
Example-based Facade Texture Synthesis

Dengxin Dai1 Hayko Riemenschneider1 Gerhard Schmitt2 Luc Van Gool1
1Computer Vision Lab, ETH Zürich 2Chair of Information Architecture, ETH Zürich

{dai,hayko,vangool}@vision.ee.ethz.ch schmitt@arch.ethz.ch

Abstract

There is an increased interest in the efficient creation of
city models, be it virtual or as-built. We present a method
for synthesizing complex, photo-realistic facade images,
from a single example. After parsing the example image
into its semantic components, a tiling for it is generated.
Novel tilings can then be created, yielding facade textures
with different dimensions or with occluded parts inpainted.
A genetic algorithm guides the novel facades as well as
inpainted parts to be consistent with the example, both in
terms of their overall structure and their detailed textures.
Promising results for multiple standard datasets – in partic-
ular for the different building styles they contain – demon-
strate the potential of the method.

1. Introduction
City models are in ever stronger demand. Yet, such mod-

els are still rather expensive to produce if the visual re-

alism needs to be high, irrespective whether the model is

purely virtual or an as-built one. In this paper, we propose a

method that takes an example facade, and that can automat-

ically generate similar buildings with different aspect ratios

(useful for virtual cities) and that can fill in occluded parts

of a building’s facade with semantically correct structures

(structural inpainting for mobile mapping types of applica-

tions, where occlusions are as good as unavoidable). The

method follows a texture synthesis-like approach.

During the last decade, texture synthesis has undergone

important changes. Whereas earlier method tended to build

a texture model of some kind, that would then be used

to synthesize more such texture, later developments have

shown that superior results could often be achieved from

nothing but an example texture and clever ways to copy its

bits and pieces into a new puzzle [10, 15]. If a facade pat-

tern is considered as a texture, it will not follow the local
and stationarity assumption that comes with these meth-

ods, however. See Fig. 1 for an example. Facades contain

several semantic components that must not be split up, e.g.

windows and doors. These components are also not spread

(a) Facade texture (b) Stone texture

Figure 1. Illustration of textures’ properties: (a) a facade texture

with its two local patches, and (b) a stone texture with its two

local patches. It shows that facade textures do not own the local
and stationary properties as normal textures do.

randomly over a facade, but follow architectural rules. Ap-

proaches oblivious to these restrictions are bound to fail.

Our method takes account of these building specificities.

Similar to [24] we decompose facades into tiles that are de-

fined through a series of horizontal and vertical split lines.

These split lines are aligned with the borders of the seman-

tic components, the position of which is automatically esti-

mated. Each resulting tile is given an individual label and

represents a node of a regular grid. See Fig. 2(a) and (b).

Some colors - labels - in (b) may seem identical but are ac-

tually all different. A facade texture is then created by ex-

tending the grid (to its new dimensions for a novel facade or

across the occlusion for inpainting), see Fig. 2(c). The tex-

ture synthesis then amounts to assigning one of the labels in

(b) to each of the tiles in (c). We impose two constraints: 1)

neighboring tiles should be photo-consistent, and 2) have

to follow the large-scale structures in the example. The

method is fully automatic. The assignment process is chal-

lenging due to the large number of labels and constraints.

We propose a genetic algorithm for its solution.

Our contributions are: (1) an automatic method for the

tessellation of an example facade into tiles lying on a reg-

ular, rectangular grid (§3.1); (2) formulating facade tex-

ture synthesis as a constraint-driven grid labeling problem

(§3.2), solving the labeling problem through an adapted ge-

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.136

1065

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.136

1065

(a) Parsed (b) Grid representation (c) Synthesized grid (d) Synthesized facade

Figure 2. The pipeline of our method: From a parsed example facade (a), to its grid representation (b), to a larger, synthesized grid with

inferred label configuration (c), and to the synthesized facade (d). Each node in (b) has a unique label indicating its own tile and it is

highlighted with a specific color. The facade example is from Paris2011 [26]

netic algorithm (§3.3). Moreover, we evaluate the method

on multiple standard facade datasets, exhibiting multiple

building styles.

2. Related Work
Texture synthesis. Techniques of example-based tex-

ture synthesis can be broadly categorized into model-based

methods and model-free methods. The former group learn

the essence of exemplar textures with parametric models,

from which they sample new textures. Several types of fea-

tures have been used to get at this essence, e.g. color his-

tograms [12] and wavelet features [23]. Model-free meth-

ods generate textures by copying pixels or patches from

the exemplar inputs. In a seminal paper, Efros and Le-

ung [11] synthesized high-quality textures by copying pix-

els. This work was followed by many patch-level meth-

ods [10, 14, 15]. While model-based methods also provide

a key for texture analysis, model-free methods are often

more efficient and tend to work for a larger variety of tex-

tures. Our method is most akin to the model-free strand, but

works on semantic tiles rather than arbitrary patches. Tiles

have already been used for texture synthesis [6, 19], but the

alignment of tiles to texture elements are either ignored [6]

or handled interactively [19].

Inpainting. Traditional inpainting fills in small holes

through color or texture extrapolation (e.g. [7, 9]) or, when

the holes are larger through interactive sketching [25]. Here,

large parts of facades need to be filled in, including diverse

and complex patterns. Just as with the retargeting of facade

textures (see previous point), the key is to detect and exploit

the regularities that are present in facades. A similar work

is [13], where the occlusion of facades are inpainted by grid

structure propagation.

Facade modeling. The potential of rule-based ap-

proaches, often in the form of (inverse) “procedural model-

ing” has been demonstrated for buildings before (e.g. [21]

and several later contributions). In contrast to earlier work

where the extraction of regularities or their use for the cre-

ation of novel building models was based on human inter-

action (e.g. [3, 5, 18, 28]), our method is fully automated. It

also does not require a full-fledged shape grammar. Closer

to our work is probably that of Lefebvre et al. [16]. They

also presented a method for facade synthesis. It relies on

edge saliency, which is computationally efficient but rather

local and low-level to deal with highly structured facades.

Our method operates at tile level, allowing it to exploit

larger-scale semantic and geometric structures. More work

on building modeling can be found in [22].

Other work close to ours is that of Yeh et al. [27].

They synthesize tiled patterns via factor graphs, with fac-

tors representing hard logical constraints and soft statisti-

cal relationships. Yet, that method needs artists to design

the tile sets and a few exemplars of interesting patterns, re-

introducing a need for interactivity. Our method lifts the

limitations by creating the tiles automatically from an ex-

emplar facade image.

3. Approach
This section presents our approach, which consists of

three components: facade tessellation, the synthesis model,

and the optimization.

3.1. Exemplar’s Irregular Rectangular Lattice

Our synthesis assembles a new facade tiling, as a puz-

zle with tiles from the exemplar facade image as its pieces.

Obtaining a high-quality tiling of the exemplar therefore is

paramount. This segmentation should (1) yield tile bound-

aries that conform with the boundaries of semantic facade

components as not to break them up, (2) naturally reflect

the organization of the facade in terms of floors, window

columns, etc., and (3) yield tiles big enough to enable a suf-

ficiently efficient creation of new tilings. Given those con-

10661066

(a) Parsing by [24] (b) Our parsing

Figure 3. Parsing Results. Our parsing is also imposed over the

labeling result. The facade image is from Paris2011 [26].

ditions, we opted for an irregular rectangular lattice (IRL),

as already shown in Fig. 2(a). An IRL splits the facade rec-

tilinearly into differently sized rows and columns of tiles,

defined by a set of horizontal and vertical split lines (SLs).

In order to arrive at a tiling coinciding with the bound-

aries of the facade’s semantic components, we first need to

label the facade. We consider 7 semantic classes: window,

wall, balcony, door, roof, shop and sky, in keeping with sim-

ilar work [8, 26]. As training set, 200 manually labeled ex-

amples were used for each class. Initially, a Random Forest

is used to assign each pixel a vector expressing confidences

in those classes, which is then averaged within segments

obtained by TurboPixels [17]. The most confident classes

yield the final labels. A result is shown in Fig. 3. Although

the labeling is still quite noisy, it suffices to produce an ap-

propriate IRL. The procedure to do so is described next. Its

result for a Haussmannian building can be seen in Fig. 3.

It is noteworthy that a better labeling could be obtained by

more sophisticated methods [8, 26], but they require train-

ing with facades of the same building styles.

In keeping with our constraints for good IRLs, the posi-

tioning of SLs is driven by two terms. A semantic edge term

requires SLs to occur along prominent edges of the seman-

tic labeling. A spatial regularity term encourages SLs to

spread out evenly over the facade. This term helps to avoid

overly big tiles, which lead to a verbatim copying of large

portions of the exemplar facade.

Before presenting the algorithm, we define these two

terms. For the sake of brevity, we only do so for horizon-

tal SLs, but the vertical SL terms follow the same philoso-

phy. The facade image is referred to as X, with resolution

H ×W . The semantically labeled image is denoted by Y,

where the class of pixel n is written as yn ∈ {1, ..., C} with

C the number of semantic classes. C = 7 in this work.

The strength of the semantic edge across a horizontal SL at

row h is quantified as

Λ1(h) =

∑
w Δ(yh,w �= yh+1,w)

W
(1)

Algorithm 1: Irregular Rectangular Lattice Creation

Data: Y, K, η,H = ∅, and V = ∅
Result: H,V

1 begin
2 H = H∪ {1, H} ;

3 V = V ∪ {1,W};
4 ΛH(hi) = maxΛH(h);
5 ΛW (wj) = maxΛW (w);
6 while |H ∪ V| < K & (ΛH(hi) > η | ΛW (wj) > η) do
7 if ΛH(hi) > ΛW (wi) then
8 H = H∪ {hi};
9 ΛH(hi) = maxΛH(h);

10 else
11 V = V ∪ {wj};
12 ΛW (wj) = maxΛW (w);

13 end
14 end
15 end

where w represents the column number and Δ(·) is an indi-

cator function, in our implementation the Kronecker delta.

For the explanation of the second term, let H = {hi} be

the set of existing horizontal SLs. This term tries to keep a

distance between the different SLs:

Λ2(h) = argmin
hi∈H

dist(h,hi). (2)

For the sake of efficiency, the SLs are selected in a

greedy fashion. Starting from a single-tile lattice (the exem-

plar image), the method each time adds either a horizontal

or a vertical SL with the then highest value of

ΛH(h) = Λ1(h) · Λ2(h) (3)

or the similarly defined measure ΛW (w) for vertical case.

Please note that SLs are only allowed to coincide with a row

or column of image pixels.

There are two stopping criteria. Firstly, the total num-

ber of SLs is kept below a predefined maximum K. Sec-

ondly, The values ΛH and ΛW must not fall below a min-

imal value η. An overview of the entire algorithm is given

in Algo. 1.

3.2. Synthesis of the retargeted image

In this section, we will build new tilings from the ex-

emplar tiling. The latter has provided us with a lattice of

M × N tiles T = {T1, ..., TMN}. The lattice is repre-

sented as a regular grid graph G = (V, E), with V the set of

nodes and E the set of edges connecting them. Each node

vj , j ∈ {1, ...,MN} is one tile. See Fig. 2(b) for an exam-

ple of such grid.

Let X′ be the desired retargeted image of resolution

H ′ ×W ′. The synthesis first considers the corresponding,

retargeted grid and assigns one of the original tile identifiers

j to each new node. Then the resulting tiling is turned back

10671067

into an image. The retargeted grid G′ = (V ′, E ′) of X′ is

given M ′ tile rows and N ′ tile columns, with M ′ = �H′M
H �,

N ′ = �W ′N
W �, where �z� means the nearest integer to z.

The task is then to infer the optimal labels j ∈ {1, ...,MN}
for all the node v′i, i ∈ {1, ...,M ′N ′}, and reconstruct the

desired image X′ from G′.
First, we describe how we turn the retargeted tiling G′

into the retargeted image X′. The assigned tiles in the

same row/column of the retargeted tiling may have differ-

ent heights/widths. These dimensions need to be equalized.

In order to avoid strong distortions, the average height of all

tiles in the same row is taken as the new, common height.

Similarly, all tiles in a column get the average width. The

underlying patches in X need to be warped into the right

sizes to assemble an image. The resulting image size may

not exactly correspond to the intended H ′×W ′ of X′, which

is then obtained through a global anisotropic rescaling.

The selection of the optimal tile labels is guided by two

constraints: photo consistency and structural consistency.

The goal is to minimize the following energy

E = −log
∏

s

∏

i

φs,i(X
′) (4)

where φs,i is the constraint term measuring the satisfaction

of constraint s at location i.
Photo consistency should avoid visual artifacts at the

tile boundaries in X′, as shown in Fig. 4(a). The transition

zones within the black rectangles should not show up as

clear seams. We exemplify the computation of photo con-

sistency across the vertical boundary for tile T′i and its right

neighbor. The computation across the horizontal bound-

aries is similar. Let B′
i be the rectangular area covering that

boundary. Its width is small, 6 pixels in our case. Let b′
i be

the vector containing the RGB color values of all the pixels

in B′
i. We look for a window bi of the same size anywhere

in X (so not only at tile boundaries) whose appearance is

most similar to b′
i under the Euclidean norm. Thus, we

have:

φ1,i(X
′) = exp(−||b

′
i − bi||2
2ζ21,i

) (5)

where ζ1,i is set to 10% of the total range of the distances

found. For the horizontal boundary an identical type of

photo consistency measure φ2,i is computed.

Structural consistency should ensure that structures

that extend beyond individual tiles are also similar to those

in the exemplar, e.g. the repetition of similar windows along

the same floor or the relation between balconies and win-

dows. Since most facade structures stretch out either hori-

zontally or vertically, we define a horizontal and a vertical

matching template for contiguous tiles. Fig. 4(b) shows the

two matching templates of 4th-order that we use. Too low

an order does not capture the structures in facades, while a

��

��

(a) Photo consistency (b) Structural consistency

Figure 4. Illustration of the two constraints. Photo consistency is

measured within the thin, black rectangular regions, and structural

consistency is evaluated by the 4-order horizontal and vertical tile

templates. The blue tiles indicate the tile position i for which the

constraints are applied.

too high one causes some neighborhoods in the retargeted

image to be dissimilar to all neighborhoods in the exemplar

image.

We again only discuss the details for the horizontal case.

Let f ′i0 be the histogram of semantic class labels for all pix-

els contained in tile T′i, f
′
i1 be the histogram for the neigh-

boring tile to the right of i, and f ′i2 and f ′i3 that of the second

and third right neighbors, resp. We concatenate all these

histograms to obtain the vector f ′i of dimension 4C. It de-

scribes the horizontal semantic structures at site i. Let fi be

the concatenated histogram in X (computed over tile tem-

plates of the 4th order in X) that is most similar to f ′i under

the Euclidean norm. Thus, we have:

φ3,i(X
′) = exp(−||f

′
i − fi||2
2ζ23,i

) (6)

where ζ3,i is set to 10% of total range of distances found.

For the vertical structure at i a similarly constructed value

φ4,i is computed.

Based on the 4 constraint terms for each tile, and mini-

mizing Eq. 4, a complete assignment of exemplar tile labels

to the tiles of the retargeted grid is determined. How this is

done exactly is the subject of the next section.

3.3. Optimization of tile assignment

Assigning the optimal tile labels to all nodes of the re-

targeted grid is a very hard problem, given the high num-

ber of possible tile labels and the non-trivial nature of the

constraints. We solve this optimization with a genetic al-

gorithm (GA) [20], i.e. as outcome of the evolution of a

population of individuals (a sample of candidate solutions).

Each iteration aims at improving their fitness. In particular,

the GA iterates through fitness assessment, breed selection,

and population reassembly. We thus need to specify the ini-

tial individuals and how they evolve.

Suppose at some point we have a population of Q indi-

viduals X ′ = {X′1, ..., X′Q}. Out of it, an equally-sized new

generation X̄ ′ = {X̄′1, ..., X̄′Q} is created. The first genera-

tion consists of randomly generated individuals. Each new

10681068

iteration starts by evaluating the fitness of all individuals in

the current generation, given the model Eq. 4. The q < Q
best individuals are automatically injected into the next gen-

eration. Breeding produces the remaining individuals. For

the breeding we randomly select 2 individuals from the cur-

rent generation, and then pick the fittest (2-tournament).

That yields one parent. We then again randomly select 2,

and keep the fittest as the second parent. With 2 parents

selected from X ′, we cross them over with one another,

and mutate the results. This process generates 2 children,

which are added to the new population X̄ ′. This process

is repeated until the population size reaches Q again. The

procedure is is summarized in Algo. 2. Next, we detail the

crossover and mutation.

The crossover and mutations are actually performed on

grid G′ rather than image X′ itself. For the sake of efficiency,

we modify multiple tile labels at each step (blocked tweak).

Each blocked tweak changes the labels of a set of nodes rel-

ative to an anchor site i. Fig. 5 clarifies the situation. For

simplicity, the block is rectangular and its height and width

are chosen uniformly at random from the set {1, ..., U},
where U is a small number (5 in the paper). The crossover

exchanges all labels in the block at a randomly chosen site

i between the two chosen parents. The mutation modifies

all tile labels in the block at a randomly chosen site i by

copying from a similar block at another randomly chosen

site j of the exemplar grid G. Since these operations are

performed on the grids, an image reconstruction has to fol-

low each operation. In order to guarantee the completeness

of synthesized facades, we add one additional constraint to

the mutation operation: nodes in the top row and bottom

row of G′ always copy labels from nodes in the top row and

bottom row of G respectively.

The blocked tweaks avoid being trapped in local op-

tima. Since the individuals evolve differently, there is a

good chance that they reached locally optimal configura-

tions at different positions. The blocked crossover provides

a way of combining these local optima to move towards the

global one. The blocked mutations directly transfer locally

optimal configurations from the exemplar facade, such that

local ‘garbage’ configurations can be refined quickly. Our

mutations are more restrictive than what is normally done,

i.e. mutate to a set of random labels, and may limit the

search space. However, they provide higher efficiency and

work well in practice, as they are in keeping with our phi-

losophy of local neighborhoods reflecting similar configu-

rations in the exemplar. Fig. 6 shows an example of the

evolving energy and corresponding synthesis.

4. Experiments
In this section, we evaluate our method on facade ex-

amples from three datasets: Paris2011 [26], the Barcelona

and Timisoara image collection (BT51) by O. Teboul [1],

G
'
aG

i
j

'
aG

'
bG

i i

(a) Mutate (b) Crossover

Figure 5. Mutate and Crossover of the adapted GA. See text for

the details.

Algorithm 2: Facade Texture Synthesis

Data: X, H′,W ′
Result: X̂′

1 begin
2 Obtain G and T by Algo. 1 ;

3 X ′ ← {n randomly generated individuals};
4 for o← 1 to O do
5 X̄ ′ ← {the q fittest individuals in X ′} ;

6 for i← 1 to (Q− q)/2 do
7 X′a ← 2-TournamentSelection(X ′) ;

8 X′b ← 2-TournamentSelection(X ′) ;

9 X̄′a, X̄′b ← Crossover(X′a, X′b) ;

10 X̄ ′ ← X̄ ′ ∪ {Mutate(X̄′a),Mutate(X̄′b)} ;

11 end
12 X ′ ← X̄ ′ ;

13 X̂′ = the fittest individual in X ′ ;

14 end
15 end

(a) Exemplar (b) Image quilting [10] (c) Seam carving [4] (d) Our result

Figure 7. Comparison of different methods. The facade image is

from Paris2011 [26].

and our dataset FaSyn13. Paris2011 consists of 104 fa-

cades of Hausmanian style. BT51 contains 34 facades taken

in Barcelona and 17 images taken in Timisoara. FaSyn13

is our new facade collection, comprising 200 facades of

varying building styles, including Classicism, Renaissance,

Modern, etc. The dataset is available online at [2].

4.1. Irregular Rectangular Lattice

The maximum number of split lines K was set to 40 and

η to 0.02 times the score of the strongest (first) split line. For

the facade labeling, 10 trees of depth 25 (searched from 10

10691069

0 100 400 900 1600 2500 3600 4900
0

500

1000

1500

2000

E

�������	
�����
��	��

�����������

������
�

����

Figure 6. An illustration of how the synthesis result evolves with the number of iterations, resulting in decreasing energy (cf. Eq. 4). The

three synthesized images are of the same size – they are scaled differently for a clear illustration. The facade is from Paris2011 [26].

to 45 by a 5-fold cross-validation) were trained and tested

on 25 × 25 patches centered at every pixel, with the fea-

tures used by RFs(P) in [8]. Images were segmented into

about 1000 segments. We compared to the method of [24].

Experimental results (cf. Fig. 3 for one example) show that

[24] is prone to oversegmenting the images, as no constraint

between SLs is enforced. Our method, however, considers

mutual relationships among them, which provides it with a

more global view.

4.2. Facade Synthesis

We compare our method with the texture synthesis

method [10] and the image retargeting method [4]. Fig. 7

shows one example of the comparison. The figure shows

that image retargeting methods cannot serve our purpose –

creating style-preserving, novel facades from an exemplar.

They preserve the content of the exemplar as much as pos-

sible. Fig. 7 also shows that algorithms designed for nor-

mal texture cannot be expected to synthesize facade tex-

tures well. The assumption of such texture being local and

stationary does not hold (cf. Fig. 1). Our method lever-

ages the specificities of facades. Fig. 8, Fig. 9, and Fig. 12

present synthesized results of our method on Paris2011,

BT51, and FaSyn13, resp. From the figures, we can see our

method can synthesize structured facades of a wide variety

of styles. Due to the photo consistency and structure con-
sistency constraints, undesirable artifacts such as distorted

doors and elongated windows, and strange structures are

largely avoided. The styles of the exemplars are preserved

well by our method. It is noteworthy that our stochastic

method produces different results in different runs, so users

can launch new runs if not satisfied. Examples can be found

online at [2].

Our method has limitations too, of course. The rectilin-

(a) Exemplar (b) Synthesized

Figure 8. Results of our method on Paris2011 [26].

ear lattice parsing is quite brutal – it is not uncommon that

its SLs are not exactly aligned with the boundaries of build-

ing components. This will increase the chance of introduc-

ing artifacts (cf. the bottom example in Fig. 9). This can be

alleviated by allowing the positions of tiles to shift slightly

or their shapes to change in order to fit local data. Another

problem is that the decoration elements may be broken up

10701070

(a) Exemplar (b) Synthesized

Figure 9. Results of our method on BT51 [1].

and can then not be reassembled well (cf. the characters in

Fig. 9). This problem can be avoided by introducing spe-

cialized detectors for those categories as we did for the 7
main ones. More failure cases can be found in [2].

The method is quite efficient, as we operate on the tile

level. The total number of iterations O is set to 5000, the

total number of individuals Q to 10, and the number of best

individuals q to 4. We found this setting to be satisfactory

for all facades used in the experiments. In Fig. 6, we il-

lustrate how the fittest individual (identified at the final it-

eration) evolves with the generation. It is interesting to see

that the result gets more realistic as the number of iterations

increases, and finally converges to a facade of high quality.

The whole synthesis of each facade takes 6 − 10 minutes.

It is noteworthy that demanding THE optimum seems an

overkill given that near optima also yield good results, so a

fairly large O is sufficient.

4.3. Facade Inpainting

We also evaluated our method on the task of facade in-

painting. In inpainting, tiles and the constraints are obtained

and learned from the non-occluded area. We then use our

method to synthesize the occluded region. We compare our

method with the Content Aware Fill of Adobe Photoshop

CS5 (cf. Fig.10 for an example). The figure shows that our

method better preserves the structures. The benefit again

comes from the fact that our method leverages the specifici-

(a) Occlusion (b) Results of Photoshop (c) Our result

Figure 10. Inpainting results on BT51 [1]. From left to right, a fa-

cade image with occlusion, inpainting result by the Content Aware

Fill of Adobe Photoshop CS5, and inpainting result by our method.

(a) Occlusion (b) Ground truth (c) Our result

Figure 11. Inpainting Results on Paris2011 [26]. From left to right,

a facade image with occlusion, ground truth, and our result.

ties of architectural scenes and learns high-level semantic

knowledge, while CS5 does not. In Fig. 11, we compare

our inpainting result with ground truth (the original image).

It shows that the method can come very close.

5. Conclusion
This paper has tackled the problem of synthesizing com-

plex facades from given examples. In order to not stretch

and break up building assets, we proposed to operate on

top of the irregular rectangular lattice (IRL), and designed a

method to obtain the exemplar IRL. In order to respect the

photorealism and structures of facades, we defined two con-

straints. We then solved the synthesis problem as a graph

labeling problem, with an adapted genetic algorithm. We

evaluated our method at different levels (tasks): the IRL

representation, facade synthesis, and facade inpainting, and

obtained promising results for all of those.

In this paper, we have restricted the texture synthesis to

patches that are characterized by the colors of their pixels.

Yet, patches could also be given depths (2.5 D models), and

these could also be copied. This is planned for future work.

Acknowledgements. The authors gratefully acknowledge

support from the ERC Advanced Grant VarCity and the

ETH-Singapore project Future Cities.

10711071

Figure 12. Results of our method on FaSyn13 [2]: top are exemplars and bottom are synthesized facades.

References
[1] http://vision.mas.ecp.fr/Personnel/

teboul/data.php.

[2] www.vision.ee.ethz.ch/˜daid/FacadeSyn.

[3] S. AlHalawani, Y.-L. Yang, H. Liu, and N. J. Mitra. Interac-

tive facades: Analysis and synthesis of semi-regular facades.

Eurographics, 2013.

[4] S. Avidan and A. Shamir. Seam carving for content-aware

image resizing. In SIGGRAPH, 2007.

[5] F. Bao, M. Schwarz, and P. Wonka. Procedural facade varia-

tions from a single layout. ACM Trans. Graph., 32(1), 2013.

[6] M. F. Cohen, J. Shade, S. Hiller, and O. Deussen. Wang tiles

for image and texture generation. In SIGGRAPH, 2003.

[7] A. Criminisi, P. Perez, and K. Toyama. Region filling and

object removal by exemplar-based image inpainting. IEEE
Trans. on Image Processing, 13(9), 2004.

[8] D. Dai, M. Prasad, G. Schmitt, and L. Van Gool. Learning

domain knowledge for facade labeling. In ECCV, 2012.

[9] I. Drori, D. Cohen-Or, and H. Yeshurun. Fragment-based

image completion. ACM Trans. Graph., 22(3), 2003.

[10] A. A. Efros and W. T. Freeman. Image quilting for texture

synthesis and transfer. In SIGGRAPH, 2001.

[11] A. A. Efros and T. K. Leung. Texture synthesis by non-

parametric sampling. In ICCV, 1999.

[12] D. J. Heeger and J. R. Bergen. Pyramid-based texture analy-

sis/synthesis. In SIGGRAPH, 1995.

[13] T. Korah and C. Rasmussen. Analysis of building textures for

reconstructing partially occluded facades. In ECCV, 2008.

[14] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra. Texture opti-

mization for example-based synthesis. ACM Trans. Graph.,
24(3), 2005.

[15] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick.

Graphcut textures: image and video synthesis using graph

cuts. In SIGGRAPH, 2003.

[16] S. Lefebvre, S. Hornus, and A. Lasram. By-example synthe-

sis of architectural textures. In SIGGRAPH, 2010.

[17] A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J.

Dickinson, and K. Siddiqi. Turbopixels: Fast superpixels

using geometric flows. TPAMI, 31(12), 2009.

[18] J. Lin, D. Cohen-Or, H. Zhang, C. Liang, A. Sharf,

O. Deussen, and B. Chen. Structure-preserving retargeting

of irregular 3d architecture. In SIGGRAPH Asia, 2011.

[19] Y. Liu, W.-C. Lin, and J. Hays. Near-regular texture analysis

and manipulation. In SIGGRAPH, 2004.

[20] S. Luke. Essentials of Metaheuristics. 2009.

[21] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool.

Procedural modeling of buildings. In SIGGRAPH, 2006.

[22] P. Musialski, P. Wonka, D. G. Aliaga, M. Wimmer,

L. Van Gool, and W. Purgathofer. A survey of urban recon-

struction. Computer Graphics Forum, 32(6):146–177, 2013.

[23] J. Portilla and E. P. Simoncelli. A parametric texture model

based on joint statistics of complex wavelet coefficients.

IJCV, 40(1), 2000.

[24] H. Riemenschneider, U. Krispel, W. Thaller, M. Donoser,

S. Havemann, D. Fellner, and H. Bischof. Irregular lattices

for complex shape grammar facade parsing. In CVPR, 2012.

[25] J. Sun, L. Yuan, J. Jia, and H.-Y. Shum. Image completion

with structure propagation. In SIGGRAPH, 2005.

[26] O. Teboul, I. Kokkinos, P. Koutsourakis, and N. Paragios.

Shape grammar parsing via reinforcement learning. In

CVPR, 2011.

[27] Y.-T. Yeh, K. Breeden, L. Yang, M. Fisher, and P. Hanrahan.

Synthesis of tiled patterns using factor graphs. ACM Trans.
Graph., 32(1), 2013.

[28] H. Zhang, K. Xu, W. Jiang, J. Lin, D. Cohen-Or, and

B. Chen. Layered analysis of irregular facades via symmetry

maximization. In SIGGRAPH, 2013.

10721072

