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Abstract

Active Appearance Models (AAMs) employ a paradigm

of inverting a synthesis model of how an object can vary

in terms of shape and appearance. As a result, the abil-

ity of AAMs to register an unseen object image is intrin-

sically linked to two factors. First, how well the synthesis

model can reconstruct the object image. Second, the de-

grees of freedom in the model. Fewer degrees of freedom

yield a higher likelihood of good fitting performance. In this

paper we look at how these seemingly contrasting factors

can complement one another for the problem of AAM fitting

of an ensemble of images stemming from a constrained set

(e.g. an ensemble of face images of the same person).

1. Introduction

Active Appearance Models (AAMs) employ linear mod-

els of shape and appearance. However, AAMs are essen-

tially non-linear parametric models of pixel intensities. Fit-

ting an AAM to an image is therefore inherently a non-

linear optimisation problem. A well known issue in non-

linear optimisation, and thus AAMs, is local minima. An

obvious strategy for dealing with local minima is to reduce

the degrees of freedom.

Unfortunately, many of the objects that AAMs are tradi-

tionally aimed at (such as human faces, organs in medical

imaging, etc.) have considerable variation in both shape and

appearance. Gross et al. [6] demonstrated this problem ex-

plicitly for the task of non-rigid face fitting. Specifically,

Gross et al. showed that: (i) person specific AAMs substan-

tially outperform a generic AAM (i.e. models trained across

many subjects), and (ii) this disparity in performance stems

from the high degree of freedom of the generic AAM.

The Problem: AAM fitting is typically applied to an en-

semble of images stemming from a similar source. A prime

Figure 1. The proposed method simultaneously fits generic AAMs

to images in an ensemble by constraining the shape and appear-

ance variations with rank minimization. As a result the ensemble-

specific AAM is determined with the ensemble’s specific shape

and appearance variations.

example of a similar source is in a temporal image sequence

stemming from the same object (e.g. a single face). All the

images in the sequence are different, but the overall varia-

tion in the specific object is quite small (e.g. expressions,

pose, illumination variation for a single face). As a result

the variation for the object can be modelled quite compactly

in terms of a linear shape and appearance basis. In fact,

the sequence does not need to be ordered in any particular

causal manner, so we instead use the term ensemble.

It is obvious that if one has a priori knowledge of this

ensemble’s specific shape and appearance basis, one could

apply standard AAM fitting methods. Unfortunately, one

rarely has such knowledge as an external agent would need

to manually register the images in the ensemble to construct

the AAM, thus defeating the purpose of the entire AAM fit-

ting exercise. Instead one often resorts to generic AAM

methods which result in sub-optimal performance. We de-
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fine a generic AAM, as a model whose shape and appear-

ance basis has been estimated to model all instances of the

object being modelled (e.g. faces of all the population).

We define an ensemble-specific AAM, as a model whose

shape and appearance basis has been estimated to com-

pactly model a specific instance of the object being modeled

(e.g. single face in the ensemble).

Contributions: In this paper we explore the ambitious

problem of automatically determining an ensemble-specific

AAM directly from the ensemble in an unsupervised man-

ner. We draw inspiration from recent works in unsupervised

image ensemble alignment [4,5,11,14,17], specifically Ro-

bust Alignment by Spare and Low-rank (RASL) decompo-

sition [14]. RASL attempts to align images in an ensemble

by assuming that the aligned image ensemble is compact in

terms of image variation. However, RASL is not able to

manage either deformable objects, nor prior about an ob-

ject (e.g. generic AAM) in its current framework. In this

paper, we propose a RASL inspired generic AAM fitting al-

gorithm for image ensembles. Specifically, we make three

contributions in this paper:

• We show how the ensemble-specific AAM can be

determined by applying a rank minimization strat-

egy to shape and appearance variations in conjunction

with the standard AAM fitting objective function (Sec-

tion 4).

• We empirically show that in the specific application

of face fitting, applying rank constraints on shape and

appearance variations together yield notable better per-

formance than constraining appearance variation alone

(Section 6).

• We show that the ensemble-specific AAM determined

by the proposed method has lower degrees of freedom

than the generic AAM. Further, the ensemble-specific

AAM is capable of being applied to additional images

of the same instance through canonical efficient AAM

fitting methods (Section 6).

Related Work: There are many methods proposed for non-

rigid image ensemble alignment [2, 16, 19]. Most notably,

Zhao et al. proposed a RASL inspired generic AAM fitting

approach [19]. Their approach simultaneously fits generic

AAMs to all images in the ensemble by constraining the

compactness of the aligned appearances. However, their

method has some limitations: (i) the degrees of freedom

with respect to shape is not considered (they only consid-

ered appearance); (ii) their approach is not robust to partial

occlusions as they employ an outlier sensitive error function

(L2 norm square); and (iii) their approach has an inherent

limitation when applied to large scale problems since all

images in the ensemble have to attend the alignment simul-

taneously.

Mathematical Notations: Vectors are always represented

in lower-case bold (e.g., a). Matrices are always expressed

in upper-case bold (e.g., A). Scalars in lower-case (e.g. a).

Images in this paper shall always be expressed in capital-

ized form A. Warp functionsW(x;p) will be used through-

out this paper to denote a warping of a 2D coordinate vec-

tor x = [x, y]T by a warp parameter vector p ∈ R
P ,

where P is the number of warp parameters, back to a fixed

base coordinate system. This base coordinate system is de-

fined when p = 0 such that W(x;p) = x. An abuse

of notation is entertained in this paper for when an im-

age I is warped by the warp parameter vector p, such

that I(p) = [I(W(x1;p)), . . . , I(W(xD;p))]T . In this in-

stance I(p) is a D dimensional vector of image intensities,

where D denotes the number of discrete coordinates in the

base coordinate system. The Jacobian matrix J = ∂I(p)
∂p

of an image I(p) is used frequently through out this paper.

This D×P matrix is formed by combining image gradients

of I(p) with the Jacobian of the warp function W(x;p),
more details on the formation of this matrix can be found

in [13].

2. AAMs

Active appearance models (AAMs) [3, 13] are usually

constructed from a set of training images with the AAM

mesh vertices hand-labelled on them. The training mesh

vertices are first aligned with Procrustes Analysis. Then

principal component analysis (PCA) is used to build a

2D linear model of shape variation. The 2D shape s =
(x1, y1, . . . , xV , yV )

T can be represented as a base shape s0
plus a linear combination of P shape vectors si,

s = s0 +
P∑
i=1

pisi = s0 +Φp, (1)

where p = [p1, . . . , pP ]
T is the shape parameter vector and

Φ = [s1, . . . , sP ]
T is the matrix of concatenated shape vec-

tors. The AAM model of appearance variation is obtained

by first warping all the training images onto the mean shape

and then applying PCA on the shape normalized appear-

ance images. The appearance of an AAM A(0) is an image

vector defined over the pixels x ∈ s0 when p = 0. The

appearance Aλ(0) can be represented as a mean appear-

ance A0(0) plus a linear combination of K orthonormal

appearance vectors Aj(0),

Aλ(0) = A0(0) +
K∑
j=1

λjAj(0) = A0(0) +Aλ, (2)

where λ = [λ1, . . . , λK ]T is the appearance parameter vec-

tor and A = [A1(0), . . . , AK(0)] is the matrix of concate-

nated appearance vectors.
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To fit the predefined AAMs to the image, one can use

the fitting algorithm based on the Lucas & Kanade (LK)

algorithm [12]. In this approach one can pose AAM fitting

as minimizing the following objective function,

argmin
p,λ

‖ I(p)−A0(0)−Aλ ‖22 (3)

where I(p) represents the warped input image using the

warp specified by the parameters p. The central task of

this objective function is to find the shape p and appear-

ance λ that minimizes the sum of squared distances (SSD)

between the warped input image and the AAM. Since the

relationship between the warp parameters p and the warped

image I(p) is non-linear, a first order Taylor series linear

approximation, I(p + Δp) ≈ I(p) + JΔp, is employed,

where J stands for the image Jacobian matrix.

3. RASL

Robust Alignment by Sparse and Low-rank (RASL) de-

composition [14] method was built based on an assump-

tion that the warped image ensemble matrix D(P) =
[(I1(p1), . . . , IF (pF )] is of low rank and the image errors

are sparsely distributed [14], where P = [p1, . . . ,pF ] is

the matrix of warp parameters for all F frames in the image

ensemble. RASL is an extension of the earlier work of Ro-

bust Principal Component Analysis [18]. The central idea

is to find the transformation between the original image and

the warped image ensemble matrix by minimizing the rank

of matrix L and the number of non-zero errors E,

argmin
L,E,P

rank(L) + λ||E||0 (4)

s.t. D(P) = L+E,

whereL andE are matrices with same dimension ofD. The

authors in [14] relaxed the objective convexity by replacing

rank(·) and ||·||0 with their convex approximations, namely

the nuclear norm ||·||∗ andL1-norm ||·||1 respectively. This

results in the following objective,

argmin
L,E,ΔP

||L||∗ + λ||E||1 (5)

s.t. D(P) +

F∑
i=1

JiΔPεiε
T
i = L+E .

A first order Taylor series linear approximation, D(P +

ΔP) ≈ D(P)+
∑F

i=1 JiΔPεiε
T
i , is employed in this equa-

tion, where Ji is the image Jacobian matrix of the ith im-

age, εi is the F × 1 standard basis vector (all elements in

this vector are zeros except ith element is one), ΔP is the

increment update of the warp parameter P.

4. Joint Face Ensemble Alignment

Earlier Work by Zhao et al.: In contrast to the conven-

tional pair-wise image alignment methods such as Lucas-

Kanade inspired AAMs [3,13], we proposed to fit an AAM

to all images in an image ensemble simultaneously. The

most recent and related work was proposed by Zhao et

al. [19]. Their approach employs an AAMs objective term

to regularize the nuclear norm optimization, to ensure the

aligned facial appearances are within the variations defined

by a generic AAM,

argmin
P,Λ

rank(D(P)) + λ||D(P)−A0 −AΛ||22, (6)

where D(P) is the facial appearances transformed into the

reference shape frame, A0 is the matrix composed of repli-

cas of the reference appearance A0(0), and each column of

the matrix Λ is a vector of appearance coefficients of that

particular frame, Λ = [λ1, · · · ,λF ]. In [19], the generic

appearance modelA employed in their implementation and

experiment was formed by 98 appearance eigenvectors.

Our Objective: In [6], Gross et al. showed that in the

task of generic AAMs fitting, the shape component is the

main cause of the reduced fitting robustness. In this pa-

per, we propose an improved method which offers better

AAM fitting accuracy and robustness by, (i) applying rank

constraints on shape and appearance variations at the same

time; (ii) exploiting robust L0 norm function instead of the

L2 norm square to improve the robustness to image outliers.

We formulate the problem as,

argmin
P,Λ

rank(AΛ) + λ1rank(ΦP) (7)

+λ2||D(P)−A0 −AΛ||0,

where AΛ represents the appearance variations of all im-

ages in the ensemble, and ΦP represents the shape vari-

ations, λ1 and λ2 are weights. Note that in contrast to

Equation 6, we apply low rank constraint on AΛ instead

of D(P). This is because D(P) is no longer low rank be-

cause of the existence of the image outliers (e.g. occlusion,

shadow). The proposed method searches for the parameters

P,Λ such that the appearance and shape variations are most

compact. || · ||0 is the number of non-zeros elements, this

special norm term is preferred instead of the conventional

|| · ||22 since it is robust to image outliers [14].

The convexity of our objective function is relaxed using

the same methodology as described in [14,18]. This results

in the following objective,
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argmin
P,Λ

||AΛ||∗ + λ1||ΦP||∗ (8)

+λ2||D(P)−A0 −AΛ||1.

5. ADMM Optimization

Reformulation: It has been proven in [14] that the Alter-

nating Direction Method of Multipliers (ADMM) [1] is ex-

tremely efficient to solve objective function which includes

L1 norm || · ||1 or nuclear norm || · ||∗ . To solve our convex

objective function using ADMM, we reformulate the objec-

tive of Equation 8 to,

argmin
ΔP,Λ

||G||∗ + λ1||X||∗ + λ2||E||1 (9)

s.t. G = Λ,

X = ΦP+ΦΔP,

E = D(P) +

F∑
i=1

JiΔPεiε
T
i −A0 −AΛ,

where G, X and E are auxiliary variables to allow us to

solve the objective using ADMM and the efficient soft-

threshold methods, G represents the appearance coeffi-

cients (same as Λ). E represents the errors between the

current alignment and the estimated facial appearance. X

represents the shape with the updated shape coefficients

P+ΔP. Note in this formulation, we applied nuclear norm

to the appearance coefficients directly instead of the appear-

ance variations AΛ. This is because the linear appearance

model A estimated by Principal Component Analysis is or-

thogonal, then we have ||AΛ||∗ = ||Λ||∗.

ADMM Optimization: To solve the objective function of

Equation 9, we rewrote the objective function in Augmented

Lagrangian form, in which the equality constraints are ap-

pended into the objective function. The Augmented La-

grangian function can then be optimized by solving each

of the variables alternately until converges. We write our

Augmented Lagrangian Function in the scaled form [1] as,

L(G,E,X,Λ,ΔP, ξ1, ξ2, ξ3) =

||G||∗ + λ1||X||∗ + λ2||E||1 + μ1

2
||G−Λ+

1

μ1
ξ1||22

+
μ2

2
||X−ΦP−ΦΔP+

1

μ2
ξ2||22 +

μ3

2
||Γ||22, (10)

where Γ = D(P) +
∑F

i=1 JiΔPεiε
T
i −A0 −AΛ−E+

1
μ3

ξ3, ξ1, ξ2 and ξ3 are the Lagrangian multipliers, μ1, μ2

and μ3 are positive scalers. Each variable of ΔP,Λ,E,X
and G can be determined through a Gauss-Seidel style al-

ternation strategy as described in Algorithm 1.

Algorithm 1 Alterative optimization of ADMM

1: while NOT CONVERGED do

2: Update G: argminG L(· · · ),
3: Update X: argminX L(· · · ),
4: Update E: argminE L(· · · ),
5: Update Λ,ΔP: argminΛ,ΔP L(· · · ),
6: Update ξ1: ξ1 + μ1(G−Λ),
7: Update ξ2: ξ2 + μ2(X−ΦP−ΦΔP),
8: Update ξ3: ξ3 + μ3(Γ− 1

μ3

ξ3),
9: Update μi: a · μi.

10: end while

Here a is an incremental factor for the scalars μ1, μ2 and

μ3. The value of a that yields the best efficiency was exper-

imentally found to be a = 1.25. The initial values of ξ01, ξ02,

ξ03, μ0
1, μ0

2, μ0
3 were selected using the same methodology

as described in [18].

Efficient Sub-Problems: ADMM is extremely efficient as

it enables one to break a complex objective into a sequence

of efficient sub-problems. The updates of G,E and X can

be solved efficiently by the soft-threshold methods as de-

scribed in [1, 14], the appearance coefficients Λ and the in-

cremental shape coefficients ΔP are updated as,

[Λ,ΔP] = argmin
Λ,ΔP

μ1

2
||G−Λ+

1

μ1
ξ1||22

+
μ2

2
||X−ΦP−ΦΔP+

1

μ2
ξ2||22 +

μ3

2
||Γ||22 . (11)

The forward compositional “project-out” [13] algorithm

is used to solve Equation 11. This algorithm was used be-

cause it is extremely efficient, especially when it is used as

an iterative update in the loop of ADMM. In this method, Γ

is decomposed into two terms,

||Γ||22 = ||Γ||2span(A)⊥ + ||Γ||2span(A), (12)

where || · ||2O denotes the square of L2 norm of the vector

projected into the linear subspace of O, span(A) is the sub-

space spanned by the appearance basis A, and span(A) ⊥
is its its orthogonal complement. Note in the first term, the

norm function only considers the components of vectors in

the orthogonal complement of span(A). This term is thus

invariant to Λ. Then we have,

ΔP = argmin
ΔP

μ2

2
||X−ΦP−ΦΔP+

1

μ2
ξ2||22

+
μ3

2
||Γ||2span(A)⊥. (13)

The Jacobians Ji can be determined as described in [13].

The appearance coefficients Λ can then be determined as a
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Figure 2. MultiPIE training samples with varying head poses, fa-

cial expressions and illumination conditions with the facial land-

mark annotation.

Least Square Problem,

Λ = argmin
Λ

μ1

2
||G−Λ+

1

μ1
ξ1||22+

μ3

2
||Γ||22 . (14)

6. Experiments

This section describes our experiments on several pub-

licly available image databases and video databases with

varying image conditions.

Implementation/Setup: The generic AAM applied in the

experiments was trained using the MultiPIE database [7]

and Cohn-Kanade database [9]. The MultiPIE training sam-

ples (as demonstrated in Figure 2) include identities from

subject 21 to subject 346 with different head poses, facial

expressions and illumination variations (subject 1 to sub-

ject 20 were reserved for testing). The obtained AAM in-

cludes 295 appearance basis vectors and 20 shape basis vec-

tors (98% of the variations). In the implementation of the

proposed method, the weight, λ1 was selected using the

same strategy as proposed in [14], λ1 = 1/
√
D, where D

is the number of pixels in each appearance basis (30,000

in our model). λ2 was selected by λ2 =
√

D
V

, where V

is the number of landmark points (66 in our model). In

our implementation of [19], we selected the default weight

λ = ||D(P0)||∗/||D(P0) − A0 − ΨΛ0||22 as proposed

by the authors. All the RMS registration errors in our ex-

periments were determined in the reference shape system

defined by AAM, in our AAM the size of face image is

116 × 113 pixels. The Constrained Local Models (CLMs)

evaluated in our experiments was implemented and pub-

lished by the authors of [15]. The CLMs were learnt from

MultiPIE database.

MultiPIE Database: This section describes our experi-

ments on the MultiPIE [7] database. The first 20 MultiPIE

subjects were sampled for this experiment. Note that these

test candidates have been excluded from the training sam-

ples. Each subject includes discrete images taken from dif-

ferent illumination conditions, facial expressions and poses.

The proposed method was compared with the conventional

AAMs [13] and its recent extension [19] proposed by Zhao

et al.. The RMS point-point errors were measured against

the ground truth annotation. The experimental results are

presented in Figure 3(a). It shows that the proposed method

yields more accurate performance than Zhao’s method in

most of the test cases. Specifically, in this particular dataset,

by constraining shape and appearance variation at the same

time, the proposed method yield an average 31% accuracy

improvement than Zhao’s method [19] which constrains ap-

pearance alone. To visualize the landmark registration per-

formance, we have randomly selected test result from five

test cases in Figure 3(b) 3(c). Both quantitative and qualita-

tive results show that by constraining the shape and appear-

ance in the ensemble, the proposed method produces more

consistent landmark registrations for the discrete image en-

semble.

IJAGS Database: The IJAGS database was collected in the

earlier AAMs literature of [13]. Each sequence contains

180 frames. These videos were captured while the subjects

were changing the head poses towards the camera and talk-

ing. In this experiment, we firstly sample the frames uni-

formly in time to select some key frames for our proposed

method. The residue frames were then registered by the

standard AAM fitting algorithm using the ensemble-specific

AAMs determined from the key frames. The registration

performances of the proposed method with different sample

sizes were compared with the conventional generic AAMs,

Zhao’s method [19] and CLMs [15]. The Cumulative Dis-

tribution of the RMS registration errors of each sequence

are presented in Figure 4. More detailed experimental re-

sults are demonstrated in Table 1. In this table, Da and

Ds stand for the dimensionality of the ensemble-specific

appearance and shape models determined by the proposed

method. The original values of Da and Ds were defined in

the generic AAM, which are 295 and 20. Since the frame

numbers are much fewer than the appearance subspace di-

mension, then the original values of Da equals to the num-

ber of samples. The experimental results show that, (i) the

proposed method outperforms the earlier work of generic

AAMs, CLMs and [19] in terms of accuracy (on averages

of 64.3%, 38.9% and 37.4% improvement respectively); (ii)

the proposed method is able to determine a much lower di-

mension ensemble-specific model from a subset of sample

frames, and this ensemble-specific model can be applied to

the unsampled frames using the conventional AAMs fitting;

(iii) the sampling strategy does not degrade the registration

performance while saving significant computational time.

LFW Database: Labelled Faces in the Wild (LFW) [8]

database is a collection of face photos taken under “real-

life” conditions. It includes multiple images of the same

subject with challenging poses, facial expressions, illumi-

nation conditions and some partial occlusions. In this ex-

periment we employed a subset of 20 LFW subjects which
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Figure 3. (a): The RMS registration errors evaluated on the first 20 MultiPIE subjects, compared with existing method [19] and the

conventional AAMs; (b): The landmark points registered by the existing method [19] on MultiPIE subject 1,6,9,16 and 18; (c): The

landmark points registered by the proposed method.
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Figure 4. The Cumulative Distribution of the RMS registration errors evaluated on four subjects in IJAGS database. The proposed method

with different sample sizes were compared with the existing method [19], conventional AAMs and CLMs.

was published together with the source code of [14]. In this

experiment, we selected all the challenging photos included

in LFW for each subject, then demonstrate a qualitative

comparison between Zhao et al.’s [19] method and the pro-

posed method with these challenging data. The alignment

results in Figure 5 include four challenging cases, which are

big facial expression variation, extreme lighting conditions,

partial occlusion of face and image degration. The experi-

mental results show that the proposed method produces im-

pressive registration performance in these challenging test

cases.

YouTube Celebrities Database: The proposed method was

also evaluated on the YouTube Celebrities Face Tracking

and Recognition Dataset [10]. This dataset was collected

from the internet. It contains some “real-life” video clips.

The registration result of three clips are demonstrated with

the registered facial landmarks in Figure 6. The qualitative

result shows that the proposed method is able to produce

consistent registration performance on “real-life” videos

with varying image conditions.
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(a) Facial Expression

(b) Lighting

(c) Partial Occlusion

(d) Blurring

Figure 5. The registration performance of the existing method [19] (upper rows) and the proposed method (lower rows) tested on the

images of the LFW database. The proposed method produces impressive registration performance on images with challenging conditions

(big facial expression, large illumination variation, partial occlusion and image blurring) compared with the existing method.

7. Conclusion

In this paper, we propose a RASL inspired generic AAM

fitting algorithm for image ensembles. By introducing rank

constraints on both the generic appearance and shape sub-

spaces, the proposed method is able to fit a generic AAM

to unseen objects by automatically estimating the appro-

priate ensemble-specific AAM from the generic one. The

proposed method advances earlier methods in three ways:

(i) applying appearance and shape consistency instead of

applying appearance alone produces more consistent align-

ments; (ii) using robust || · ||1 norm on the facial appear-

ance to improve the robustness to partial occlusions; and

(iii) being able to determine the low dimension ensemble-

specific AAM for additional images of same subject using

standard AAMs fitting algorithms. Impressive experimen-
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Subject Samples Da Ds Err Time (mm:ss)

German 20 8 13 3.11 03:44

German 40 10 13 3.08 10:35

German 180 19 13 3.15 46:58

Simon 20 9 12 2.94 04:55

Simon 40 13 13 2.92 10:16

Simon 180 23 13 2.99 47:05

Jing 20 10 11 3.15 03:47

Jing 40 13 13 3.21 10:40

Jing 180 21 13 3.14 35:31

Iain 20 9 12 2.73 04:47

Iain 40 12 13 2.72 10:18

Iain 180 21 13 2.75 47:51

Table 1. Experimental Result of the proposed method applied on

the IJAGS database with samples sizes of 20, 40 and all frames.

Figure 6. The registration performance on three video sequences

of the YouTube Celebrities database. The proposed method pro-

duces consistent registration performance on video with complex

background, bad resolution and big facial expressions.

tal results were demonstrated with a variety of challenging

images and videos databases. Quantitative results show that

the proposed method offers up to 37.4% improvement in the

fitting accuracy compares with the state-of-the-art method.
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