theory of

frequency scaling to produce optimal conditions for corre-

spondence matching.
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Figure 1. Signal Equalization - Two degraded versions (G1, G2)

of the same signal can be equalized. Left: A threshold α is applied

in frequency domain to find the highest frequencies ω̃1 and ω̃2.

Center: The lower of the two is used as cutoff frequency ω̃ for a

lowpass filter Πω̃ . Right: Scaling the frequencies by π/ω̃ spreads

them over the available domain, which is ideal for matching.

3.1. Inter-Signal Equalization

In the frequency domain, the degradation is modeled as

G(ω) = D(ω)Ĝ(ω) + μ(ω), (2)

where D(ω) is the degradation function and μ(ω) is the

noise model. Since the degradation we are primarily inter-

ested in is spatial blur due to de-focus, which corresponds

to low-pass filtering Ĝ, we model D as box filter Πω̃, where

ω̃ is the cutoff frequency. The cutoff frequency is set to be

the highest frequency present in the spectrum.

To be robust with respect to noise, we employ a thresh-

old α to find the highest frequencies ω̃1 and ω̃2 of the

two signals G1 and G2, respectively. The lower of the

two is then used as cutoff frequency for the lowpass filter

ω̃ = min(ω̃1, ω̃2) (Fig. 1 (left)). Multiplying both signals

in frequency domain by Πω̃ will render them compatible for

matching (Fig. 1 (center)). However, the frequency content

is not guaranteed to be optimal for the matching function

ΨNCC , which we address in the next section.

3.2. Frequency Scaling

We are interested in finding the frequency for which spa-

tial localization is best. This is fulfilled when a deviation

from the minimum at t = 0 by a spatial differential amounts

in a maximal change of ΨNCC . Considering only a single

frequency ω this can be formalized as

∥∥∥∥
d2

dt2
ΨNCC [sinω, sinω] (t)

∥∥∥∥ =
∥∥−ω2 cos(ωt)

∥∥
∣∣∣∣
t=0

= ω2.

(3)

This confirms the intuition that the higher the spatial fre-

quency ω the better the signal can be localized. Due to the

discrete nature of an image, the shortest wavelength pos-

sible is λ = 2 pixels and thus the highest frequency is

ωmax = 2π 1
λ = π. For optimal matching, the frequencies

should therefore be scaled by π/ω̃ to span the full domain,

such as illustrated in Fig. 1 (right).
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3.3. Combined Signal Equalization

By combining the findings from sections 3.1 and 3.2 the

fully equalized signal is given as

G̃(ω) = Πω̃G
(
ω

π

ω̃

)
. (4)

4. Equalization Implementation

In this section we will describe our implementation of

local signal equalization for correspondence matching. Fol-

lowing the theoretical considerations introduced in Sec-

tion 3, the algorithm requires to identify the joint cutoff

frequency ω̃ to equalize the signals and scale the signal fre-

quencies. We first define a method for computing local fre-

quency information, which forms the basis to robustly iden-

tify the cutoff frequency. We then address frequency scaling

using a scale-space approach, which is implemented using

a locally centered pyramid structure. Finally, these tools are

used to perform local signal equalization before correspon-

dence matching, for example in stereo reconstruction.

Figure 2. Local Frequency - Frequency content illustrated for two

patches of an image. The discrete Fourier transform is computed

for each patch and amplitudes are thresholded.

4.1. Local Frequency Maps

As we discussed in Section 3, an image patch that con-

tains high spatial frequencies matches more robustly than

one with only low frequency information, and the best

matching frequency is the highest possible. Motivated by

this theory, we aim to compute local frequency information

at each point in an image and analyze the highest spatial

frequency within the local region.

We employ the Discrete Fourier Transform (DFT) to

measure image frequency, and we individually compute the

DFT of local patches in the image. The user-defined cor-

respondence matching window of size k is also used as the

region of interest for the DFT, ensuring that we compute

exactly the frequencies that will be used when matching.

Fig. 2 illustrates the local frequency at two different points

in an image.

Figure 3. Local Frequency Map - Maps of two images with dif-

ferent focal planes (k = 9, α = 0.4). Left: focused near. Right:
focused far.

In order to determine the highest reliable frequency in

each local patch we need to account for noise, by thresh-

olding on the frequency amplitudes. Let Ωp = {ωp
i } be the

discrete set of frequencies for a patch p with correspond-

ing amplitudes Ap = {ap
i }. We then determine the highest

frequency ω̃p as

ω̃p = max
i

(Ωp|ap
i > α), (5)

where α characterizes the amplitude of the image noise in

the frequency domain. This parameter can be computed au-

tomatically if the noise is known, or it can be set empiri-

cally. The right column of Fig. 2 illustrates the thresholded

frequency. Computing ω̃p for every pixel results in a local
frequency map, which we illustrate for two images in Fig. 3.

The images show the same scene but captured with different

focal planes. Notice that the local frequency map is highly

correlated with the image focus.

This measure of local highest frequency will guide us to

equalize local signals for image correspondence matching.

4.2. Efficient Scale-Space Representation

In order to perform frequency scaling, the local signal

at an image pixel can be altered by traversing the scale-

space of the image. Specifically, changing levels in the scale

space corresponds to frequency scaling of the original sig-

nal. The most common representation of a scale-space is

the Gaussian image pyramid. A typical image pyramid con-

tains the original image on the lowest level (�0 in our ter-

minology), and increasingly filtered and downsampled ver-

sions at higher levels. Pyramids are most often used to per-

form computations at lower resolutions and then propagate

the result as a prior for computations at higher resolutions.

Stereo matching between two images is a classical exam-

ple. However, this technique only works if the signal con-

tent is consistent between images at each level. If the signal

is inconsistent on any level, then matching can become er-

roneous (see our experiments in Section 5). To overcome

this issue, we determine the optimal scale for matching, in

a scale-space centered on the matching pixel. We build on

the concept of centered pyramids [4] and construct a set of

locally centered image pyramids that span the scale-space

of the image (Fig. 4, left).
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Figure 4. Scale-Space - Left: Image pyramids have an ambiguity

in the parent-child relationship which is resolved by a complete

scale-space. Right: For efficiency, we store only slices of the scale-

space which are computed on-demand.

This scale-space representation is a set of Gaussian pyra-

mids where each one is centered on a different pixel of the

image. This gives a direct mapping from each pixel at �0 to

a unique pixel at �i for all levels i. We propose an efficient

representation of this space. First, since we are only ever in-

terested in a region-of-interest around each pixel (defined by

the matching window), we do not need to compute or store

the full image at each level, only a k×k centered window as

illustrated in Fig. 4 (right). Secondly, it may not be neces-

sary to pre-compute each level for every pyramid, and so we

propose to compute and store levels only on-demand. Using

these slices of locally centered pyramids, we will next de-

scribe our signal equalization algorithm for correspondence

matching.

4.3. Signal Equalization Algorithm

Our signal equalization algorithm takes as input two (or

more) images of the same scene that can contain different

spatial frequency signals of the same content, and uses lo-

cal frequency maps and locally centered image pyramids

to equalize the spatial frequencies prior to performing cor-

respondence matching. The main idea of the algorithm is

illustrated in Fig. 5.
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Figure 5. Equalization Algorithm - We continually traverse up

the scale-space of two images centered on xL and xR, respec-

tively, until the local frequency signals are equalized and optimal

for correspondence matching.

We will describe the algorithm for the application of

stereo correspondence of rectified images. Given two scan-

lines to match, the process starts by initializing the bottom

level of the scale-space for each pixel on both scanlines.

Then for each potential correspondence (xL, xR) we deter-

mine if the highest local frequencies ω̃L and ω̃R are suf-

ficiently high for matching. If either local patch does not

meet the required frequency content, then we traverse up

both respective pyramids one level and repeat the process

until both patches contain sufficiently high frequencies. At

this level (�2 in Fig. 5), the patches can be used directly

for correspondence computation since they are locally cen-

tered on xL and xR respectively, they contain the optimal

frequency content for matching, and they contain consistent

signals, allowing the best possible correspondence match.

Note that since the frequency information is computed only

locally, we use an iterative technique to proceed through

the scale-space sequentially in practice, rather than imme-

diately computing the final equalized signal as proposed in

Eqn. 4.

5. Results
In this section we first evaluate the method on synthetic

data to provide both qualitative and quantitative assess-

ments of the performance. Second we provide two real-

world examples to demonstrate the applicability of the ap-

proach to practical problems. All of our results are com-

puted with a scale-space downsampling factor of 0.5.

Figure 6. Synthetic Plane - Left and right images used for the syn-

thetic experiment. The red lines indicate the approximate location

of the focal plane of the cameras.

5.1. Synthetic Plane

To quantitatively evaluate the effect of the proposed

signal equalization we generated a synthetic plane with

wavelet noise texture and rendered it using the Mit-

suba physically-based renderer [11] with simulated shallow

depth of field. Fig. 6 shows the rendered images used as

input to the algorithms with the approximate focal plane in-

tersection shown in red.

We investigate three different algorithms. The first algo-

rithm is a naı̈ve implementation of window matching using

normalized cross correlation. The second algorithm extends

the naı̈ve approach using the proposed signal equalization

18841884



Naïve

PMVS

Ours

3 x 3 5 x 5 7 x 7

Figure 7. Qualitative Evaluation - Rendered point cloud results and error maps for the evaluated algorithms at three different window

sizes. The error maps encode Euclidean distance to the plane in a rainbow scale, running from blue (low error) to red (high error).

3x3 5x5 7x7

μ σ # % μ σ # % μ σ # %
Naı̈ve 0.0675 0.1128 72,317 51 0.0376 0.0873 145,594 80 0.0160 0.0559 196,305 93

PMVS 0.0041 0.0244 21,868 49 0.0026 0.0036 39,061 83 0.0020 0.0026 221,688 89

Ours 0.0010 0.0011 220,969 96 0.0006 0.0005 236,282 98 0.0005 0.0004 236,306 98

Table 1. Quantitative Evaluation - Quantitative results for the synthetic example from Fig. 7. We give the mean absolute Euclidean

distance (μ ± σ) as a measure for the accuracy and the amount of points (#) as well as the percentage of area reconstructed (%) as a

measure for the coverage of the algorithms.

framework. As a third algorithm we employ PMVS [7], a

state-of-the-art multi-view stereo matching algorithm.

To evaluate the impact of the window size k, we run the

experiments at three different window sizes (k = 3, 5, 7).

Increasing the window size increases the regularization of

patch matching algorithms and thus improves their robust-

ness as can be seen in Table 1, but at the same time reduces

their spatial resolution [15].

Fig. 7 shows a qualitative evaluation and Table 1 lists

quantitative measurements. To prune gross outliers, we

computed the statistics in Table 1 on the 99% quantile -

meaning we rejected the worst 1% of the points. The ac-

curacy is measured as Euclidean distance to the plane. To

compute the render and error maps shown in Fig. 7 as well

as the coverage listed in Table 1 we splat the point clouds

into the cameras using splat diameters of 3 pixels for PMVS

and 2 pixels for the two other algorithms to account for the

fact that PMVS produces sparser point clouds.

As expected, the naı̈ve approach successfully recon-

structs the surface where the two images have similar sig-

nals but fails when they differ. This is most apparent for

k = 3 but still holds with increasing window size. Signal

equalization helps the naı̈ve approach to overcome this lim-

itation. Even for small window sizes, with signal equaliza-

tion the algorithm successfully reconstructs almost the com-

plete plane (96%) while increasing the accuracy by more

than an order of magnitude. In fact, the improvement is

so substantial that the naı̈ve patch matching approach now

even outperforms PMVS by a factor of 4× on degraded

data. On non-degraded data all three methods have very

similar accuracy, with PMVS being slightly better than the

others. This indicates that signal equalization is likely to

also improve the performance of sophisticated state-of-the-

art matching algorithms.

Fig. 8 visualizes the level of the scale-space at which the

matching occurred for each pixel. Darker areas correspond

to matching at lower levels. With smaller window sizes

matching is spread out over many layers in the scale-space

because the frequencies present in such a limited neighbor-

hood vary substantially across patches. Within larger win-
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Figure 8. Match Levels - Visualizing the matching level for each

pixel at three different window sizes. Darker areas correspond to

matching at lower levels. For smaller window sizes the frequency

content varies more between patches, leading to a wider spread in

matching levels.

dow sizes the variation of frequency content is lower and

thus the matching levels are spatially more correlated, re-

vealing the expected behavior that the matching level is a

function of signal dissimilarity due to degradation.

5.2. Real-world Examples

As a first practical example, we demonstrate the im-

provement of signal equalization for the reconstruction of

a human face from stereo views. Capturing living sub-

jects typically poses a challenge since first the shutter speed

should be high to avoid motion blur, second the aperture

should be small to allow a large depth of field and third

the amount of light that can be used before distracting the

person is limited, especially when capturing performances.

The result is typically a compromise and the captured im-

agery contains a limited depth of field. Fig. 9 (left) shows

the two images acquired by the stereo rig as well as close-

ups of various corresponding areas with different amounts

of defocus blur. The center part of Fig. 9 visualizes the dif-

ference in local frequency content which is directly related

to camera focus and shows the problem, where for camera

C2 the neck is in focus (purple) while camera C1 focuses

more on the cheek (yellow). The area colored in cyan has

similar degradation in both images and corresponds to the

area the naı̈ve approach succeeds at reconstructing. Sig-

nal equalization greatly extends the reconstructable area and

improves reconstruction quality as depicted in Fig. 9 (right).

A second example is stereo reconstruction from macro

photography. If we wish to capture small objects in high

resolution it is common to use a macro lens, which is specif-

ically designed for close-up shots but suffers from incred-

ibly small depth of field. Inevitably, a stereo rig of macro

images will contain different defocus regions. An exam-

ple is shown in Fig. 10 (left), including close-ups of several

corresponding areas with different amounts of defocus blur.

Again, our signal equalization approach greatly improves

reconstruction quality as shown in Fig. 10 (right).

6. Conclusion
In this paper we aim to alleviate correspondence errors

when matching two images that differ in signal content due

to degradation. We focus on patch-based matching using

normalized cross-correlation, since this is one of the most

widely used metrics in computer vision. Our approach is

to locally equalize and optimize image signals before com-

puting correspondence matches. This is made possible by a

local frequency estimation technique and an efficient scale-

space image representation.

In our current implementation, we model signal degrada-

tion as isotropic lowpass filtering. However, for situations

such as motion blur a more suitable degradation function

should be used. We consider this to be future work. An-

other interesting venue for future research would be to use

the differently degraded signals after matching to recover

the original signal as well as possible. This could allow

to compute all-focus texture maps from partially defocused

cameras [17], or to enhance the geometry using shape-from-

shading cues [2].

We have described and evaluated our technique in the

context of improving dense stereo reconstruction given im-

ages that are degraded by different amounts of defocus blur

due to low depth of field. However, correspondence match-

ing is a fundamental tool in computer vision, and our al-

gorithm can be applied in a variety of other contexts. An

example would be to equalize frame-to-frame signals for

optical flow estimation or video stabilization that have been

degraded by time varying blur, such as motion blur or fo-

cus change. Another example is to equalize local signals

for template matching or image registration. Furthermore,

we have formulated our approach as a preprocess that modi-

fies the input data and can thus be used in combination with

a wide variety of existing powerful correspondence tech-

niques. As a result, we believe this work has the potential

to impact a broad range of applications in computer vision.
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