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Abstract

Sparsity models have recently shown great promise in
many vision tasks. Using a learned dictionary in sparsity
models can in general outperform predefined bases in clean
data. In practice, both training and testing data may be
corrupted and contain noises and outliers. Although recent
studies attempted to cope with corrupted data and achieved
encouraging results in testing phase, how to handle corrup-
tion in training phase still remains a very difficult problem.
In contrast to most existing methods that learn the dictio-
nary from clean data, this paper is targeted at handling cor-
ruptions and outliers in training data for dictionary learn-
ing. We propose a general method to decompose the recon-
structive residual into two components: a non-sparse com-
ponent for small universal noises and a sparse component
for large outliers, respectively. In addition, further analysis
reveals the connection between our approach and the “par-
tial” dictionary learning approach, updating only part of
the prototypes (or informative codewords) with remaining
(or noisy codewords) fixed. Experiments on synthetic data
as well as real applications have shown satisfactory per-
formance of this new robust dictionary learning approach.

1. Introduction

With the development of harmonic analysis [4, 3], sparse
models have received a lot of attention in recent years. The
universal sparsity in real applications enables us to achieve
good performance in many areas such as compressive sens-
ing [3], image recovery [6] and classification [29]. We refer
readers to [28] for a detailed summary.

Specifically, learning a sparse prototype model (or “dic-
tionary”) [15, 21, 6] to represent training data set is often ap-
plied as a first step. The advantages of dictionary learning
over pre-defined fixed bases, such as DCT and FFT, have
been shown in many applications [8, 23, 6]. Recent studies
[26] also provided theoretical support for exact recovery of
all codewords under that condition of sufficient sparsity and

noise-free observations.

Most sparse coding methods [27, 15, 6, 17] make a basic
assumption that the observed signals consist of a sparse lin-
ear combination of codewords plus dense Gaussian noises
of small variation. However, though working well general-
ly, this assumption does not hold in case of large corruptions
and outliers, which is common in practice. For example, in
face recognition, a sample face image can be considered as
corrupted if the person accidentally wears sunglasses. As
shown in [29], if the training data is clean, corrupted test-
ing data can be handled by using sparse residual. This ro-
bust method demonstrated very encouraging face recogni-
tion results [29, 31, 12].

In practice, it may be inevitable to include corrupted
sample and outliers in addition to dense Gaussian nois-
es in the training data. Suppose we need to recognize
faces for two people A and B, with a training set T =
{x1A, x2A, . . . , x1B, x2B , . . .}, where xkA and xkB are samples
from A and B, respectively. If T is clean, we may be able
to recognize the target under certain noise and corruption as
shown in [29, 12]. However, if T itself is corrupted, e.g., xkA
is person A accidentally wearing sunglasses, then it can be
very ambiguous to recognize a corrupted input, e.g. B with
sunglasses. It is clear that noisy and corrupted training da-
ta will largely result in low quality dictionary if learned by
existing methods. As the data noise come multiple sources
with different characteristics, we call this issue the residual
modality problem. This also emerges in many other vision
tasks, such as removing salt and pepper noises, and han-
dling artificially added texts and other outliers in images.

In order to address this issue, we propose a robust dictio-
nary learning approach based on the decomposition of the
reconstructive residual into two modalities: one for dense
small Gaussian noises an the other for large sparse outliers.
We can have different residual penalty for different modal-
ities. This paper provides a coordinate descent solution for
robust dictionary learning, an online acceleration method,
and its convergence property. This new approach allows us
to learn a robust dictionary and identify outlier training data.
In addition, our further study reveals a very interesting con-
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nection between this source decomposition approach and
the “partial dictionary update” approach. This residual de-
composition method is an explicit way to handle corrupt-
ed data in dictionary learning. Moreover, we also propose
an alternative that uses robust functions on reconstructive
residual, which is an implicit means for corrupted data. We
show these two methods are closely related, and they be-
come equivalent in certain situations. Experiments on syn-
thetic dataset, texture synthesis, and image denoising show
that our model is able to achieve quite satisfactory results
without using much heuristics.

2. Robust Dictionary Learning

The following notation is used throughout the pa-
per: we denote a collection of observed data as X =
{x1,x2, ...,xN} where xi ∈ Rn. We aim to learn a dic-
tionary Dn×m = {d1,d2, ...,dm} to efficiently represent
X as xi = Dαi, where α = {α1, α2, ..., αN} are sparse
coefficients. As usual, the Frobenius norm is defined as
||X ||F � (

∑N
i=1

∑n
j=1X

2
i,j)

1/2.

The original work of sparse dictionary learning was first
proposed by Olshausen and Field [21] based on human
perceptional system. Generally, the learning is commonly
viewed as an optimization problem:

min
D,α

φ(X −Dα) + ψ(α) s.t. ||di||L2 ≤ 1 (1)

where D is the dictionary, φ and ψ are cost functions. In
the equation, the first term measures the residual (typically
φ(.) = ||.||2F ), while the second regularizes the linear repre-
sentation α. In sparse coding, an L1-norm is always applied
for ψ [15, 28, 17].

Recently, a lot of work has been done to improve the
traditional dictionary learning model in Eqn (1) for specif-
ic tasks. Various formulations and properties for α and D
have been investigated, such as heavy-tailedness [21], dif-
ferentiability [1], hierarchy [14] and discriminative ability
[13, 18, 19, 30]. Many variations are compared in [17].

However, not much attention has been paid to the modal-
ity of the residual, where the squared loss model

∑
i(xi −

Dαi)2 is generally applied. Recently in SPAMS toolbox
[17], Mairal extends it to a weighted square loss ||Λ(X −
Dα)||2F to penalize different dimensions differently with
a diagonal matrix Λ; Zhao [32] and Lu [16] assume that
the residual observes a Laplacian distribution and use a
pure L1-norm. Zhou [33] studies the influence of residual
modality parameter settings and suggests that a good esti-
mation of noise level can enhance the performance of sparse
coding. In contrast to these methods, we propose to decom-
pose the residual into two sources rather than one Gaussian
or Laplacian.
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Figure 1. A statistical comparison for face recognition on extend-
ed Yale B [9]. The empirical residual distribution, its Gaussian
and Laplacian fitting is shown in blue, red and green. We can see
clearly that the true residual has smoother p.d.f. near Res = 0
than Laplacian and heavier tails than Gaussian.

2.1. Over-smoothed or Over-sparsified Residual?

In Figure 1, we show a statistical comparison of the
true residual with Gaussian and Laplacian fittings for a face
recognition task on Extended Yale B dataset [9] by sparse
coding [29]: we stack faces in columns as D and recognize
query data by sparse coding:

α̂ = argmin
α
||X −Dα||2F + λ||α||L1

As we can see, it is obvious that the Gaussian fitting
(red) tends to over-smooth the residual while the Lapla-
cian (green) tends to over-sparsify. Similar results have al-
so been observed in many other applications such as digit
recognition and image recovery.

2.2. Sparse/Non-sparse Residual Decomposition

Rather than fitting one universal Gaussian or Laplacian
model, we assume that the residualRes = X−Dα contains
two components:

Res �
{
N x ∈ D \ Ω
Ξ x ∈ Ω

(2)

where Ω denotes the corrupted region. Actually, this type of
decomposition is also related in spirit to the Mumford-Shah
model, or the membrane method [20, 11].

A simple illustration of our idea is given in Figure-2: we
propose to learn a set of robust codewords {d1,d2}, to s-
parsely represent data points (diamonds and triangles) and
ignore the outlier (the red diamond corrupted in z coordi-
nate. A typical L2-norm for residual penalty only obtains a
compromised result {d′1,d2}.

Under the assumption discussed above, we seek to es-
timate a dictionary, sparse coefficients and corruptions by
minimizing the number of nonzero elements of α, Ξ as well
as the negative log-likelihood of Gaussian residual N si-
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Figure 2. A demonstration of our idea: data points X are denot-
ed by triangles and diamonds, with one outlier (marked in red).
Ideally, two green codewords d1,d2 are desired, while the outlier
brings d1 to d′

1 using traditional dictionary learning [15].

multaneously:

E(D,N,Ξ, α) � ||N ||2F + λ1||Ξ||L0 + λ2||α||L0

s.t. N + Ξ = X −Dα ||di||L2 ≤ 1

⇔ ||X −Dα− Ξ||2F + λ1||Ξ||L0 + λ2||α||L0

⇔ ||X − [D I]

[
α
Ξ

]
||2F + λ1||Ξ||L0 + λ2||α||L0

(3)

In practice, the optimization of Formula (3) is NP-hard. As
customary, we relax it by minimizing its L1 surrogate, such
that

{D̂, Ξ̂, α̂} = arg min
D,Ξ,α

||X − [D I]

[
α
Ξ

]
||2F+

λ1||Ξ||L1 + λ2||α||L1 s.t. ||di||L2 ≤ 1

(4)

For further details and related properties, we refer inter-
ested readers to [25], where the additive combination of
i.i.d. Gaussian and Laplacian noises have been carefully s-
tudied and the analytical form of the p.d.f. is deduced.

2.3. Robust Dictionary Learning– “Partial Code-
word Updates”

Denoting the “augmented dictionary” by D̄ := [D I],
our model has an interesting interpretation in an EM based
optimization process:
(1) sparse coding step: if we optimizeΞ andαwithD fixed,
our model becomes robust sparse coding [29];
(2) dictionary update step: if we update D with Ξ and
α fixed, it is a “partial” dictionary learning: only the in-
formative codewords DInfo = {d1, ...,dm} are updated,
while the noisy codewords with natural basis DNoise =
{e1, ..., en} are maintained.

A natural question is: what if we learn DInfo and
DNoise simultaneously? The non-convexity of dictionary
learning method in Eqn (3) requires a good initialization;
fixing DNoise reasonably avoids local minima and enables
us to obtain a better numerical solution.

3. Solution

As mentioned above, Eqn (4) is non-convex. We use a
coordinate descent scheme to optimize D and Ξ, α alterna-
tively:
(1) Fixing D, we optimize Ξi and αi in Eqn (4):

{α̂i, Ξ̂i} = arg min
αi,Ξi

||xi − [D I]

[
αi

Ξi

]
||2F+

λ1||Ξi||L1 + λ2||αi||L1

This problem can be solved by shrinkage [10] efficiently
and highly parallel in nature.
(2) Fixing sparse coefficients Ξ and α, we update D:

D̂ = argmin
D
||X − Ξ−Dα||2F s.t. ||di||L2 ≤ 1 (5)

which is a constrained quadratic optimization problem and
is solvable by Lagrange dual [15].

3.1. Online Acceleration

To accelerate, we set our algorithm in an online form.
Assuming the training set is composed of i.i.d. samples of
a distribution p(x), we add xt sequentially into the system
and minimize:

ft(Dt) �
1

t

t∑
i=1

1

2
||xi−Dtαi−Ξi||2+λ1||Ξi||L1+λ2||αi||L1

(6)

3.2. Convergence Analysis

We follow [17] to prove the convergence property of this
new approach. Three reasonable assumptions have been
made in [17]:

(A) compact support1;
(B) strictly convex quadratic surrogate functions2;
(C) unique sparse coding solution3.

We keep (A)(B) unchanged and modify (C) slightly as:
(C’) Unique Sparse Solution: the informative code-

words {d1,d2, ...} are sufficiently irrelevant to the noisy
ones {e1, e2, ...}, i.e., ∃κ′2 > 0, the smallest eigenvalue of
D̄T

ΛD̄Λ is larger than κ′2.
Accordingly, with f(D) strictly convex and the sparse

solution αi well defined, we have:

Proposition 1 (Convergence of Dt) Under assumptions
(A)(B)(C’), the distance between the informative Dt and
the set of stationary points converges almost surely to 0
when t→∞ with probability 1.

1The data admits a bounded probability density p with compact support
K

2The smallest eigenvalue of matrix A = E(ααT ) satisfies eig(A) ≥
κ1;

3∃κ2 > 0, s.t., ∀x ∈ K,D, the smallest eigenvalue DTD ≥ κ2
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4. Dictionary Learning by Robust Penalty

The above residual decomposition approach model the
residual explicitly. In this paper, we also propose an alter-
native that handles the residual implicitly. An interesting
thing we observe is that these two treatments are closely
related.

As mentioned in Section 2, we know that a good p.d.f.
of residual should: (1) be smoother around Res = 0 than
Laplacian; (2) have heavier tails than Gaussian. According-
ly, we propose to take outliers into consideration implicitly:

{D̂, α̂} = argmin
D,α

N∑
i=1

φ(xi −Dαi) + λ||αi||L1

s.t. ||dj ||L2 ≤ 1 j = {1, 2, 3, ...,m}
(7)

where φ(.) is a robust function for the residual.
In robust statistics [11], various forms of robust func-

tions have been proposed, such as the Charbonnier penalty
φ(s) =

√
s2 + ε2, Lorentzian, Geman-McClure function

and so forth.

If we further regard the error source decomposition mod-
el as

φ(s) = inf
ξ
(s− ξ)2 + λ|ξ|

then the shape of φ(s) is very similar to the shape of the
robust function. Especially, by varying λ, φ(s) is very close
to the Charbonnier regularizer with different selection of ε.

Similar online optimization and convergence analysis
can also be extended to the robust influence function mod-
els. We apply a stochastic gradient method for dictionary
update as:

Dt = ΠC(Dt−1 − ρ

t

t∑
i=1

∇Dψ
′(si)|si=Xi−Dαi) (8)

where 0 < ρ < 1 is a step-length and ΠC projects Dt to
the unit ball. Empirically, we find it works well numerical-
ly, and the Charbonnier outperforms its highly non-convex
alternatives. The convergence analysis in Section 3.2 stil-
l holds provided that ft(Dt) is strictly convex with low-
er bounded Hessian. However, most robust penalizers are
non-convex except the Charbonnier. To enforce convexity,

we can simply add an extra term κ′
1

2 ||D||2F , replacing Hes-
sian matrix with 1

t∇2ft(Dt)+κ
′
1I so that the cost function

remains convex to Dt.

Generally speaking, both the error source decomposition
method and the robust penalty method perform well, but the
former outperforms the latter in speed. Therefore, we use
the former throughout the experiments.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Over−complete ratio m’/m

N
oi

se
 L

ev
el

Our Algorithm

Laplacian
prior Gaussian

Prior

Shifted PT line
for Gaussian Prior

Figure 3. Phase Transition line comparison: the red, blue and
magenta lines are boundaries of successful/failure regions of our
model, traditional methods with Gaussian prior [15] and Lapla-
cian prior [32] respectively. To make the comparison “fair”, we
shift the phase transition line of Gaussian prior to the left (green),
since more bases are implicitly used in the other two methods.

5. Experimental Results

5.1. Phase Transition on Synthetic Data

We first demonstrate the validity of our algorithm on
a synthetic dataset. Suppose we observe a number of N
noisy data Y = D̃α + n1 + n2. The “true” dictionary
D̃ = {d̃1, d̃2, ..., d̃m} is generated from i.i.d. Gaussian;
α = {α1, ..., αN} are N sparse vectors; n1 ∼ N(0, σ2

1) is
an n×N residual matrix with Gaussian noises of small vari-
ance; n2 is a sparse corruption matrix with large Gaussian
noise for nonzero entries.

We train an over-complete dictionary Dm′×p with m′ >
m bases for candidates. In our experiments, we use x ∈
R50, m = 30. N = 1000. Similar to [26], we use a more
direct criteria as “every codeword d̃i is recovered exactly”:

min
i
{max

j
{|d̃i · dj |}} ≥ thr (9)

Typically, we set the threshold as thr = 0.97.
In Figure-3, We compare the performance of tradition-

al dictionary learning with Gaussian prior [15] and Lapla-
cian prior [32] with our model. The horizontal axis is the
over-complete ratio, (i.e., if we train m′ = 60 potential
codewords for a true dictionary of size m = 30, the ra-
tio is m′/m = 2) 4; the vertical axis is the variance of s-
parse noises n2. The dashed line are transition boundaries
of “successful” and “failure” regions obtained by logistic
regression.

We can see clearly that our robust model (blue) has more
tolerance to mixed heavy-tail noises than both [15] (green
and red for with/out self-taught bases) and [32] (purple
lines). Similar results have been observed with different
parameter settings of m,n,N .

4the more potential codewords we train, the more likely we can recover
all codewords ˜di
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Figure 4. We use 10 images available at [21] for 13 × 13 basis
learning. The red characters are added manually as outliers.

5.2. Robust Dictionary Learning on Contaminated
Images

Our second experiment is to test the robustness of our
algorithm on contaminated images.

As shown in Figure-4, we train a dictionary D on the
SparseNet image dataset [21] with small Gaussian nois-
es (5dB) and sparse large outliers (red characters) added.
We randomly crop 13 × 13 patches as X and initialize
D0 with gray-scale DCT. A visual comparison of tradi-
tional dictionary learning [15] and our algorithm is shown
in Figure-5(a)(b) respectively. In the experiment, we set
λ1 = λ2 = 0.2 for the sparse regularization term.

We can see that both algorithms perform well to learn
reasonable Gabor-like codewords, but our method is less
likely influenced by outliers: 1.22% of our bases contain
red patches, in comparison with 2.75% by the traditional
[15]. Close scrutiny of Ξ coefficients reveals that a good
initialization of DNoise absorbs the corruptions and keeps
DInfo away from sparse red outliers. We also tried Lapla-
cian residual model [32]. The difference is less obvious and
we omit them here. However, the advantages of our bases
over the Laplacian model emerge when further applications
are studied.

Next, we show two potential applications of our algorith-
m in robust image processing.

5.2.1 Robust Image Recovery

First, we consider image denoising. To deal with outliers as
well as Gaussian noises simultaneously, we propose a ro-
bust image denoising algorithm based on robust codewords
as following:

(1) Robust Dictionary Learning: we train a dictionary
D on noisy dataset with our model in Eqn (4);

(2) Local Patch Denoising: then for each patch xi, we
do sparse coding as:

PSNR(dB) House Jetplane Lake Lena
(ours) 33.96 31.32 29.00 31.60

[6] 33.59 31.16 28.96 31.38

PSNR(dB) Mandril Peppers Pirate Cameraman
(ours) 27.83 31.10 29.32 32.47

[6] 27.43 31.06 29.09 32.10

Table 1. Performance comparison on standard image processing
dataset with K-SVD [6].

PSNR(dB) Our Method [6] [32] [24]
σ = 5 37.41 37.36 36.13 36.77
σ = 10 33.36 33.16 31.95 31.27
σ = 15 31.17 30.85 28.42 28.73

Table 2. Performance comparison with K-SVD [6], Laplacian [32]
and total-variation [24] on denoise benchmark [7] with random
sparse corruptions added.

{αi,Ξi} = arg min
αi,Ξi

||xi −Dαi − Ξi||2 + λ1|αi|+ λ2|Ξi|

then the denoised patch x̃i = Dαi is obtained with both
sources of residual removed;

(3) Non-local Refinement: finally, we process the over-
lapping regions with a weighted mean filtering: x̂i =∑

j∈N(xi)
wj x̃j , where N(xi) is the neighbor set of xi.

Following [2], we use the weights wj to achieve the best
PSNR performance as:

wj =
1

Zi
e−λ(||xj−Dαj−Ξj ||2+λ|Ξj |) (10)

where Zi =
∑

j∈N wj is a normalization constant.
We add synthetic Gaussian noises of σ = 20 and sparse

outliers of σ = 30 (about 3% pixels are corrupted) to stan-
dard images. In Table-1, we compare PSNR performance of
our algorithm with K-SVD denoising [6]. Some denoised
results are shown in Figure-6, from which we can see that
the “dotted” salt and pepper corruptions are eliminated suc-
cessfully.

For an extensive study, we carry out a complete exper-
iment of image denoising on the benchmark [7]. Besides
Gaussian noises with σ = {5, 10, 15}, we corrupts 1% pix-
els with σ = 25. In Table-2, we compare average PSNR
performance with classic K-SVD [6], Laplacian [32] and
total-variation denoising [24]. This clearly demonstrate that
the error source decomposition model outperforms others in
case of heavy-tailed noise removal.

5.2.2 Robust Texture Synthesis

Another potential application of our model is robust texture
synthesis. Sparse modeling of texture analysis has been s-
tudied [22] for exemplar-based synthesis. We exploit the

2220



(a) Learned basis by [15] (b) Learned basis of RDL

Figure 5. (a) The training results by [15] and our robust model are shown in (a) and (b).

Figure 6. 1st and 3rd columns: noisy images; 2nd and 4th: results of our robust image recovery method.

self-similarity of textures with outlier removal by integrat-
ing our model into image quilting [5]:

(1) Robust Dictionary Learning: given an textured im-
age, we first learn D:

{D,α} =argmin
D,α

||X −Dα− Ξ||2F + λ||Ξ||L1

s.t. ||αi||L0 ≤ 1
(11)

We apply a typical block coordinate descent optimization
scheme to update D and {Ξ, α} alternatively.

(2) Robust Patch Processing: for a new patch y to be
added “agreeing” with the neighbors based on the criteria
in [5], we decide whether it is also consistent with learned
codewordsD by:

f(y) = min
α,ξ

||y −Dα− ξ||2 + λ|ξ| s.t. ||α||L0 ≤ 1 (12)

if f(y) is within a threshold f(y) < e, we directly add y;
otherwise, we add Dα instead.

Figure 7. Texture patches with sparse corruptions.

(3) Minimum Inconsistent Boundary-cut [5]: we use the
dynamic programming method to smooth the overlapping
regions for each added patch.

In Figure-7, we randomly add some outliers to original
patches and the synthesized textures are shown in Figure-
8. As we can see, our model achieve visually pleasant re-
sults. A heuristic explanation is: if we choose λ << 1
in Eqn (11), the cost function is very close to an L1- nor-
m. Then, for a codeword di and its examples Xdi

:=

{X i,1, X i,2, ...}, we have di ≈ Med(Xdi

), which is ac-
tually an exemplar-based dimension-wise median filter.
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Figure 8. 1st and 3rd columns: direct image quilting [5]; 2nd and 4th columns: robust texture synthesis.

(a) (b)

Figure 9. A typical failure case of our algorithm. To remove the
artificially added outliers (the black line), we eliminate some in-
frequent patterns in the input. The result turns to be over-repetitive
on stochastic textures.

We have also carried out a complete evaluation on the
CMU-NRT Database5 with sparse noises added. The exper-
iment shows that our method performs well on more regular
patterns rather than stochastic ones. We show a failure case
in Figure-9: the internal patterns need to be more frequen-
t than outliers to be synthesized, and our algorithm some-
times achieve over-uniform textures during step(2).

5.3. Robust Discriminative Dictionary Learning

Finally, we propose to learn a robust dictionary for clas-
sification. There have been some work on discriminative
models [13, 18, 23], relying either on the reconstructive
residual, or on the discriminative ability of sparse coding
coefficients.

Following [30], we considering a k-class classification
ci = {1, 2, ..., k}. We aim to infer a set of dictionar-

5http://vivid.cse.psu.edu/texturedb/gallery/

ies D = {D1, ..., Dk} and related sparse coefficients
α = {α1, ..., αk} for each class satisfying following two
conditions:
(1) Given xi ∈ cj we have xi = Dαi ≈ Djαj

i ;
(2) the within-class scatter is small, while the between-class
scatter is large.

Accordingly, we have:

{D,α} = argmin
D,α

k∑
ci=1

r(X,D, α) + λ1||α||L1+

λ2(tr(SW (α)− SB(α))) + η||α||2F
(13)

In the equation, inter-class scatter and between-class are de-
fined as:

SW (α) =
k∑

ci=1

∑
xj∈ci

(αj −mci)(αj −mci)
T

SB(α) =

k∑
ci=1

(mci −m)(mci −m)T

where mci and m are the mean of Xci and X .
We apply the error source decomposition to the discrim-

inative fidelity term as:

r(X,D, α) =
∑
cj

∑
xi∈cj

(||xi −Dαi − Ξ1,i||2F +

||xi −Dcjα
cj
i −Xi2,i||2F + λ3||Ξ1,i||L1

+λ3||Ξ2,i||L1 +
∑
l�=cj

||Dlαl
i||2F )
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Algorithms Lasso RSC [29] Dirty [12] SVM FDDL[30] ours
Error rate 7.9% 3.6% 3.5% 4.9% 1.6% 1.4%

Table 3. Performance comparison on face recognition benchmark [9].

For optimization, we initialize eachDcj using a few iter-
ations of K-SVD on each class separately as[18, 30]. Then,
we iteratively update sparse coding for α∗ and dictionary
update for D. We omit further details due to lack of space
and refer interested readers to [30].

We test our robust dictionary learning on Yale extended
B benchmark [9], consisting of 2,414 frontal-face images
from 38 individuals under different lighting condition. We
randomly select half for training and the other half for test-
ing. The comparison is shown in Table 3, which reveals
that by adding robustness can enhance the performance of
discriminative dictionary learning.

6. Conclusion

In this work, we introduce a novel generalized residual
separation approach in robust dictionary learning to han-
dle corruptions and outliers in training data. By exploiting
the statistics on reconstructive residual, we observe that it
comes from two sources: a large sparse corruption compo-
nent and a small dense Gaussian component. Accordingly,
we formulate a novel regularization to model the residual
modality. Then, we propose an efficient online algorithm
for optimization and analyze its convergence. Our exper-
iments on the synthetic dataset as well as real image ap-
plications show that our approach can achieve satisfactory
results.
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