
Heterogeneous Image Features Integration via Multi-Modal Semi-Supervised
Learning Model

Xiao Cai†, Feiping Nie†, Weidong Cai‡, Heng Huang†∗
†University of Texas at Arlington, Arlington, Texas 76019, USA

‡School of Information Technologies, University of Sydney, NSW 2006, Australia
xiao.cai@mavs.uta.edu, feipingnie@gmail.com, tom.cai@sydney.edu.au, heng@uta.edu

Abstract

Automatic image categorization has become increas-
ingly important with the development of Internet and the
growth in the size of image databases. Although the im-
age categorization can be formulated as a typical multi-
class classification problem, two major challenges have
been raised by the real-world images. On one hand, though
using more labeled training data may improve the predic-
tion performance, obtaining the image labels is a time con-
suming as well as biased process. On the other hand, more
and more visual descriptors have been proposed to describe
objects and scenes appearing in images and different fea-
tures describe different aspects of the visual characteristics.
Therefore, how to integrate heterogeneous visual features to
do the semi-supervised learning is crucial for categorizing
large-scale image data. In this paper, we propose a novel
approach to integrate heterogeneous features by performing
multi-modal semi-supervised classification on unlabeled as
well as unsegmented images. Considering each type of fea-
ture as one modality, taking advantage of the large amoun-
t of unlabeled data information, our new adaptive multi-
modal semi-supervised classification (AMMSS) algorithm
learns a commonly shared class indicator matrix and the
weights for different modalities (image features) simultane-
ously.

1. Introduction

With the proliferation of digital photography and online
data sources, automatic image categorization becomes in-
creasingly important. As a multi-class classification prob-
lem, image categorization has been widely studied in the
computer vision community. The target categories usually
come from the various real world applications in objective
recognition and scene classification, e.g. defined by pres-
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ence of a certain salient object, such as the stop sign or the
staple [9] or defined with respect to scene types, such as for-
est, highway and inside city, etc [17]. It is a challenging task
not only due to the fact that the number of labeled images
is much smaller than that of the unlabeled images in the re-
al world but also because of image’s variability, ambiguity,
and wide range of illumination. As we know, in the tradi-
tional supervised learning paradigm, increasing the quantity
and diversity of labeled images enhances the performance
of the learned classifier. Nevertheless, labeling image is a
time consuming as well as biased task. Although it is possi-
ble to label large amounts of images for research purposes,
this is often unrealistic in practice. To solve the classifi-
cation problem caused by the scarce or expensive labeled
data, we resort to semi-supervised learning, which takes ad-
vantage of the combination of both labeled and unlabeled
images.

The most popular way to do semi-supervised learning
for image categorization is to use some low-level image de-
scriptors. In order to overcome the image content repre-
sentation issue, more and more visual descriptors have been
proposed. Some focus on the local information, while oth-
ers are holistic descriptors. If we integrate all the descriptors
via a proper learning method, we could create a generally
more accurate and more robust descriptor than any single
one.

In this paper, we propose a novel semi-supervised learn-
ing approach to integrate heterogeneous features from both
labeled and unlabeled as well as unsegmented images. Con-
sidering each type of feature as one modality, taking ad-
vantage of the large amount of unlabeled data information,
our new adaptive multi-modal semi-supervised classifica-
tion (AMMSS) algorithm propagates the class labels from
labeled images to unlabeled images based on the integrat-
ed multi-modal feature similarity and learn the weights for
different modalities (image features) simultaneously. We
applied our AMMSS method to integrate multiple popular-
ly used image features, which describe the image content
from different perspectives, and evaluated the performance
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by four benchmark datasets. Compared with the existing
semi-supervised scene and object categorization method-
s, our approach always achieves superior performances in
terms of both macro and micro classification accuracy.

2. Related Work

As the most popularly used semi-supervised learning
models, the graph based semi-supervised methods define a
graph where the nodes encompass labeled as well as unla-
beled data, and edges (may be weighted) reflect the simi-
larity of data points [26, 27, 28, 7]. Nevertheless, they take
advantage of the affinity matrix or graph Laplacian matrix
extracted from one visual descriptor only.

Co-training semi-supervised learning model trains two
or more separate classifiers. It can fuse the descriptors by
learning a separate classifier using each visual feature and
iteratively training examples for each classifier based on the
output of the other classifier. Each classifier then classi-
fies the unlabeled data and teaches the other classifier with
the few unlabeled examples they feel most confident. Each
classifier is retrained with the additional training examples
given by the other classifier and the process repeats. But the
drawback of the co-training is that it requires all the classi-
fiers over the separate feature sets to be accurate. In other
words, the performance of co-training is not robust to the
outlier feature set whose performance is far below the av-
erage, since the outlier will provide erroneous information
to other classifiers and deteriorate the overall classification
result.

How to properly integrate heterogeneous features is
becoming an emerging topic nowadays. As a multi-
kernel learning algorithm, the heterogeneous feature ma-
chine (HFM) [3] was recently proposed based on logistic
regression loss function and group LASSO regularization
to supervised fuse the multiple types of features for visu-
al classifications. Constructing a shared common cluster
indicator with non-negative constraint via non-negative ma-
trix factorization, multi-modality spectral clustering (MM-
SC) [2, 5] unsupervised merges the different features. Al-
though many supervised and unsupervised methods have
been proposed to integrate the multi-modal features, there
is no semi-supervised learning model to integrate heteroge-
neous image visual features. The structured sparse-inducing
norms were also used for feature integration in different ap-
plications [21, 1, 20, 19].

In this paper, we will tackle this problem by a novel
graph based semi-supervised learning model to adaptive-
ly fuse different visual features for semi-supervised image
categorizations. To begin with, let’s first summarize the no-
tation that will be used in this paper. Matrices are written
as uppercase letters and vectors are written as boldface low-
ercase letters. mij is the entry located at i-th row and j-th
column of matrix M .

2.1. Basic Framework of Graph Based Semi-
Supervised Learning

Assume we have n images X = {x1, · · · , xn}, where
each image is abstracted as a data point xi ∈ R

p. Each data
point xi belongs to one of K classes C = {c1, · · · , cK}
represented by yi ∈ {0, 1}K , such that yi(k) = 1 if xi
is classified into k-th class, and 0 otherwise. Without loss
of generality, we assume the first l � n data are already
labeled, which are denoted as T = {xi, yi}

l
i=1. Our task is

to learn a function f : X → {0, 1}K from T that is able to
classify the given unlabeled data xi(l+1 ≤ i ≤ n) into one
and only one class in C. For simplicity, we use u to denote
the number of unlabeled data point. that is, l + u = n and
split the label matrix Y = [y1, y2, ..., yn]

T , yi ∈ R
K into 2

blocks: Y =

[
Yl

Yu

]
.

Given the dataset X , all the image data including the
labeled and unlabeled ones are abstracted as the vertices on
K −NN graph. To be specific, we connect xi, xj if one of
them is among the other’s K-nearest neighbor by Euclidean
distance and define the corresponding weight on the edge as
the following,

wij =

{
exp(−

‖xi−xj‖2

2σ2 ), if xi and xj are connected
0, otherwise

(1)
where σ is the bandwidth parameter. Therefore, W =
{wi,j} is an (l+ u)× (l+ u) symmetric undirected matrix

with non-negative edge weight. Let dii =
l+u∑
j=1

wij and D be

the diagonal matrix by substituting dii, i = 1, 2, ...(l + u)
on the diagonal. The normalized graph Laplacian matrix L
is defined as

L = I −D−
1
2WD−

1
2 (2)

2.2. Label Propogation for Single Modality

According to graph theory, if the edge weight between
two vertices on affinity matrix is large, then the class la-
bels of these two instances should be similar. Based on the
above assumption, denote G ∈ R

n×K as the class label ma-
trix, for each feature modality, we use the following way to
propagate the class label information from labeled data to
unlabeled data,

min
G

GTLG s.t. gi = yi, ∀i = 1, 2, ..., l, (3)

where L is the normalized Laplacian matrix defined in E-
q. (2).
Eq. (3) can be rewritten as the following,

min
Gu

Tr(

[
Yl

Gu

]T [
Lll Llu

Lul Luu

] [
Yl

Gu

]
), (4)
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since we know the labels Yl for the first l instances, which
has the following unique solution,

Gu = −L−1
uuLulYl (5)

2.3. Label Propogation by AMMSS

In order to properly and naturally integrate heteroge-
neous image features to do semi-supervised learning, we
need a co-regularization term to learn a consensus class la-
bel matrix and let the differences between that consensus la-
bel matrix and the class label matrix of each feature modal-
ity as small as possible. With the addition of weight factor
for each feature modality, we adaptively learn the weight
for each feature modality, assigning the more discriminative
modality with higher weight. We summarize the proposed
AMMSS method as the following objective function,

min
G,G(v),α(v)

V∑
v=1

(α(v))rTr(G(v)TL(v)G(v))

+λ
V∑

v=1
Tr((G−G(v))T (G−G(v)))

s.t. gi = yi, ∀i = 1, 2, ...l,
V∑

v=1
α(v) = 1,

α(v) ≥ 0,

(6)

where V is the number of image visual features, α(v) is the
non-negative normalized weight factor for the v-th modali-
ty, L(v) and G(v) are the normalized Laplacian matrix and
class label matrix for the v-th feature modality respective-
ly. G is the shared consensus class label matrix that we are
interested. We use the scalar r to control the distribution
of different weights for different feature modalities and λ is
the regularization parameter to balance the 1st term and the
2nd term. We want to solve for G, G(v) and α(v) simulta-
neously via the proposed Eq. (6).

3. Optimization Algorithms

3.1. The Optimization Algorithm of AMMSS

We decompose Eq. (6) as the following three subprob-
lems and solve them alternatively and iteratively.
The first step is fixing G and G(v), solving α(v). Then, the
objective function becomes

min
α(v)

V∑
v=1

(α(v))rTr(G(v)TL(v)G(v)),

s.t.
V∑

v=1
α(v) = 1, α(v) ≥ 0

(7)

Let p(v) = Tr(G(v)TL(v)G(v)), then the Eq. (7) can be
rewritten as

V∑
v=1

(α(v))
r
p(v), s.t.

V∑
v=1

α(v) = 1, α(v) ≥ 0 (8)

Algorithm 1 The algorithm of AMMSS
Input:
1. Affinity matrices {W (1), · · · ,W (V )} ∈ R

n×n

2. The labels for the first l images, Yl = [y1, y2, ..., yl]
T , yi ∈

B
K×1, ∀i = 1, 2, ..., l.

3. The parameters r and λ.
Output:
1. The predicted labels for the unlabeled images yi, ∀i = l + 1, l +
2, ..., n.
2. The weight scalar α(v), ∀v = 1, 2, ..., V for each modality.
Initialization:
1. Set t = 0
2. Initialize the weight for each modality, α

(v)
t = 1

V
, ∀v =

1, 2, ..., V

3. Initialize the common class label matrix, Gt =

[
Glt

Gut

]
=[

Yl

Yu

]
where Yu ∈ R

u×K is a random matrix and each entry

ui,j ∈ {0, 1}.
4. Calculate the normalized Laplacian matrices for each feature modal-

ity, L(v)
t = I − (D

(v)
t )−

1
2 W

(v)
t (D

(v)
t )−

1
2

Procedure:
repeat

1. Calculate L̃
(v)
t = (α

(v)
t )rL

(v)
t

2. Calculate the class indicator matrix for each modality G
(v)
t =

λ(L̃
(v)
t + λI)−1Gt

3. Calculate Ht =
V∑

v=1

(
I − λ(L̃

(v)
t + λI)−1

)
and split the Ht

by Eq. (16).

4. Calculate p
(v)
t = Tr(G

(v)
t

T
L
(v)
t G

(v)
t )

5. Update the weight for each modality by Eq. (11)
6. Update Gut+1 = −H−1

uut
HultYl. And update Gt+1 =[

Yl

Gut

]

7. Update t = t+ 1
until Converges
Assign the single class label for the unlabeled images by Eq. (20).

Thus, the Lagrange function of Eq. (8) is

V∑
v=1

(α(v))rp(v) − β(
V∑

v=1

α(v) − 1) (9)

where β is the Lagrange multiplier. In order to get the opti-
mal solution of the above subproblem, set the derivative of
Eq. (9) with respect to α(v) to zero. We have

α(v) =

(
β

rp(v)

) 1
r−1

(10)

Substitute the resultant α(v) in Eq. (10) into the constraint∑
v α

(v) = 1, we get

a(v) = (rp(v))
1

1−r /

V∑
v=1

(rp(v))
1

1−r (11)

The second step is fixing α(v) and G, solving G(v). We
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change the variable and let L̃(v) = (α(v))rL(v) then the
objective function becomes

min
G,G(v)

∑
v

Tr(G(v)T L̃(v)G(v))

+ λ
∑
v

Tr((G−G(v))T (G−G(v)))

s.t. gi = yi, ∀i = 1, 2, ..., l

(12)

Set the derivative of Eq. (12) with respect to G(v) to zero.
We have

G(v) = λ(L̃(v) + λI)−1G (13)

The third step is fixing α(v) and G(v), solving G. Substi-
tute the resultant G(v) in Eq. (13) into the Eq. (12), we get
(The proof is in Appendix)

∑
v

Tr(G(v)T L̃(v)G(v))

+λ
∑
v

Tr((G−G(v))T (G−G(v)))

= λTr(GT (
∑
v

(I − λ(L̃(v) + λI)−1)G)

(14)

Let H =
∑
v

(
I − λ(L̃(v) + λI)−1

)
. Therefore, Eq. (12) is

equivalent to the following optimization problem,

min
G

Tr(GTHG)

s.t. gi = yi, i = 1, 2, ..., l
(15)

To compute class label matrix for the unlabeled image ex-
plicitly in terms of matrix operations, we split the matrix H
into 4 blocks by the l-th row and l-th column:

H =

[
Hll Hlu

Hul Huu

]
(16)

Therefore,

Tr(GTHG)

= Tr

([
Gl

Gu

]T [
Hll Hlu

Hul Huu

] [
Gl

Gu

])

= Tr

([
Yl

Gu

]T [
Hll Hlu

Hul Huu

] [
Yl

Gu

])

= Tr(Y T
l HllYl +GT

uHulYl + Y T
l HluGu +GT

uHuuGu)
= Tr(Y T

l HllYl +GT
uHulYl +GT

uHulYl +GT
uHuuGu)

(17)
Thus optimization problem in Eq. (15) is equivalent to the
subsequent problem,

min
Gu

[2Tr(GT
uHulYl) + Tr(GT

uHuuGu)] (18)

Setting the derivative of Eq. (18) to zero with respect to Gu,
we get

Gu = −H−1
uuHulYl (19)

By the above three steps, we alternatively update α(v), G(v)

and G and repeat them iteratively until the objective func-
tion converges. At last, we resort to the following decision
function to assign the single class label to the unlabeled im-
ages,

yi = argmax
j

Gij , ∀i = l+1, l+2, ..., n. ∀j = 1, 2, ...,K.

(20)
We summarize the algorithm in Alg. 1.

3.2. Convergence of The Algorithm

We will prove the convergence of the proposed Alg. 1 as
following: We divide the original problem Eq. (1) into three
subproblems and each of them is convex problem. Since the
original problem is not a joint convex problem, by solving
the subproblems alternatively, Alg. 1 will converge to the
local solution and we use 1/V as the initial weight for each
modality. Later in our experiment we will demonstrate the
fast convergence of our algorithm.

3.3. Discussion of The Parameter r

In AMMSS, we use one parameter r to control the dis-
tribution of weight factors for different feature modalities.
From Eq. (11), we can see that when r → ∞, we will get
equal weight factors. And when r → 1, we will assign 1
to the weight factor of the modality whose p(v) value is the
smallest and assign 0 to the weights of other modalities. Us-
ing such kind of strategy, on one hand, we avoid the trivial
solution to the weight distribution of the different modali-
ties, that is, the solution when r → 1. On the other hand,
surprisingly, we can take advantage of only one parameter
r to control the whole weights, reducing the parameters of
the model greatly.

4. Experimental Results

Since our AMMSS is a kind of graph based semi-
supervised learning algorithm, we will compare the perfor-
mance of our AMMSS and related graph based state-of-
art semi-supervised methods on five benchmark datasets:
Caltech-101 [14], Microsoft Research Cambridge Volume
1 (MSRC-v1) [22], Handwritten numerals (HW) [10] and
Animal with Attributes(AwA) [12]. The image classifica-
tion performance is evaluated in terms of average macro and
micro classification accuracy.

4.1. Dataset Descriptions

Caltech-101 Images The Caltech101 image dataset con-
tains 8677 images of objects, each with approximately 0.1
mega pixel resolution, belonging to 101 categories. We
follow [8] to choose 7 and 20 classes dataset respective-
ly from 101 classes. The 7 classes include Faces, Motor-
bikes, Dolla-Bill, Garfield, Snoopy, Stop-Sign, Windsor-
Chair and have 441 images in total. The 20 classes include
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Figure 1. The demonstration of different visual descriptors from Caltech 101 dataset. The final class label of the testing image is decided
by the weighted six different feature modalities, where the weight for different feature modality is learned by the training images.

Faces, Leopards, Motorbikes, Binocular, Brain, Camera,
Car-Side, Dollar-Bill, Ferry, Garfield, Hedgehog, Pagoda,
Rhino, Snoopy, Stapler, Stop-Sign, Water-Lilly, Windsor-
Chair, Wrench, Yin-Yang and have 1230 images all togeth-
er. MSRC-v1 Images We follow Lee and Grauman’s ap-
proach [13] to refine the dataset, getting 7 classes com-
posed of tree, building, airplane, cow, face, car, bicycle,
and each refined class has 30 images. Compared to the
Caltech101 dataset, MSRC-v1 has more clutter and vari-
ability in the objects appearances. Since there is no pub-
lished image descriptors for Caltech-101 and MSRC-v1
datasets, we extract the following six popular visual fea-
tures for each image: On one hand, we extract three holis-
tic visual features for each image, i.e. 45 dimension col-
or moment (CMT) [24]; 512 dimension GIST feature [17];
1302 dimension CENTRIST feature [23]. On the other
hand, we collect three local descriptor as well, i.e. 256 di-
mension local binary pattern (LBP) [16]; 576 dimension
HOG feature and famous 128 dimension DoG-SIFT de-
scriptor [15]. Handwritten numerals (HW) Handwrit-
ten numerals dataset consists of 2000 data point for 0 to
9 ten digit classes. (Each class has 200 data points.) We
use the published six visual features [10] extracted from
each image. Specifically, the six visual features are 76 di-
mension Fourier coefficients of the character shapes (FOU),
216 dimension profile correlations (FAC), 64 dimension
Karhunen-love coefficients (KAR), 240 dimension pixel av-
erages in 2 × 3 windows (PIX), 47 dimension Zernike mo-
ment (ZER) and 6 dimension morphological (MOR) fea-
tures. Animal with attributes (AWA) Animal with at-
tributes data set is the largest data set, which is also an im-

age data set consisting of 6 feature 50 classes. We random-
ly sample 50 images for each class and get 2500 images in
total. We utilize all the published features, that is, 2688 di-
mension Color Histogram (CQ) features , 2000 dimension
Local Self-Similarity (LSS) features , 252 dimension Pyra-
midHOG (PHOG) features, 2000 dimension SIFT features,
2000 dimension colorSIFT (RGSIFT) feature and 2000 di-
mension SURF features.

4.2. Experimental Setup

We use the Gaussian Kernel in Eq. (1) with 7-nearest
neighbor to get the affinity matrices for different visual fea-
tures. We utilize self-tuning method [25] to calculate the
bandwidth parameter σ. In order to solve the inequality
length problem of the DoG-SIFT feature, we utilize the
pyramid match kernel [11] to build the similarity matrix,
using the LIBPMK toolkit. Thus, given an image, we have
multiple similarity (affinity) matrices calculated from dif-
ferent modalities. In our experiment for each dataset to
mimic the “real” situation in semi-supervised learning case
(l � u), we randomly choose 20% data for training and
use the rest for testing. We repeat the above procedure 10
times and report the average result. r is the parameter to
control the distribution of the weights for different feature
modalities, which we will discuss in detail later. We search
the logarithm of the parameter r, that is, log10r in the range
from 0.1 to 2 with incremental step 0.2 and search the reg-
ularization parameter λ in the range from 0 to 1 with incre-
mental step 0.1 to get the best parameters r∗ as well as λ∗

based on the 2-fold cross validation inside the training data
only.
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4.3. Classification Results Comparison

First of all, in order to test the feature integration power
of our method, we compare classification performance us-
ing all the feature modalities with that using only one fea-
ture modality. From Table 1 to Table 3, we can draw the
conclusion that the performance of our proposed AMMSS
can beat the best of single modality, which tackles the prob-
lem of Eq. (3).

We also compare our methods with some graph based
state-of-the-art semi-supervised learning methods: (a) the
harmonic function (HF) approach [28], (b) learning with lo-
cal and global consistency approach (LGC) [26] and (c) the
random walk approach (RW) [27]. For each of the above
three methods, we use the kernel addition (KA), that is,
the simple average of equal weighted Laplacian matrices
or the graph Laplacian of the concatenated features of all
modalities (FC) as the input for HF, LGC as well as RW.
Moreover, for sake of completeness, we also compare the
results of support vector machine with the pre-computed
kernel Eq. (1) implemented by LIBSVM [4]. Since Mul-
tiple Kernel Learning (MKL) approaches [18] can also re-
alize feature integration if we consider one feature modali-
ty as one kernel, we report its classification result as well.
Moreover, since our method can learn the weight for each
feature modality adaptively, we compare the results of our
model using equal weight (MMSS). We adopt the optimal
parameter settings for the above methods empirically. As
for performance evaluation, we utilize the widely-used per-
formance metrics, average macro classification accuracy as
well as average micro classification accuracy for each class.
Average macro classification accuracy is shown in Table 4
and micro accuracy for all the datasets are shown in Fig. 3.
We can see that our method always achieves consistently
better results than the other state-of-art methods in terms of
average macro classification accuracy and choosing differ-
ent weights for different features can even boost the perfor-
mance of multi modality semi-supervised learning results.
As for average micro classification accuracy, the results of
AMMSS are the best for most classes. The confusion matri-
ces of MSRCV1, Caltech101-7 and Handwritten numerals
are shown in Fig. 2.

Moreover, since our method can learn the weight for
each feature modality after convergence, we add the gen-
eralization ability of the objective function Eq. (6). Fig. 4
shows the learned weight by our Alg. 1 on five benchmark
datasets. From it, we can observe that DoG-SIFT has the
most discriminate power in Caltech101 − 7 dataset, CEN-
TRIST has the highest weight for Caltech101 − 20 dataset
while for MSRCV1 dataset, GIST is the best feature modal-
ity among the six which is consistent with single modality’s
performance shown in Table 1. Instead of treating each fea-
ture modality equally, our method can do weighting each
feature modality and classification simultaneously.

(a) MSRCV-1

(b) Caltech101-7

(c) handwritten number

�
���
���
���
���
� 	
� �
 �� ��� ��� ��		�

(d) Caltech101-20

Figure 3. The Micro accuracy on two datasets (a) MSRCV1 (b)
Caltech101-7. (c) Handwritten number (d) Caltech101-20

Table 1. The average macro classification accuracy compared
with single view on Caltech101-7, Caltech101-20 and MSRCV1
datasets.

Methods Caltech7 Caltech20 MSRCV1
CTM [24] 0.45 0.27 0.30
LBP [16] 0.66 0.39 0.71
GIST [17] 0.80 0.51 0.79

CENTRIST [23] 0.79 0.70 0.77
DoG-SIFT [15] 0.81 0.30 0.51

HOG [6] 0.89 0.27 0.69
AMMSS 0.91 0.74 0.94

Table 2. The average macro classification accuracy compared with
single view on Handwritten numerals dataset.

Data FOU FAC KAR PIX ZER MOR AMMSS
HW 0.92 0.82 0.93 0.46 0.94 0.82 0.98

At last, we test the convergency speed of our AMMSS
algorithm, which is shown in Fig. 5. From it, we can ob-
serve that our AMMSS algorithm converges very fast on all
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(a) avg. accuracy 94%
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(b) avg. accuracy 91%
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(c) avg. accuracy 98%

Figure 2. Calculated confusion matrices by AMMSS method (a) MSRCV1 (b) Caltech101-7 (c) Handwritten numerals.
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Figure 5. The convergency of five datasets (a) Caltech101-7 (b) Caltech101-20 (c) MSRCV1 (d) Handwritten numerals (e) AwA

Table 3. The average macro classification accuracy compared with
single view on animal with attribute dataset.

Data CQ LSS PHOG RGISIFT SIFT SURF AMMSS
AWA 0.057 0.062 0.050 0.054 0.065 0.072 0.095

Table 4. The average macro classification accuracy compared with
baseline methods on all datasets.

Methods Caltech7 Caltech20 MSRCV1 HW AWA
SVM [4] 0.85 0.59 0.86 0.95 0.076

MKL [18] 0.89 0.68 0.89 0.96 0.079
HF(KA) [28] 0.84 0.70 0.92 0.97 0.079
HF(FC) [28] 0.82 0.68 0.89 0.96 0.077

RW(KA) [27] 0.89 0.72 0.88 0.97 0.080
RW(FC) [27] 0.86 0.69 0.87 0.96 0.079
LGC(KA) [7] 0.87 0.72 0.90 0.97 0.081
LGC(FC) [7] 0.89 0.71 0.88 0.96 0.079

MMSS 0.89 0.72 0.92 0.97 0.086
AMMSS 0.91 0.74 0.94 0.98 0.095

the datasets and usually the number of iteration is less than
10.

5. Conclusion

In this paper, we proposed a novel adaptive multi-
modality semi-supervised learning method (AMMSS) to
jointly learn the weight for each feature modality as well
as the common class labels for the unlabeled data. Utiliz-
ing our algorithm, decomposing the original problem into
three convex subproblems, we can solve the proposed mod-
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Figure 4. The learned weight factor for different modalities on five
dataset. The feature index on x-axis from 1 to 6 stands for CMT,
LBP, GIST, HOG, CENTRIST and DOG-SIFT respectively for Caltech-
7, Caltech-20 and MSRCV1 datasets. And the index on x-axis from 1 to 6
stands for FOU, FAC, KAR, PIX, ZER, MOR respectively for Handwrit-
ten numerals dataset. The index on x-axis from 1 to 6 stands for CQ, LSS,
PHOG, RGSIFT, SIFT, SURF respectively for AwA dataset.

el iteratively with the proof of convergence. We use a sin-
gle parameter r to control the weights for different feature
modalities, avoiding the trouble of tuning lots of parame-
ters. Our method has been evaluated on five benchmark
datasets and achieves the best performance with compari-
son to five state-of-art methods in terms of macro and micro
classification accuracy. In the future work, we will adjust
the proposed method to the additional text or attribute fea-
ture modality evaluated on the recently widely studied large
image dataset with associated tags or attributes. With the
help of more general text or attribute representations other
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than visual features only, we hope to explore more power-
ful shared common label matrix and improve the state-of-art
performance on the corresponding benchmark datasets.

Appendix A

Proof of Eq. (14):
∑

v

Tr((G(v))T L̃(v)
G

(v)) + λ
∑

v

Tr(G−G
(v))T (G−G

(v))

=
∑

v

Tr(GT
λ
2(L̃(v) + λI)−1

L̃
(v)(L̃(v) + λI)−1

G)

+λ
∑

v

Tr(GT (I − λ(L̃(v) + λI)−1)2G)

= Tr(GT (
∑

v

(λ2(L̃(v) + λI)−1
L̃

(v)(L̃(v) + λI)−1

+λ(I − λ(L̃(v) + λI)−1)2)G)

= Tr(GT (
∑

v

(λ2(L̃(v) + λI)−1
L̃

(v)(L̃(v) + λI)−1

+λ(I − 2λ(L̃(v) + λI)−1 + λ
2(L̃(v) + λI)−2)G)

= Tr(GT (
∑

v

(λI − 2λ2(L̃(v) + λI)−1 + λ(L̃(v) + λI)−1)

+λ
2(L̃(v) + λI)−1(L̃(v)(L̃(v) + λI)−1)G)

= Tr(GT (
∑

v

(λI − 2λ2(L̃(v) + λI)−1 + λ
2(L̃(v) + λI)−1)G)

= λTr(GT (
∑

v

(I − λ(L̃(v) + λI)−1)G)�
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