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Abstract

This paper proposes a new projection model for map-
ping a hemisphere to a plane. Such a model can be use-
ful for viewing wide-angle images. Our model consists of
two steps. In the first step, the hemisphere is projected
onto a swung surface constructed by a circular profile and
a rounded rectangular trajectory. The second step maps
the projected image on the swung surface onto the image
plane through the perspective projection. We also propose
a method for automatically determining proper parameters
for the projection model based on image content. The pro-
posed model has several advantages. It is simple, efficient
and easy to control. Most importantly, it makes a bet-
ter compromise between distortion minimization and line
preserving than popular projection models, such as stereo-
graphic and Pannini projections. Experiments and analysis
demonstrate the effectiveness of our model.

1. Introduction
Capturing a scene with a wide field of view from a sin-

gle viewpoint records rich visual information of the scene.

Such wide-angle images (full spherical panoramas at the

extreme) can be obtained from stitching multiples images

taken from the same viewpoint, or from shooting with fish-

eye lens. The recorded information can be defined with

a viewing sphere which stores the incident radiance at

the viewpoint from any incoming direction. For viewing

wide-angle images defined on a viewing sphere, it is of-

ten required to map from the viewing sphere to an image

plane. However, it is impossible to map from a sphere to

a plane without introducing distortions. Thus, most projec-

tion models trade off different types of distortions and none

can avoid all distortions. Also, different applications could

have different requirements and desired properties. For our

applications, viewing wide-angle perspective images, they

include the following. (1) Minimal distortion: the shape

should be preserved locally so that the image content is not

severely distorted. Otherwise, the image will look stretched
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or compressed. (2) Line preserving: scene lines should re-

main straight in the projection because human is often more

sensitive to distortions of straight lines. Vertical/horizontal

lines and lines passing through vanishing points are espe-

cially important. (3) Rectangular outline: it is preferred

that the projected images have rectangular boundaries.

None of existing projection models can reach all these

goals. Figure 1 demonstrates several popular projection

models. In this example, the scene exhibits perspective ef-

fects with a vanishing point at the center of the image. Rec-

tilinear projection (or gnomonic projection) preserves most

scene lines, but exhibits extensive stretches for a large FOV.

In addition, when the FOV approaches the theoretical limit

(180 degrees), it requires infinite space for displaying the

image. Cylindrical projections (equirectangular and Merca-

tor) preserve the straightness of vertical scene lines. How-

ever, they reduce the perspective effects because scene lines

towards the vanishing point become curved. Additionally,

equirectangular projection severely distorts the area near the

zenith and nadir. To preserve conformality, Mercator pro-

jection requires infinite space to show the whole view along

the vertical direction. Thus, areas near the zenith and the

nadir have to be cropped. Stereographic projection per-

forms well on minimizing distortions, but several promi-

nent lines become curved in the projection and the resultant

image is not rectangular. Pannini projection, on the other

hand, produces a rectangular image, and preserves vertical

lines and scene lines towards the vanishing point. But it

does not preserve horizontal lines and generates severe dis-

tortions around the zenith and nadir. Additionally, cropping

is required because of its ineffective vertical FOV.

This paper proposes a projection model which strikes

a good compromise among these desired properties. As

shown in Figure 1, similar to stereographic projection, our

model has a good conformality property and less content

distortions. It further makes the outline of the image more

rectangular. In addition, it preserves vertical scene lines and

scene lines passing through the vanishing point in the same

way Pannini projection does. Finally, it also better preserves

horizontal lines that Pannini projection doesn’t. It is partic-

ularly evident from the signs hung above the doors at the

center.
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Rectilinear Equirectangular Mercator Stereographic Pannini Ours

Figure 1: Comparisons of the proposed projection model with several popular projection models.

Our model consists of two steps. The first step projects

the viewing hemisphere onto a swung surface. The second

step maps the projection on the swung surface onto the im-

age plane through the perspective projection. The key is

the design of the swung surface. We construct our swung

surface by rotating and scaling a circular profile along a

rounded rectangular trajectory. We show that the proposed

model unifies several projection models. We also demon-

strate the model on applications of viewing wide-angle im-

ages and creating thumbnails for full spherical panoramas.

2. Related work

For panoramic projections, Zelnik-Manor et al. [10] pro-

posed a multi-plane projection as an alternative to cylindri-

cal projection. The cylindrical surface is replaced by sev-

eral planes. Thus, the resulting panorama is composed by

several perspective projections with the same viewpoint but

with different projection planes. Kopf et al. [4] proposed an

interactive viewer for gigapixel panoramas. They employed

an adaptive projection which allows for smooth transition

between the rectilinear and cylindrical projections.

For wide-angle images, Zorin and Barr [11] proposed

a one-parameter family of projections that interpolate be-

tween the rectilinear and stereographic projections. Ying

and Hu [9] proposed a unified imaging model for central

catadioptric and fisheye cameras. Sharpless et al. [6] pro-

posed Pannini projection for viewing wide-angle perspec-

tive images. Carroll et al. [2] presented a content-based ap-

proach that finds an optimal mapping function according to

user-drawn lines. Based on this approach, Wei et al. [8] pro-

posed a fisheye video correction method. Both the method

of Carroll et al. [2] and our method can be used for viewing

wide-angle images. However, their method requires users

to draw lines and our method can be fully automatic.

There exist researches on creating panoramas from dif-

ferent viewpoints. Agarwala et al. [1] proposed a system for

creating multi-viewpoint panoramas of street scenes from

fisheye videos. Kopf et al. [3] presented a system for brows-

ing multi-perspective street views. Our projection model

is designed for the single-viewpoint configuration, different

from these approaches.

(a) The first step (b) The second step

Figure 2: The two-step projection model.

3. The proposed projection model

This section describes our projection model for mapping

a point p̄ on the viewing sphere to a point p̂ on the image

plane. For a full viewing sphere, we divide it into two hemi-

spheres by the xy plane and handle them separately. We

start by describing the coordinate systems as illustrated in

Figure 2. The xz plane is parallel to the ground plane. The

viewing sphere is centered at the origin and its radius is 1.

For projection, the viewing direction is towards the positive

z axis and the projection plane is located at z = 1. A point

p̄ on the viewing sphere can be described by a 3D spheri-

cal coordinate (r, θp, φp), where r = 1 for the unit viewing

sphere, φp is the angle measured from positive z axis and

θp is the angle measured on the xy plane from the positive

x axis. The projected point p̂ on the image plane can be

represented by a 2D polar coordinate (θ̂p, r̂p).

3.1. The two-step projection model

Our projection model is a two-step model that maps from

a hemisphere to the projection plane as illustrated in Fig-

ure 2, which only shows an octant. Given a point p̄ on

the hemisphere (the orange surface), the first step projects

p̄ onto a point p on a surface S (the blue surface) through a

line emanating from the center of the hemisphere. The sur-

face can be formed by arbitrary spherical function that maps

(θ, φ) to a real value. By construction, the 3D spherical co-

ordinate of p is (rp, θp, φp) where its polar and azimuth an-

gles are the same as p̄ while the radial distance changes to

rp depending on the definition of the surface S.
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Figure 3: By applying similar triangles, we can obtain the

formula for r̂p (Equation 2).

In the second step, p on the surface S is projected onto

a point p̂ on the image plane by the perspective projection.

As shown in Figure 2(b), we let the center of projection lie

on the negative z axis with coordinate (0, 0,−d). Since all

projected points lie on the image plane, we can denote them

using a 2D poplar coordinate system on the image plane.

The 2D polar coordinate of p̂, (θ̂p, r̂p), can be expressed as

θ̂p = θp, (1)

r̂p =
d+ 1

d+ rp cos(φp)
· rp sinφp. (2)

The formula of r̂p can be obtained by similar triangles as

shown in Figure 3. Note that rp and r̂p are for different

coordinate systems. rp denotes the radial distance in the

3D spherical coordinate system while r̂p is for the 2D polar

coordinate system. With Equation 1 and 2, one can relate

the 3D spherical coordinate (1, θp, φp) of a point p̄ on the

hemisphere with its projection p̂ on the image plane with

2D polar coordinate (r̂p, θ̂p). Note that the calculation of rp
depends on the surface S.

3.2. Swung surfaces

Our construction of the surface S comes from an exten-

sion to the surface of revolution. Constructing a surface of

revolution requires a profile curve γ and a revolution axis.

The profile curve is a plane curve. Let Aγ denote the plane

that γ lies on. The revolution axis is required to lie on Aγ .

By rotating the profile curve about the revolution axis, one

can generate a surface of revolution. Swung surfaces are ex-

tensions to surfaces of revolution. In addition to the profile

curve and the revolution axis, a trajectory curve R is re-

quired for swung surfaces. R must be a closed plane curve.

Let AR denote the plane that R lies on. AR is required to be

perpendicular to the revolution axis. Therefore, AR is also

perpendicular to Aγ . A swung surface is generated as fol-

lows. Similar to surfaces of revolution, the profile curve ro-

tates about the revolution axis. But this time, when rotating,

the profile curve is also scaled at the same time. The scal-

ing is guided by the trajectory curve R. More specifically,

the profile curve γ is scaled along the line of intersection

between the rotated Aγ and the AR, such that the rotated γ
intersects with the trajectory curve R.

In this paper, we only explore a specific family of swung

surfaces defined as follows. We set the revolution axis to

be the z axis which is also the optical axis of the perspec-

tive projection in the second step of our projection model.

The profile curve is defined as a unit half circle on the xz

plane (Figure 4(a)). The trajectory curve is defined on the

xy plane and is in a rounded rectangular shape (Figure 4(b)),

which can be parameterized by θ as R(θ). We will describe

this trajectory curve in more detail in Section 3.3. Note

that the discussion in this subsection applies to all trajectory

curves parameterized as R(θ) but not limited to the rounded

rectangular curve we chose.

Figure 4(c) demonstrates the construction of the swung

surface S. The circular arc is rotated (the green arrow) and

then scaled (the red arrow) to touch the trajectory curve.

The direction vector of the scaling is [cos θ, sin θ, 0]T . A

scaled circular arc becomes an elliptical arc by the construc-

tion process. The two axes of the elliptical arc are the scal-

ing direction and the z axis respectively. Note that no matter

how the circular arc is rotated and scaled, the resulting el-

liptical arc always passes through the point (0, 0, 1)1.

Remember that, for computing Equation 2, given a point

p̄ = (1, θp, φp) on the hemisphere, we need to find the radial

distance rp of its projection p on S. For our swung surface,

p locates on the elliptical arc generated by rotating a unit

circular arc (γ) by θp and then scaled by R(θp). As shown

in Figure 4(d), the two semi-axes of the ellipse are R(θp)
and 1 (along [cos θp, sin θp, 0]

T and the z axis) respectively,

and rp can be obtained by

rp =
√
R(θp)2 sin

2 αp + cos2 αp, (3)

where αp is the parameter of the ellipse. That is, points on

the ellipse can be represented as (cosαp, a sinαp) where

a = R(θp) is the aspect ratio of the ellipse. αp and φp are

related by

tanαp = R(θp)
−1 tanφp. (4)

By looking into Figure 3 and 4(d), Equation 2 becomes

r̂p =
d+ 1

d+ cosαp
·R(θp) sinαp. (5)

Thus, once defining the trajectory by specifying R(θ), given

a point p̄ on a hemisphere with the polar and azimuthal an-

gles θp and, φp, one can find its projection’s polar coordi-

nate (θ̂p, r̂p) on the image plane using Equation 1 and 5.

3.3. The trajectory curve

Figure 5 shows several examples of surfaces constructed

from different trajectory curves when using a unit half circle

1The elliptical arc also always passes (0, 0,−1), but we only focus on

the half with positive z coordinates for projecting a hemisphere.
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(a) Profile curve (b) Trajectory curve (c) Surface construction (d) Elliptical arc (e) Rounded rectangle

Figure 4: The construction of the swung surface S.

Circle Two vertical line Square Rounded square

Figure 5: Examples of trajectory curves and the correspond-

ing surfaces.

as the profile. For example, when using a circle (R(θ) = 1)

as the trajectory, the constructed surface is a sphere and

the projection model becomes stereographic projection. If

two vertical lines are employed as the trajectory, we ob-

tain a cylinder as the surface and the model becomes Pan-

nini projection. In this paper, we adopt a specific family of

closed curves as the trajectory curve: rounded rectangles.

Figure 5(d) shows the swung surface constructed using a

rounded rectangle as the trajectory curve. It can be treated

as an interpolation between the surfaces constructed by us-

ing the circle and the square as trajectories.

As shown in Figure 4(e), an rounded rectangle is param-

eterized by three parameters: width (w), height (h), and the

radius of the circle (l) for rounding corners. The center of

the rounded rectangle coincides with the origin of the image

plane. Since the image plane is located at the plane z = 1,

to maximize the conformality, we let w=1 and only vary h
which specifies the aspect ratio of the rectangle. Therefore,

there are three parameters in our projection model: the focal

length d, the aspect ratio h and the roundness l. The later

two determine R(θ) for the trajectory curve. When l = 0,

the curve becomes a rectangle. When h = l = 1, it be-

comes an circle. Figure 6 visualizes impacts of the focal

length and roundness. We usually prefer rectangular im-

ages. It can be achieved by setting lower roundness values.

However, in such a configuration, a long line could take a

sharp turn when running across the diagonals of the rectan-

gle. As for d, a larger value of d emphasizes more on the

d = 0.5

d = 1

d = 10

l = 0.2 l = 0.5 l = 0.8

Figure 6: Visualizations with different parameters. In this

example, the configuration of d = 1 and l = 0.5 or l = 0.8
gives more visually pleasing results.

center part and squeezes the periphery. On the other hand, a

smaller d shrinks the center part and leaves more space for

the periphery.

We adopt the round rectangles for several reasons. First,

it is easy to control and optimize the shape of the rounded

rectangle because of a small number of parameters. Sec-

ond, the model is flexible enough and can be specialized

to several well-known projections. Third, the shape of the

projected image is axial symmetric. Thus, there is no need

for cropping. The last but the most important reason is that

four line segments of the rounded rectangle better preserve

lines. We will have more discussions on this in Section 3.4.

3.4. Comparisons with previous models

Our projection model unifies the following projection

models: rectilinear projection, stereographic projection, or-

thographic projection, Zorin and Barr’s one-parameter fam-

ily of projections that includes retilinear and stereographic

projections, Ying and Hu’s unified imaging model for cata-

dioptric and fisheye cameras, and finally, the Pannini pro-
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d R(θ)
Rectilinear 0 n/a
Stereographic 1 1
Orthographic ∞ 1
Zorin [11] [0, 1] 1
Ying [9] [0,∞] 1
Pannini [6] [0,∞]

√
1 + tan2(θ)

Ours [0,∞] rounded rectangle

Table 1: Summary of different projection models. Our pro-

jection model unifies these projections.

jection. Table 1 shows the corresponding parameters d and

R(θ) for these projections. Note that, when h in our model

approaches to∞, our model reduces to Pannini projection.

We used Tissot’s indicatrix [5] to compare these pro-

jection models on distortions. Tissot’s indicatrix is widely

used in Cartography for characterizing distortions of map

projections. The first column of Figure 7 shows the Tis-

sot’s indicatrix of rectilinear projection, stereographic pro-

jection, Pannini projection and the proposed model with a

rounded square. It shows how a circle on the viewing sphere

is mapped in the projection. Since stereographic projection

is conformal, circles on sphere remain circular on the pro-

jection plane. For Pannini projection, circles near the zenith

and nadir are severely distorted as ellipses. The distortion

is the worst in rectilinear projection.

We then compare these methods on line preserving us-

ing grid patterns as shown in the middle column of Fig-

ure 7. Both vertical and horizontal lines becomes curved in

stereographic projection. Pannini projection performs well

on vertical lines but poorly on horizontal lines. Rectilinear

projection works well on both. Our model is only second to

rectilinear projection in terms of line preserving.

Figure 8(a) gives an example on why a vertical scene

line keeps straight under the projection with a rounded rect-

angle. A vertical scene line is represented by a circular

arc which passes through both the zenith and nadir (the or-

ange arc). In the first step, when projecting onto the sur-

face, it becomes a straight line (the blue line segment) be-

cause its nearby geometry is a elliptical cylinder (the blue-

shaded surface). In the second step, the blue line remains

straight since perspective projection preserves lines. Thus,

the straight line segments in the rounded rectangular trajec-

tory produce a surface that is a portion of an elliptical cylin-

der which better preserves lines. If a scene line is parallel

to the straight line segment of the trajectory, and its corre-

sponding arc on the sphere (orange arc) lies in the orange-

shaded surface, then the straightness of the scene line is pre-

served after the projection.

From the above discussion, we found that (1) stereo-

graphic projection performs better on distortion minimiza-

tion because it is conformal. Pannini projection can pre-

serve vertical scene lines because its trajectory curve con-

(a)

(b)

(c)

(d)

Tissot’s indicatrix Grid pattern Projection

Figure 7: Tissot’s indicatrix and grid patterns. (a) Recti-

linear. (b) Stereographic. (c) Pannini. (d) Ours (rounded

square). The FOV of rectilinear in this example is set to

160◦. The FOV of the others are 180◦. The result of Pan-

nini is cropped in the vertical direction. The first column

shows the Tissot’s indicatrix. The grey lines are contours of

either constant θ or constant φ. The second column shows

the projection of three sets of orthogonal scene lines.

tains vertical lines. Our projection model softly blends the

advantages of stereographic projection and Pannini projec-

tion by a rounded rectangle composing both straight line

segments and circular arcs. In addition, compared to Pan-

nini projection, it contains horizontal line segments in the

trajectory and can preserve horizontal scene lines in addi-

tion to vertical lines. Thus, our model strikes a better bal-

ance between distortion minimization and line preserving

than previous models.

3.5. Parameter setting

The proposed projection model only has a handful of pa-

rameters and can be computed very efficiently, so it is not

difficult for users to set parameters manually. Nevertheless,

we provide users with an option for automatically setting

parameters based on the image content. For the focal length,

we set d = 1 to maximize the conformality for reducing
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(a) (b) aspect ratio (c) roundness

Figure 8: (a) An example on how the proposed model better

preserves lines. (b)(c) Definitions of areas for finding the

best parameters for the proposed model.

content distortions. For the trajectory curve, we first find a

good aspect ratio of the rectangle with zero roundness and

then look for the best roundness of the rounded rectangles

with that aspect ratio.

The content feature we used for optimizing the visual ex-

perience is lines. It is because human is often more sensitive

to distortions of geometric structures, especially straight

lines. Distortions of lines often look more noticeable and

disturbing. For finding line structures, we used a cube map

to project the viewing sphere onto six perspective views,

then used the LSD line segment detector [7] to find line

structures. Each line segment corresponds to an arc si of

a great circle on the viewing sphere.

Since the rectangle is axial symmetric to the x and y axes,

we only explain the computation for one quadrant, and the

same idea can be applied to other quadrants. The rectan-

gular region in the first quadrant can be separated into two

subregions Uv(θ) and Uh(θ) by a line with angle of incli-

nation θ as shown in Figure 8(b). The angle of inclination

θ is related with the aspect ratio h by h = tan θ. From the

previous analysis, we know that vertical (horizontal) scene

lines in subregion Uv(θ) (Uh(θ)) remain straight. On the

other hand, vertical lines located in Uh(θ) will be severely

distorted and the same for horizontal lines and Uv(θ). Thus,

we would like to minimize the number of vertical/horizontal

lines lying in Uh(θ)/Uv(θ) through adjusting the aspect ra-

tio. In addition, the aspect ratio deviating more from 1 will

introduce more content distortions. Thus, we prefer the as-

pect ratio closer to 1 and use this criterion as the regulariza-

tion term. We formulate these criteria as the following cost

function for the aspect ratio,

E(θ) =
∑

si∈Sv

�[si ∩ Uh(θ) �= ∅]

+ wh

∑
si∈Sh

�[si ∩ Uv(θ) �= ∅]

+ λ |θ − (π/4)| , (6)

where �[] is the indicator function; and Sv and Sh are the

sets of vertical and horizontal scene lines respectively. The

Figure 9: Comparisons of square and rectangle trajectories.

first term counts the number of vertical scene lines lying

in the subregion Uh, and the second term counts horizontal

lines for Uv . The third term is for regularization that prefers

θ close to π/4. By minimizing Equation 6, we can find the

best aspect ratio which better avoids line distortions. We

used wh = 0.4 and λ = 40 in our experiments. As there are

four quadrants, the cost is calculated at each quadrant and

then aggregated by taking the maximum operator. Finally,

the optimization is performed by uniformly sampling the

interval [0, π/2] with 90 samples, evaluating the cost func-

tion for the sampled values and picking up the one with the

lowest cost.

After determining the aspect ratio, we would like to find

the best roundness for the fixed aspect ratio. As show in

Fig. 8(c), depending on l, the quadrant is divided into three

region: Ûh(l), Ûv(l) and the rounding area Û(l). The cri-

teria are quite similar to the previous step and we have the

following energy function,

Ê(l) =
∑
i∈Sv

�[si ∩ Ûh(l) �= ∅]

+ ŵh

∑
i∈Sh

�[si ∩ Ûv(l) �= ∅]

+ λ̂ · l (7)

The first two terms are similar to those in Equation 6. For

example, we want that vertical scene lines lie in either Ûv(l)

or Û(l), but not Ûh(l). Although a larger roundness could

reduce sharp turns of lines and have less distortion, users

usually prefer rectangle images. Thus, the third term prefers

small roundness values. We used ŵh = 1 and λ̂ = 24 in

our experiments.

4. Experiments
We implemented our method on a PC with a 3.4GHz

CPU and 4GB RAM. For an output image with the 800 ×
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Figure 10: When the horizontal FOV is very wide, the line

distortion of stereographic projection aggravates quickly.

Pannini and ours achieve similar results in line preserving

but ours have a larger vertical FOV.

(a) (b) (c)

Figure 11: Comparisons with general Pannini projection

(Pannini projection followed by vertical compression). (a)

Hard compression. (b) Soft compression. (c) Ours.

800 resolution, our MATLAB implementation took around

1 second to find the parameters of projection, and less than

1 second for projection. The inputs were collected from

Flickr and stored in the equirectangular format.

Figure 1 compares our model with previous models. In

Figure 9, we show an example that the rectangular trajectory

could further reduce distortions. In particular, discontinuity

on the diagonal can be reduced by choosing a proper as-

pect ratio of the rectangular trajectory. Discontinuity occurs

along dash lines representing the diagonals. With square

trajectory, the pillar on the left suffers from a sharp turn of

a vertical line. By finding a proper aspect ratio, one could

hide the joint at a less obvious location. Figure 10 shows

an example with FOV beyond a hemisphere (vertical 220

degrees and horizontal 300 degrees).

Figure 11 compares our projection with the general Pan-
nini projection [6], which is a two-stage process: the Pan-

nini projection followed by vertical compression (VC). VC

is a mapping from R
2 to R

2 for straightening horizontal

lines, with two options: hard compression (Figure 11(a))

and soft compression (Figure 11(b)). To compare our model

with general Pannini projection more intuitively, one could

interpret our model as a two-stage process: the Pannini pro-

jection followed by a warping from Panninis result (Fig-

ure 7(c)) to our result (Figure 11(c)). The warping is

achieved by changing parameters (θ and l) and perform-

ing the two-step projection. Informally speaking, similar

to general Pannini which is Pannini+VC, one could treat

our model as Pannini+warping. They differ in the follow-

ing way. VC refines the projected image (Figure 7(c)) by

vertically stretching the image (although its name suggests

compression). By doing so, some horizontal lines can be

straightened while keeping vertical lines straight. How-

ever, it introduces distortions at both sides of the image

and bends vanishing lines (Figure 11(a)(b)). Our model

warps Figure 7(c) to Figure 11(c) by vertically squeezing
the projected image (the actual process is more compli-

cated). It reduces shape distortions and expands the vertical

FOV. Although some vertical lines become curved, all ra-

dial lines are kept straight (as shown in the grid pattern of

Figure 7(d)).

Figure 12 compares our method with content-preserving

projection [2] which requires user-drawn lines. In terms

of line preservation, our model is similar to Carroll et al.’s
method. However, the resulting boundary of Carroll et al.’s
method varies among images and usually is not symmetric.

Thus, cropping is needed and information near the bound-

ary could be lost. Our method does not suffer from the prob-

lem wirh cropping.

Our method can also be used for viewing full spherical

panoramas or creating thumbnails for them. The full view-

ing sphere is cut into two hemispheres. To enhance the per-

spective perception, we find the cut so that the vanishing

points coincide with the center of the hemispheres. With our

model, the vanishing lines passing through vanishing points

will be kept straight. Both hemispheres are processed inde-

pendently. However, to make a nice symmetry between two

hemisphere, the projection parameters were found jointly.

Figure 13 shows the results and comparisons. Equirectan-

gular projection severely distorts the content near the zenith

and nadir. It also reduces the perspective perception as it

bends the vanishing lines. Pannini projection is less ef-

fective in the vertical FOV. Stereographic projection bends

lines. Our model is more effective compared to them.

5. Conclusion
This paper proposes a new projection model for visual-

izing wide-angle images. It unifies several previous models

and shows better performance. Our current method only

explores a subset of the general two-step projection. We

would like to further explore the model (e.g. different pro-

file curves) in the future.
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(a) Stereographic (b) Pannini (c) Ours (d) Carroll et al. [2]

Figure 12: Comparisons with stereographic projection, Pannini projection and content-preserving projection.

(a)

(b)

(c)

(d)

Figure 13: Full spherical panorama visualizations. (a)

Equirectangular projection. (b) Pannini projection. (c)

Stereographic projection. (d) Our projection.
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