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Abstract

Detecting visually salient regions in images is one of the
fundamental problems in computer vision. We propose a
novel method to decompose an image into large scale per-
ceptually homogeneous elements for efficient salient region
detection, using a soft image abstraction representation.
By considering both appearance similarity and spatial dis-
tribution of image pixels, the proposed representation ab-
stracts out unnecessary image details, allowing the assign-
ment of comparable saliency values across similar regions,
and producing perceptually accurate salient region detec-
tion. We evaluate our salient region detection approach on
the largest publicly available dataset with pixel accurate
annotations. The experimental results show that the pro-
posed method outperforms 18 alternate methods, reducing
the mean absolute error by 25.2% compared to the previous
best result, while being computationally more efficient.

1. Introduction
The automatic detection of salient object regions in im-

ages involves a soft decomposition of foreground and back-

ground image elements [7]. This kind of decomposition is

a key component of many computer vision and graphics

tasks. Rather than focusing on predicting human fixation

points [6, 32] (another major research direction of visual

attention modeling), salient region detection methods aim

at uniformly highlighting entire salient object regions, thus

benefiting a large number of applications, including object-

of-interest image segmentation [19], adaptive compression

[17], object recognition [44], content aware image editing

[51], object level image manipulation [12, 15, 53], and in-

ternet visual media retrieval [10, 11, 13, 29, 24, 23].

In terms of improving salient region detection, there are

two emerging trends:

• Global cues: which enable the assignment of compa-

rable saliency values across similar image regions and

which are preferred to local cues [2, 14, 16, 26, 31, 42].

• Image abstraction: where an image is decomposed into

perceptually homogeneous element, a process which

abstracts out unnecessary detail and which is important

for high quality saliency detection [42].

(a) Source image (b) Our result (c) Ground truth

Figure 1. We use soft image abstraction to decompose an image

into large scale perceptually homogeneous elements (see Fig. 3),

which abstract unnecessary details, assign comparable saliency

values across similar image regions, and produce perceptually ac-

curate salient regions detection results (b).

In this paper, we propose a novel soft image abstrac-
tion approach that captures large scale perceptually ho-

mogeneous elements, thus enabling effective estimation of

global saliency cues. Unlike previous techniques that rely

on super-pixels for image abstraction [42], we use his-

togram quantization to collect appearance samples for a

global Gaussian Mixture Model (GMM) based decompo-

sition. Components sharing the same spatial support are

further grouped to provide a more compact and meaning-

ful presentation. This soft abstraction avoids the hard deci-

sion boundaries of super pixels, allowing abstraction com-

ponents with very large spatial support. This allows the sub-

sequent global saliency cues to uniformly highlight entire

salient object regions. Finally, we integrate the two global

saliency cues, Global Uniqueness (GU) and Color Spatial

Distribution (CSD), by automatically identifying which one

is more likely to provide the correct identification of the

salient region.

We extensively evaluate our salient object region detec-

tion method on the largest publicly available dataset with

1000 images containing pixel accurate salient region anno-

tations [2]. The evaluation results show that each of our

individual measures (GU and CSD) significantly outper-

forms existing 18 alternate approaches, and the final Global

Cues (GC) saliency map reduces the mean absolute error

by 25.2% compared to the previous best results (see Fig. 2

for visual comparisons) 1, while requiring substantially less

running times.

1Results for these methods on the entire dataset and our prototype soft-

ware can be found in our project page: http://mmcheng.net/effisalobj/.
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(a) original (b) IM[39] (c) SeR[45] (d) SUN[52] (e) SEG[43] (f) AIM[8] (g) SWD[20] (h) RC[16] (i) CA[25] (j) MZ[37]

(k) GB[27] (l) LC[50] (m) SR[28] (n) AC[1] (o) FT[2] (p) IT[30] (q) HC[16] (r) MSS[3] (s) SF[42] (t) Our GC

Figure 2. Saliency maps computed by different state-of-the-art methods (b-s), and with our proposed GC method. Most results highlight

edges, or are of low resolution. See also Fig. 4 and the supplementary.

2. Related work

While often treated as an image processing operation,

saliency has its roots within human perception. When ob-

serving a scene, it has been noticed that humans focus on

selected regions, for efficient recognition and scene under-

standing. A considerable amount of research in cognitive

psychology [48] and neurobiology [18] has been devoted to

discovering the mechanisms of visual attention in humans

[38]. These regions where attention is focused are termed

salient regions. Insights from psycho-visual research have

influenced computational saliency detection methods, re-

sulting in significant improvements in performance [5].

Our research is situated in the highly active field of visual

attention modelling. A comprehensive discussion of this

field is beyond the scope of this paper. We refer interested

readers to recent survey papers for a detailed discussion of

65 models [5], as well as quantitative analysis of different

methods in the two major research directions: salient object

region detection [7] and human fixation prediction [6, 32].

Here, we mainly focus on discussing bottom-up, low-level

salient object region detection methods.

Inspired by the early representation model of Koch and

Ullman [35], Itti et al. [30] proposed highly influential com-

putational methods, which use local centre-surrounded dif-

ferences across multi-scale image features to detect image

saliency. A large number of methods have been proposed

to extend this method, including the fuzzy growing method

by Ma and Zhang [37], and graph-based visual saliency de-

tection by Harel et al. [27]. Later, Hou and Zhang [28]

proposed an interesting spectral-based method, which finds

differential components in the spectral domain. Zhang et
al. [52] find salient image regions using information the-

ory. Extensive evaluation results in [16], however, show

that these methods tend to overemphasize small and local

features, making them less suitable for important applica-

tions such as image segmentation, object detection, etc.

Methods modeling global properties have become pop-

ular recently as they enable the assignment of comparable

saliency values across similar image regions, and thus can

uniformly highlight the entire object regions [16]. Gofer-

man et al. [25] use a patch based approach to incorporate

global properties. Wang et al. [47] estimate saliency over

the whole image relative to a large dictionary of images. Liu

et al. [36] measure center-surrounded histograms over win-

dows of various sizes and aspect ratios in a sliding window

manner, and learn the combination weights relative to other

saliency cues. While these algorithms are generally better at

preserving global image structures and are able to highlight

entire salient object regions, they suffer from high computa-

tional complexity. Finding efficient and compact represen-

tations has been shown to be a promising way of modeling

global considerations. Initial efforts tried to adopt only lu-

minance [50] or first-order average color [2] to effectively

estimate consistent results. However, they ignored com-

plex color variations in natural images and spatial relation-

ships across image parts. Recently, Cheng et al. [16] pro-

posed a region contrast-based method to model global con-

trast, showing significantly improved performance. How-

ever, due to the use of image segments, saliency cues like

spatial distribution cannot be easily formulated.

More recently, Perazzi et al. [42] made the important ob-

servation that decomposing an image into perceptually ho-

mogeneous elements, which abstract unnecessary details, is

important for high quality salient object detection. They

used superpixels to abstract the image into perceptually uni-

form regions and efficient N-D Gaussian filtering to esti-

mate global saliency cues. As detailed in §3, we propose a

GMM based abstract representation, to capture large scale

perceptually homogeneous elements, resulting in the effi-

cient evaluation of global cues and improved salient object

region detection accuracy.

3. Soft Image Abstraction via Global Compo-
nents Representation

3.1. Histogram based efficient GMM decomposition

In order to get an abstract global representation which ef-

fectively captures perceptually homogeneous elements, we

cluster image colors and represent them using Gaussian

Mixture Models (GMM). Each pixel color Ix is represented
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as a weighted combination of several GMM components,

with its probability of belonging to a component c given by:

p(c|Ix) = ωcN (Ix|μc,Σc)∑
c ωcN (Ix|μc,Σc)

, (1)

where ωc, μc, and Σc represent respectively the weight,

mean color, and covariance matrix of the cth component.

We use the GMM to decompose an image in to percep-

tually homogenous elements. These elements are struc-

turally representative and abstract away unnecessary de-

tails. Fig. 3(a) shows an example of such a decomposi-

tion. Notice that our GMM-based representation better cap-

tures large scale perceptually homogeneous elements than

superpixel representations (as in Fig. 3(d)) which can only

capture local homogeneous elements. We will discuss how

our global homogeneous components representation bene-

fits global saliency cue estimation in §4.

A time consuming step of building the GMM-based rep-

resentation is clustering pixel colors and fitting them to each

GMM component. Such clustering can be achieved using

Orchard and Bouman’s algorithm [40], which starts with all

pixels in a single cluster and iteratively uses the eigenvalues

and eigenvector of the covariance matrix to decide which

cluster to split and the splitting point. Inspired by [16], we

first run color quantization in RGB color space with each

color channel divided in to 12 uniform parts and choose the

most frequently occurring colors which account for 95% of

the image pixels. This typically result in a histogram based

representation with N bins (on average N = 85 for 1000

images dataset [2] as reported by [16]). We take each his-

togram bin as a weighted color sample to build the color co-

variance matrix and learn the remaining parameters of the

GMM (the means and probabilities for belonging to each

component) from the weighted bins. We use the indexing

table (detailed in §3.3) to associate image pixels with his-

togram bins for computational efficiency.

3.2. Spatial overlap based components clustering

Direct GMM based color clustering ignores valuable

spatial correlations in images. As the example shown in

Fig. 3(a), the 0th and 6th GMM components have similar

spatial supports, and thus have high probability of belong-

ing to the same object, even when their colors (shown in

side of Fig. 3(b)) are quit dissimilar. We explore the poten-

tial of such spatial relations to build pairwise correlation be-

tween GMM components as illustrated in Fig. 3(b), where

the correlation of two GMM components ci and cj is de-

fined as their spatial agreement:

C(ci, cj) =

∑
Ix

min(P (ci|Ix), P (cj |Ix))
min

(∑
Ix

P (ci|Ix),
∑

Ix
P (cj |Ix)

) . (2)

In GMM representations, the probability vector of a pixel

Ix belonging to each GMM components is typically sparse

(a) Illustration of our soft image abstraction

(b) Correlation (c) Clustered GMM (d) Abstraction by [42]

Figure 3. Example of global components representation for the

source image shown in Fig. 1. Components in our GMM based

representation (a) are further clustered according to the their spa-

tial correlations (b) to get a more meaningful global representa-

tion (c), which better capture perceptually homogeneous regions.

In (a), the 0-6th sub-images represent the probabilities of image

pixels belonging to each GMM component, while the last sub-

image shows a reconstruction using these GMM components. An

abstract representation by [42] using superpixels is shown in (d).

(with a very high probability of belonging to one of the top

two components). This allows us to scan the image once

and find all the pairwise component correlations simultane-

ously. For every pixel, we only choose the top two compo-

nents with the highest probability and make this pixel only

contribute to these two components. In the implementation,

we blur the probability maps of the image pixels belong-

ing to each component by a 3 × 3 uniform kernel to allow

the correlation calculation to consider a small surrounding

neighborhood.

The correlation matrix of these GMM components is

taken as their similarity for message-passing based cluster-

ing [22]. We use message-passing based clustering as it

does not need a predefined cluster number, making it ap-

plicable to an unknown underlying distribution. After such

clustering, the probability of each pixel color Ix belonging

to each cluster C is the sum of its probabilities for belonging

to all GMM components c in the cluster:

p(C|Ix) = p(C|Ib) =
∑
c∈C

p(c|Ib), (3)

where Ib is the quantized histogram bin color of Ix.

In Fig. 3(c), we demonstrate an example of clustering a

GMM of 7 initial components to 3 clusters with more ho-

mogenous semantic relations. In this example, although the

red flower and its dark shadows have quite dissimilar col-

ors, they are successfully grouped together since they cover

approximately the same spatial region. Notice that Fig. 3
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is a toy example for easier illustration, and we use 15 ini-

tial GMM components in order to capture images with more

complicated structure in our final implementation.

3.3. Hierarchical representation and indexing

The proposed representation forms a 4-layer hierarchical

structure with an index table to associate cross-layer rela-

tions efficiently. The 0th layer contains all the image pixels,

thus allowing us to generate full resolution saliency maps.

During the construction of the subsequent layers, including

the histogram representation in the 1st layer, the GMM rep-

resentation in the 2nd layer, and the clustered representation

in the 3rd layer, we record the index table associating the

lower layer with higher layer so that the cross layer associ-

ations can be achieved highly efficiently. When estimating

global saliency cues in §4, we mainly work at the higher

layer when feasible in order to allow large scale perceptu-
ally homogenous elements to receive similar saliency val-

ues, and to speed up the computation time. In the hierarchi-

cal representation, only the 0th layer contains a large num-

ber of elements (the same as image pixels). The number of

elements in the subsequent layers are much smaller: ≈ 85,

15, and < 15 in our experiments. Since only a few analysis

or assignment steps in our global saliency cue estimation

algorithm will go to the bottom layer, finding full resolu-

tion saliency maps only requires a computational complex-

ity linear to the number of pixels.

4. Efficient Global Saliency Cues Estimation
4.1. Global uniqueness (GU)

Visual uniqueness in terms of high contrast to other im-

age regions is believed to be the most important indicator

of low-level visual saliency [21, 41]. The uniqueness of a

global component ci is defined as its weighted color con-

trast to all other components:

U(ci) =
∑
cj �=ci

exp

(
D(ci, cj)

−σ2

)
· ωcj · ‖μci − μcj‖, (4)

where D(ci, cj) is the spatial distance between centroid of

the two GMM components ci and cj , and we use σ2 = 0.4
as in [16] to allow distant regions to also contribute to the

global uniqueness.

Notice that the global uniqueness in §4.1 is defined for

GMM components in layer 2, thus we only need to con-

sider relations between this very small number of elements,

making the estimation very efficient. The mean colors of the

abstracted components are needed when estimating the GU

saliency. We do not directly work at layer 3 here as the mean

color of this top layer cannot capture its potentially compli-

cated color distribution accurately enough. To further incor-

porate the important spatial overlap correlation, the unique-

ness based saliency of GMM components belonging to the

same cluster are finally averaged, to encourage semantically

correlated regions to receive similar saliency.

4.2. Color spatial distribution (CSD)

While saliency implies uniqueness, the opposite might

not always be true [33, 42]. A spatially compact distribution

is another important saliency indicator which is an impor-

tant complementary cue to contrast [25, 36]. Our semanti-

cally consistent representation in layer 3 naturally supports

the color spatial distribution suggested in [36], while the

efficient representation here significantly improves its run

time performance and better capture the true spatial distri-

bution of objects.

Referring to [36], we define the horizontal spatial vari-

ance of our clustered component C as:

Vh(C) = 1

|X|C
∑
x

p(C|Ix) · |xh −Mh(C)|2, (5)

Mh(C) = 1

|X|C
∑
x

p(C|Ix) · xh, (6)

where xh is the x-coordinate of the pixel x, and |X|C =∑
x p(C|Ix). The spatial variance of a clustered component

C is

V (C) = Vh(C) + Vv(C), (7)

where the vertical variance Vv(C) is defined similarly to the

horizontal variance. We finally define the CSD of C as:

S(C) = (1− V (C)) · (1−D(C)), (8)

where D(C) =
∑

x p(C|Ix)dx is a center-weighted nor-

malization term [36] to balance the border cropping effect,

and dx is the distance from pixel x to the image center.

Both V (C) and D(C) are normalized to [0, 1] for all C be-

fore combining them as in Equ. (8). In the implementa-

tion, we set the saliency value for each histogram color as

S(Ib) =
∑

C p(C|Ib)S(C). The saliency of each pixel is ef-

ficiently assigned using the indexing scheme between pixels

and histogram bins as discussed above.

Since we further consider spatial overlapping relations,

the clustered representation (as demonstrated in Fig. 3(c))

better captures semantically homogenous regions as a

whole. Due to the nature of the CSD definition, improperly

separating a semantically homogenous component will sig-

nificantly change the spatial variance value of the regions,

producing suboptimal results. For instance, the spatial vari-

ance of the flower region in Fig. 3(c) increases to about

two times of its actual values, if divided to two parts by the

GMM based representation as demonstrated in Fig. 3(a).

4.3. Saliency cues integration

The global saliency cues estimation efficiently produces

two different saliency maps, where each is a complementary

15321532



(a) Source (b) IT[30] (c) MZ[37] (d) SR[28] (e) GB[27] (f) CA[25] (g) RC[16] (h) SF[42] (i) Our CSD (j) Our GU (k) Our GC (l) G-Truth

Figure 4. Visual comparison of previous approaches to our two saliency cues (GU and CSD), final results (GC), and ground truth (GT). Here

we compare with visual attention measure (IT), fuzzy growing (MZ), spectral residual saliency (SR), graph based saliency (GB), context

aware saliency (CA), region contrast saliency (RC), and saliency filters (SF). See supplementary for results of the entire benchmark.

to the other. As also discussed in [26], combining individ-

ual saliency maps using weights may not be a good choice,

since better individual saliency maps may become worse

after they are combined with others. We automatically se-

lect between the two saliency maps as a whole to integrate

the two cues and generate a final saliency map according to

the compactness measure in [26], which uses the compact

assumption to select the saliency map with smaller spatial

variance. This is achieved by considering the saliency maps

as a probability distribution function and evaluating their

spatial variance using Equ. (7).

5. Experiments
We exhaustively compare our algorithms’ global unique-

ness (GU), color spatial distribution (CSD), and global cues

(GC) on the largest public available dataset with pixel ac-

curate ground truth annotations [2], and compare with 18

alternate methods. Results of the alternative methods are

obtained by one of the following ways: i) results for this

famous dataset provided by the original authors (FT[2],

SF[42], AC[1], HC[16], RC[16]), ii) running the authors’

publicly available source code (GB[27], SR[28], CA[25],

AIM[8], IM[39], MSS[3], SEG[43], SeR[45], SUN[52],

SWD[20]), and iii) from saliency maps provided by [16]

(IT[30], MZ[37], LC[50]). Comparisons with other meth-

ods [34, 9, 31, 46] on the same benchmark could be found

in the survey paper [7]. Fig. 4 gives a visual comparison of

different methods. For objective evaluation, we first use a

precision recall analysis, and then discuss the limitations of

such measure. Mean absolute errors, as suggested in [42],

are further used for objective comparison.

5.1. Precision and recall
Following [2, 16, 42], we first evaluate our methods us-

ing precision recall analysis. Precision measures the per-
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Figure 5. Statistical comparison with 18 alternative saliency detection methods using all the 1000 images from the largest public available

benchmark [2] with pixel accuracy saliency region annotation: (a) average precision recall curve by segmenting saliency maps using fixed

thresholds, (b) average precision recall by adaptive thresholding (using the same method as in FT[2], SF[42], etc), (c) average MAE. Notice

that while our algorithm significantly outperforms other methods, it only achieve similar performance as SF[42] in terms of the precision-

recall curve. However, our method achieved 25% improvement over the best previous method in terms of MAE, and the SF paper itself

suggested that MAE is a better metric then precision recall analysis for this problem. Results for all methods on the full benchmark as

well as our prototype software can be found in the supplementary materials. We highly recommend the readers to see the results in the

supplementary as the visual advantages of our results is much more significant than the statistic numbers shows here. Note that other than

quantitative accuracy, our results are also perceptually accurate, an important consideration for image processing tasks.

centage of salient pixels correctly assigned, while recall

measures the percentage of salient pixel detected. Binary

saliency maps are generated from each method using a num-

ber of fixed thresholds in [0, 1, · · · , 255], each resulting in

a precision and recall value. The resulting precision recall

curves is shown in Fig. 5(a).

While our algorithm significantly outperforms other

methods, it only achieved similar performance as SF[42] in

terms of the precision-recall curve. However, as discussed

in the SF[42] paper itself, neither the precision nor recall

measure considers the true negative counts. These measures

favors methods which successfully assign saliency to salient

pixels but fail to detect non-salient regions over methods

that successfully do the opposite. Fig. 6 demonstrates an

example which shows the limitation of precision recall anal-

ysis. The GC saliency map is better at uniformly highlight-

ing the entire salient object region but its precision recall

values are worse. One may argue that a simple boosting of

saliency values for SF[42] results would improve it. How-

ever, a boosting of saliency values could easily result in the

boosting of low saliency values related to background (see

the small middle left regions in Fig. 6(c) and more exam-

ples in Fig. 4). To further clarify this concern quantitatively,

we tried using gamma correlation to refine SF maps for the

entire dataset. For gamma values [0.1, 0.2, · · · , 0.9], we

consistently observed worse average MAE (see §5.2) val-

ues [0.46, 0.34, · · · , 0.14].
5.2. Mean absolute error

For a more balanced comparison, we follow Perazzi et al.
[42] to evaluate the mean absolute error (MAE) between a

(a) original (b) GT (c) SF[42] (d) Our GC

Figure 6. Example saliency detection results to demonstrate the

limitation of precision recall analysis. When using precision recall

analysis, the saliency map in (c) continually achieves near 100%
precision for a wide range of recall values, while the saliency map

in (d) performs worse because of the small number of false alarm

foreground pixels in the upper left corner. However, the saliency

map in (d) is closer to the ground truth (b) and better reflects the

true salient region in the original image (a).

continuous saliency map S and the binary ground truth G

for all image pixels Ix, defined as:

MAE =
1

|I|
∑
x

|S(Ix)−G(Ix)|, (9)

where |I| is the number of image pixels.

Fig. 5(c) shows that our individual global saliency cues

(GU and CSD) already outperform existing methods in

terms of MAE, which provides a better estimate of dissimi-

larity between the saliency map and ground truth. Our final

GC saliency maps successfully reduces the MAE by 25%
compared to the previous best reported result (SF[42]).

We note that MAE does not measure discrete classifi-

cation errors, which is better represented by segmentation

performance. When using fixed thresholding, our segmen-

tation performance (see Fig. 5(a)) is not significant better
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Method HC[16] RC[16] SF[42] Our GC

Time (s) 0.01 0.14 0.15 0.09

Table 1. Average time taken to compute a saliency map for images

in the benchmark [2] (most images have resolution 300× 400).

then the state-of-the-art method [42]. However, when us-

ing smarter adaptive thresholding for segmentation [2, 42],

the segmentation performance of our method is significantly

better than all other methods as evaluated in Fig. 5(b).

Moreover, in some application scenarios the quality of the

weighted, continuous saliency maps may be of higher im-

portance than the binary masks [42].

5.3. Computational Efficiency

We compare the performance of our method in terms

of speed with methods with most competitive accuracy

(SF[42]) or similarity to ours (RC[16], HC[16], SF[42]).

Tab. 1 compares the average time taken by each method on

a laptop with Intel i7 2.6 GHz CUP and 4GB RAM. Perfor-

mance of all the methods compared in this table are based

on implementations in C++. Our method runs in linear com-

plexity with small constant. The two saliency cues based

on our abstract global representation already significantly

outperform existing methods, while still maintaining faster

running times. Our method spends most of the computation

time on generating the abstract global representation and

indexing tables (about 45%) and finding the CSD saliency

(about 51%). Note that our method is more time efficient

than concurrent alternatives [49].

6. Limitations
Saliency cues integration based on the compactness mea-

sure may not always be effective. e.g., the third example

in Fig. 4. Currently we only use this simple measure for

convenience, leaving this largely unexplored area as future

research. We believe that investigating more sophisticated

methods to integrate these complementary saliency cues

would be beneficial. Our proposed representation is gen-

erally composed of semantically meaningful components

from images. It would be also interesting to investigate

other saliency cues using this representation, e.g. [4].

As correctly pointed out by recent survey papers, there

are two major branches of visual attention modeling:

saliency region detection [7] and human fixation predic-

tion [6, 32]. Our method aims at the first problem: finding

the most salient and attention-grabbing object in a scene.

Our design concept of uniformly highlighting perceptually

homogeneous elements might not be suitable for predic-

tion human fixation points, which frequently correspond to

sharp local features. We currently only test our algorithm on

the most widely used benchmark [2] for saliency region de-

tection so that comparison with other methods are straight

forward. Although this dataset only contains images with

non-ambiguous salient objects, we argue that efficiently and

effectively finding saliency object region for such images is

already very important for many important computer graph-

ics and computer vision applications, especially for auto-

matically processing large amount of internet images.

7. Conclusion and Future Work
We have presented a global components representation

which decomposes the image into large scale perceptually

homogeneous elements. Our representation considers both

appearance similarity and spatial overlap, leading to a de-

composition that better approximates the semantic regions

in images and that can be used for reliable global saliency

cues estimation. The nature of the hierarchical indexing

mechanism of our representations allows efficient global

saliency cue estimation, with complexity linear in the num-

ber of image pixels, resulting in high quality full resolution

saliency maps. Experimental results on the largest public

available dataset show that our salient object region detec-

tion results are 25% better than the previous best results

(compared against 18 alternate methods), in terms of mean

absolute error while also being faster.
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