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Abstract

Visual reranking has been widely deployed to refine the
quality of conventional content-based image retrieval en-
gines. The current trend lies in employing a crowd of re-
trieved results stemming from multiple feature modalities to
boost the overall performance of visual reranking. Howev-
er, a major challenge pertaining to current reranking meth-
ods is how to take full advantage of the complementary
property of distinct feature modalities. Given a query im-
age and one feature modality, a regular visual reranking
framework treats the top-ranked images as pseudo positive
instances which are inevitably noisy, difficult to reveal this
complementary property, and thus lead to inferior ranking
performance. This paper proposes a novel image rerank-
ing approach by introducing a Co-Regularized Multi-Graph
Learning (Co-RMGL) framework, in which the intra-graph
and inter-graph constraints are simultaneously imposed to
encode affinities in a single graph and consistency across d-
ifferent graphs. Moreover, weakly supervised learning driv-
en by image attributes is performed to denoise the pseudo-
labeled instances, thereby highlighting the unique strength
of individual feature modality. Meanwhile, such learning
can yield a few anchors in graphs that vitally enable the
alignment and fusion of multiple graphs. As a result, an
edge weight matrix learned from the fused graph automat-
ically gives the ordering to the initially retrieved results.
We evaluate our approach on four benchmark image re-
trieval datasets, demonstrating a significant performance
gain over the state-of-the-arts.

1. Introduction

Visual reranking, i.e., refining an image ranking list ini-

tially returned by a textual or visual query, has been inten-

sively studied in image search engines and beyond [1]. Un-

der such a circumstance, the initial ranking list is reordered

(a) (b)

Figure 1. The user gap: given the positive labels as shown in light

blue rectangles, how can the machine interpret the user’s labeling

intention?

by exploiting some inherent visual similarity measure, typi-

cally accomplished through learning a refined ranking func-

tion from accurately or noisily labeled instances. Such la-

beled instances are gathered via relevance judgments with

respect to the query, and these judgments can be determined

by an automatic scheme, e.g. top-ranked images as pseu-

do positive (relevant) instances [2], or a manual scheme,

e.g. positive instances specified by a user [3] or click da-

ta [4]. To make relevance judgements as sufficient as possi-

ble, various methods have been investigated, ranging from

a straightforward means like query expansion [5][6] to so-

phisticated skills such as recently developed query-relative

classifier learning [7] and irrelevant image elimination [8].

On one hand, images are similar in terms of diverse vi-

sual cues including sharing similar colors or textures, con-

taining near-duplicate objects, and reflecting close seman-

tic concepts. The latest reranking work [9] addressed the

multi-cue issue associated with visual similarities by adopt-

ing multiple modalities of visual features and fusing them

in a query adaptive manner, which allows a flexible learn-

ing mechanism and demonstrates better performance than

the state-of-the-art methods.

On the other hand, a successful reranking also relies on

the credibility of involved labeled instances. These labels

are known to be noisy in usual, due to different factors in-

cluding ambiguous querying, undefined user intention, and
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subjectivity in user’s judgements [4]. For example, taking

the top-ranked images as pseudo positive instances tends to

be unreliable because there may exist false positive samples

(a.k.a. outliers) in the top list.

To this end, label denoising is advocated as an emerging

focus in the literature. [2] assigned pseudo positive labels to

a few top-ranked images, and then selected sparse smooth

eigenbases of the normalized graph Laplacian, that is built

on the working set of higher ranked images, to filter out the

outliers and hence achieve the reliable positive labels. [8]

extracted the textual clues hidden among particular search

results and then exploited them as augmented queries for

reranking, which can filter out the outliers as well.

Nevertheless, even provided with sufficient positive in-

stances for labeling, how to discover the user’s search in-

tention remains open, which is referred to as the “user gap”

issue [6]. For example, given a single positive label, as

shown in Figure 1(a), what is the user’s actual search pur-

pose? Dog, flower, or flower arrangement shaped like dog?

For another example displayed in Figure 1(b), an unsophis-

ticated user is less likely to describe the content and emo-

tions of Picasso’s paintings. Instead, a higher-level mining

to discover the underlying semantic attributes of images, if

feasible, could help a lot.

It turns out that such a semantic mining step is specially

valuable for enhancing the reranking performance. To this

end, we propose an image attribute driven learning frame-

work, namely Weakly Supervised Multi-Graph Learning, to

address visual reranking. In this scenario, the (pseudo) la-

beled instances are not directly used as seed labels for r-

eranking, but undergo a selective procedure like the scenari-

o of weakly supervised learning [10][11]. The mined image

attributes are subsequently leveraged to learn a refined rank-

ing function by applying proper off-the-shelf learning algo-

rithms such as multi-view learning and graph-based semi-

supervised learning.

We follow a state-of-the-art method [9] for multi-feature

fusion based visual reranking, upon which we conduc-

t graph-based learning rather than straightforward feature

learning, aiming at capturing the intrinsic manifold struc-

ture underlying the images to be reranked. In our proposed

framework, multiple retrieved image sets stemming from

different modalities of visual features are expressed into

multiple graphs, which are aligned and then fused towards

learning an optimal similarity metric across multiple graph-

s for sensible reranking. The weakly supervised learning

driven by image attributes can yield critical graph anchors

within each graph, which enable the effective alignment and

fusion across multiple graphs. Extensive experimental re-

sults shown on four benchmark image datasets, i.e., Ox-
ford, Paris, INRIA Holidays and UKBench, bear out that

the proposed reranking approach outperforms the state-of-

the-arts [9][12][13] by a significant margin in terms of ro-

Figure 2. Our proposed image reranking approach.

bustness and accuracy.

The rest of this paper is organized as follows. Section 2

reviews the related work. Section 3 presents the proposed

visual reranking framework based on multi-graph learning.

Section 4 describes the graph anchor seeking procedure us-

ing weakly supervised learning via co-occurred attribute

mining. Section 5 gives the experimental results, and Sec-

tion 6 concludes the paper.

2. Related Work

Graph-based Reranking. Graph-based image rerank-

ing methods have shown promising performance recently.

It targets at refining the initial ranking list by propagating

the initial rank scores of seed (or anchor) nodes to the other

nodes in a graph [2][8]. In [14], the video reranking process

was modeled as a modified PageRank over a set of graphs to

propagate the final ranking scores. Wang et al. [15] integrat-

ed multiple feature modalities into a graph-based learning

algorithm for image reranking. Zhang et al. [9] proposed

a graph-based query specific fusion approach, where mul-

tiple retrieval sets from different visual cues were merged

and reranked by link analysis on a fused graph.

Attributes. Learning image attributes for object recog-

nition has been well established in [16][17][18]. In [17], se-

mantic attributes and non-semantic attributes were learned

for recognizing objects within categories and across cate-

gories. Moreover, attributes can be used as mid-level fea-

tures for scene recognition [19], face recognition [20], and

image retrieval [21]. There also exist some recent endeav-

ors aiming to discover attributes interactively [22] or from

noisy web-crawled data [23].

Weakly Supervised Learning. Weakly supervised

learning methods have been extensively studied in the re-

cent literature. For instance, [10] unified weakly supervised

learning into undirected graphical models for object recog-

nition; [11] learned object categories in a weakly supervised

manner for object recognition. In [24], weakly supervised

information was integrated with latent SVMs to conduct ob-

ject localization. In [25], accurate semantic segmentation

with a multi-image model was achieved by supplementing

weakly supervised classes to training images.
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3. Reranking via Multi-Graph Learning
Notations. Given a query image Iq and its initial top-

N ranking list I = {Ii}Ni=1. Let Dm be the feature dimen-

sion for the m-th visual feature channel (m∈ {1, · · · ,M})
whose corresponding feature set for I is denoted as Xm =
{xm

i }Ni=1. For the m-th feature channel, we construct a

weighted undirected graph Gm =
(
V m, Em,wm

)
, where

each node in V m corresponds to an image. Em = {(i, j)}
is the edge set, and wm ∈ R

N×N is edge weight matrix

where each wm
ij represents the edge weight over (i, j) to be

learned. The aggregated weight matrix W̃ from wm will be

used as the final scores to refine the initial ranking results.

Let Z = {zi}Ni=1 be a binary indicator vector to label all

images, where zi = 1 means that the image Ii is a graph

anchor and zi = 0 otherwise, with anchor feature set X̂m

X̂m = Z ◦Xm, X̂m = {x̂m
k }Ak=1. (1)

where “◦” is the indicator operation to describe the proce-

dure of graph anchor selection, A is the anchor number, and

x̂m is the anchor feature vector for the m-th feature channel.

Problem Formulation. The diagram of our approach

is shown in Figure 2. We analyze multi-graph learning

based on two intuitions. First, we consider intra-graph
constraints where the distribution agreement on “anchor-to-

anchor” and on “query-to-anchor” should be maximized.

Second, we introduce inter-graph constraints where the

pairwise distribution between pairs of anchors and non-

anchors across graphs should behave consistently. These

two intuitions are respectively formulated as the objective

function and the regularizer in a learning framework, called

Co-Regularized Multi-Graph Learning (Co-RMGL). Co-

RMGL can be interpreted as a multiple graphs fusion algo-

rithm via graph anchor alignment, as described in Eq. (4).

Given a set of graph anchor 1 for the m-th feature chan-

nel, the intra-graph learning aims to obtain a new edge

weight matrix wm to minimize the distances between the

query and the anchors, as well as between pairwise an-

chors. Here, because the whole graph can be approximated

as a set of overlapped linear neighborhood patches, we in-

stead exploit the locally linear reconstruction (LLR) method

(like [26]) to describe the distance constraints encoded into

the weight matrix. This results in the following objective

function for intra-graph learning:

Q=

A∑
i=1

∥∥x̂m
i −

A∑
j �=i

wm
ij x̂

m
j

∥∥2

2
+
∥∥xq−

A∑
i=1

wm
qi x̂

m
i

∥∥2

2
, (2)

where the first term is the reconstruction error of a given

anchor x̂m
i using other anchors x̂m

j (j �= i), and the second

term is the reconstruction error of the query xq using all

anchors x̂m
i .

1The selection of anchors will be detailed later in Section 4.

To achieve the inter-graph learning, we impose the fol-

lowing inter-graph regularizer for the m-th feature channel:

R=

A∑
i=1

(∥∥x̂m
i −

N−A∑
k=1

wm
ikx

m
k

∥∥2

2
−∥∥x̂m′

i −
N−A∑
k=1

wm′
ik x

m′
k

∥∥2

2

)
,

(3)

where m′ is another feature channel (m′ �= m). Similar to

Eq. (2), LLR is used again to measure the distribution con-

sistency between pairs of anchors and non-anchors. We de-

note W a weight matrix to be learned among all M feature

channels by concatenating all column vectors of wm, i.e.,
W = [w1|w2|· · ·|wM ]. By unifying Eq. (3) and Eq. (2),

with non-negative and normalized constraints, we derive the

overall objective function as follows:

J (W, λ, γ) = min
W

M∑
m=1

Q(wm) + λ

M∑
m′ �=m

R(wm)

+ γ
M∑

m=1

‖wm‖1, s.t.
∑

j
wij = 1, wij ≥ 0,

(4)

where ‖ · ‖1 is the �1-norm of a matrix, λ > 0 balances

the effect of the disagreement between inter graphs, γ > 0
controls the sparsity of the edge weight matrix.

Optimization. LetH(wm) = Q(wm) + λR(wm) be

a smooth function; the gradient ∇H(wm) can be direct-

ly derived. Since J (·) only involves a very simple non-

smooth portion (i.e., the �1-norm penalty), we adopt the Fast

Iterative Shrinkage-Thresholding Algorithm (FISTA) [27],

as shown in Algorithm 1, to minimize J (·). The learned

weight matrix wm are merged into W̃ as the final similari-

ty scores to perform reranking.

Efficiency Analysis. It has been proved in [28] that Al-

gorithm 1 can achieve an O(1/ε) convergence rate for a de-

sired accuracy loss ε. As for the time complexity, the main

computational cost in each iteration comes from calculating

the gradient ∇H(vt), which costs O((Dm)2M) time.

Correlation to Existing Graph Alignments. As far as

we know, this is the first time to conduct multi-graph align-

ment with graph anchors. For a better alignment, as shown

in Figure 2, the common anchors across multiple graphs

are retained as many as possible, while uncommon ones are

omitted. Our formulation is general enough to unify sever-

al existing graph fusion techniques developed for reranking

and beyond [2][9]. Now, the remaining problem is how to

seek graph anchors, as addressed by the following section.

4. Weakly Supervised Anchor Seeking

Issues. Graph anchors are first introduced for graph-

based SSL in [29] where K-Means clustering centers are

used for graph anchors. While the most straightforward ap-

proach is to treat the pseudo labeled instances as anchors,
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Algorithm 1: Co-RMGL for Multi-Graph Learning.

1 Input:
{
Xm

}M

m=1
, w0, λ, γ.

2 Initialization: set θ0 = 1, v0 = w0.

3 for t = 0, 1, 2, . . . until convergence of wt do
4 Compute ∇H(vm

t ).

5 Set ∇H(vt) =
[∇H(v1

t )| · · · |∇H(vM
t )

]
.

6 Compute Lipschitz constant L = λmax(∇H(vt)),
where λmax is the largest eigenvalue.

7 Perform the generalized gradient update step:

wt+1=argmin
w

1

2

∥∥w−(vt−1

L
∇H(vt)

)∥∥2

2
+

γ

L
‖w‖1.

(5)

Set θt+1 = 2
t+3 .

8 Set vt+1 = wt+1 +
1−θt
θt

θt+1(wt+1 −wt).

9 end
10 Output: w.

three issues remain open: (1) not all labels are reliable e-

nough to be regarded as positive; (2) user’s search intention

cannot be reflected to refine the original noisy labels; and

(3) the expensive human labor prevents the scalability of

user’s labeling, as previously discussed in Section 1.

Our Inspiration. Our solution is to discover the intrin-

sic attributes among the labeled instances, upon which we

seek a better anchor set. This is accomplished by mining

discriminative attributes from all attribute vectors of the ini-

tially retrieved results, via the cutting-edge image descrip-

tors like Classemes [30] or ObjectBank [31]. The mined

attributes are then utilized to select top-ranked images with

the maximum responses as the target anchors.

Mining Co-occurred Attributes. We introduce an ef-

fective yet efficient attributes discovery scheme based on

Aprior [32] over the attribute vectors detected from all re-

trieved results, which, as shown in our subsequent exper-

iments, has superior performance over the straightforward

attribute vectors intersection scheme.

Formally speaking, we use Classemes to derive the

middle-level attribute vector set A from the initial retrieval

set I. In attribute mining, let S be a set of co-occurred

attributes, we first transform all possible attribute combi-

nations into a transaction database D =
{
T1,· · · ,TU

}
of-

fline with an occurrence thresholding to binarize the appear-

ance/disappearance of a given attribute vector. The support
and confidence of a co-occurred attribute set A ⊆ S is re-

spectively defined as

sup(A) = |{T ∈ D|A ⊆ T}|
|D| , (6)

Algorithm 2: Weakly Supervised Anchor Seeking.

1 Input: Iteration t = 0, maximal iteration T , initial

retrieval set I, attribute vector set A, and Qc.

2 while t < T do
3 Mining co-occurred attributes S by using Eq. (6)

and Eq. (7).

4 t++.

5 end
6 for co-occurred attributes S do
7 Computing associated discriminative vector C

based on Eq. (8).

8 Setting the images having maximum responses

with C as anchors.
9 end

10 Output: graph anchor set X̃m = {x̃m
i }Ai=1.

conf(A⇒B)= sup(A∪B)
sup(A) =

|{T∈D|(A∪B)⊆T}|
|{T∈D|A⊆T}| .

(7)

Here, B is another co-occurred attribute set. The confidence

is regarded as a maximum likelihood estimation of the con-

ditional probability that B is true if A is true. Then, Apri-

or is used to derive discriminative attributes (at most 50).

Some visualized examples can be seen in Figure 8.

Weakly Supervised Anchor Seeking. Given the

mined attributes, we then select A images with the maxi-

mum responses as the anchors for graph alignment and fu-

sion in Section 3. Intuitively, we utilize the co-occurred at-

tributes to generate an associated discriminative vector, with

which the images having the maximum responses are found

as the anchors. The associated discriminative vector C is

described as

Cm=SimDis
{K}

(Sm
k ,Qc), I

m
anchor=MaxRes(Cm,A), (8)

where K is the number of Sm in m-th feature channel,

Sm
k is k-th co-occurred attribute pattern, and Qc is the

query’s attribute vector. “SimDis” operator means to find

the most similar Sm
k with Qc, and “MaxRes” operator is

used to select the graph anchors with the maximum respons-

es. In order to implementation the operation in Eq. (8),

Sm
k should first be expanded to the full-dimension of the

attribute vector. Algorithm 2 gives a procedure, namely

Weakly Supervised Anchor Seeking (WSAS), to yield the

desirable anchor set.

Efficiency Analysis. Note that both Classemes based

attribute description and its transaction set are done offline.

Subsequently, the computational cost is mainly spent on the

online calculation of co-occurred attribute set and the max-

imum responses, which totally require O(Ld) time. Note

that L is the number of the labeled instances, and d is the

dimensionality of co-occurred attributes.
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Figure 3. mAP on Oxford5k with numbers of top N images.

5. Experiments

Datasets. We evaluate our method on four popular

datasets: Oxford [33], Paris [34], INRIA Holidays [35], and

UKBench [36]. Oxford and Paris respectively contain 5,062

and 6,412 images, which are all provided with ground truth

by manual annotation. INRIA includes 1,491 relevant im-

ages of 500 scenes or objects, where the first image is used

as a query in each group. 100,000 and 1M images randomly

downloaded from Flickr are respectively added as distrac-

tors to form the Oxford105k and INRIA 1M, which test the

performance of our reranking approach. UKBench contains

10,200 images that always show the same object.

Evaluation Criteria. We use mean Averaged Preci-

sion (mAP) to evaluate the performance on the first three

datasets, while the performance measure on the UKBench

is the average number of correct returning in top-4 images,

denoted as Ave. Top Num.

Baselines. To comprehensively evaluate our proposed

scheme, four intermediate alternatives are treated as base-

lines: (I) individual three feature channels without learning

the edge weight matrix wm; (II) individual feature channels

with learning the edge weight matrix wm; (III) direct fusion

into a final weight matrix on Baseline I; (IV) direct fusion

into a final weight matrix on Baseline II.

Features. Following the state-of-the-art setting in

multi-feature fusion based reranking, we design the follow-

ing feature channels.

• BoF: We use dense SIFT descriptor [37] comput-

ed from 16 × 16 sized image patches with a step-

size of 8 pixels using VLFeat library2. Then, 1,024-

dimensional visual words is constructed with 1M de-

scriptors. We use 1× 1, 2× 2, 3× 1 sub-regions to

compute a BoF as the final image feature.

• GIST: We calculate a 960-dimensional GIST [38] de-

scriptor for each color image. The images are resized

to 32×32 and then orientation histograms are comput-

2http://www.vlfeat.org/

Figure 4. mAP on Oxford5k with different numbers of anchors A.

ed on a 4 × 4 grid. Three scales (8, 8, and 4) are used

as the number of orientations.

• HSV: We generate a 2,000-dimensional HSV color his-

togram feature. Specifically, we use 20, 10, and 10

bins for H, S, V respectively .

Selecting Labeling Instances. As described in Sec-

tion 4, our scheme is a generic approach for labeling in-

stances selection with either supervised manner (user label-

ing [3][4]) or unsupervised manner (pseudo positive [1][2]),

both tested as follows: (1) unsupervised manner: the top-L
images from the initial ranking list as labeling instances. (2)

supervised manner: the manually selected L images from

the initial ranking list as labeling instances.

For both case, we run our weakly supervised anchor

learning as in Algorithm 2 to come up with an extended

and purified label set, i.e., graph anchors.

Parameter Tuning. In our method, the top-N dataset

candidates for the query image Iq are considered to evaluate

reranking performance. In the objective function learning,

we use λ = 0.1 and γ = 0.05, which demonstrate that these

setting can yield the best performance [8].

We first evaluate the performance of our approach given

different numbers of top dataset candidates N on Baseline

III. Figure 3 shows the performance on Oxford5k when we

change N . when N becomes larger, the mAP of each fea-

ture channel and fusion continues to decrease. With N in-

creasing from 20 to 200, the mAP of fusion drops from 0.81

to 0.56. The mAP of direct fusion is lower than the one of

GIST-based reranking since the complementary properties

of different feature channels are not exploited.

For all other datasets, the mAP also decreases with the

increase of N . We use the same setting (N from 20 to 200)

in all these datasets. Specially, since the queries in UK-

Bench only have three relevant images, the performance on

this dataset drops slowly with the increase of N . In the sub-

sequent experiments, without specification, we fix N = 200
for all datasets but UKBench.

The number of anchors A is directly related to the accu-

racy and scalability of our scheme. Figure 4 shows the mAP
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Table 1. Comparisons on Oxford5k, Oxford105k, and Paris.

Dataset Our scheme [13] [12] [33] [5]

Oxford5k 0.843 0.814 0.849 0.647 0.827

Oxford105k 0.802 0.767 0.795 0.541 0.767

Paris 0.834 0.803 0.824 0.689 0.805

Table 2. Comparisons on INRIA, INRIA 1M, and UKBench.

Dataset Our scheme [13] [12] [33] [35]

INRIA 0.847 -1 0.758 - 0.848
INRIA 1M 0.794 - - - 0.77

UKBench 3.75 3.67 - 3.45 3.64

varies with A on Oxford5k under the case of supervised la-

beling selection when N = 200. The mAP of fusion, both

Baseline III and Baseline IV, reaches the maximum when

A = 10, and then decreases with the increase of A, since

more irrelevant images are added. Considering computa-

tional efficiency and retrieval accuracy, we set A = 10 on

Oxford105k, Paris, INRIA, and INRIA 1M, in all of which

similar phenomena are observed. For UKBench, A = 3.

Comparison Results. Figure 5 and Figure 6 illustrate

the mAP of the Baseline III and Baseline IV on four dataset-

s. It shows that the ranking performance is steadily im-

proved when we incrementally add the designed compo-

nents as in Section 3 and Section 4 into the multi-graph

learning framework. In Figure 5 and Figure 6, “graph

alignment” refers to the direct fusion after aligning multi-

ple graphs guided by a set of anchors that are determined

by clustering centers; while “anchor learning” also refers to

direct fusion where multiple graphs are aligned through a

set of anchors that are selected by attribute intersection.

Figure 5 and Figure 6 together further compare the per-

formance of unsupervised and supervised labeling instances

selections on four datasets when the number of labeling in-

stances L = 30. We find that both labels selection criteria

achieve relatively good performance with either unsuper-

vised or supervised, which demonstrates that our method is

generalized and compatible for different labeling instances

selection schemes. In addition, the mAP of supervised cri-

teria is improved by nearly 2% over the unsupervised one.

In weakly supervised attribute learning, there are two

methods to select anchors. One is to directly calculate

a histogram intersection operation over two attribute vec-

tors (AI), named Co-RMGL+AI. The other is selection

of top-ranked images with maximum responses as anchors

via attribute mining (AM), named Co-RMGL+AM. We

also verify “Baseline III+Classemes” which directly use

Classemes to align graphs on Baseline III without attribute-

based anchor selection. Figure 7 shows the performance

comparison for these two methods on all datasets under

1“-” means the mAP is not reported in the corresponding methods.

Table 3. Average query time of individual stage on Oxford5k.

Stage BoF1 GIST HSV
Anchor Graph

selection fusion

Avg. Time (s) 1.18 1.12 1.04 2.11 0.1

Table 4. Addition memory cost and average query time per dataset.

Dataset Oxford5k Paris INRIA UKbench

Memeory (GB) 0.01 0.02 0.02 0.01

Avg. Time (s) 2.6 2.8 3.4 4.6

the premise of supervised labeling instances selection. As

shown in Figure 7, we conclude that both Co-RMGL+AM

and Co-RMGL+AI significantly improve the performance

over Baseline III and “Baseline III+Classeme”, while Co-

RMGL+AM significantly outperforms Co-RMGL+AI in al-

l datasets. Moreover, as we can see from Figure 7, our

scheme makes great improvement by comparison with [9]

in all datasets except UKBench.

We further compare our LLR based metric with unsu-

pervised distance metric learning (UDML) for the stage of

intra-graph learning, the latter of which learns similarity

metrics in individual feature channels, potentially with a fu-

sion operation to achieve reranking. Figure 7 compares the

performance of our method and UDML, which shows our

methods, including Baseline III, Co-RMGL+AI, and Co-

RMGL+AM, significantly outperform this alternative and

therefore prove our correctness.

Table 1 and Table 2 show the comparisons of our scheme

with other state-of-the-art schemes on all datasets. Since

most of these methods are visual word based image re-

trieval, their results are measured by only one feature chan-

nel. The results of our approach are among the best on Ox-

ford105k, Paris, INRIA 1M and UKBench. On Oxford and

INRIA, our scheme is next only to the best case. Never-

theless, on Oxford105k and INRIA 1M, our approach only

decreases by 6.2% and 4.8%, respectively. In contrast, the

best competing methods drops 9.2% and 6.4%, respectively,

which indicates that our approach is more robust to large-

scale datasets.

Computation Cost. The average search time for a

query depends on the scale of dataset. Table 3 lists the av-

eraged times for each operation steps on Oxford5k dataset.

Table 4 shows an overview over the total memory overhead

per dataset and the average query time overhead for each

query, as tested in Intel Xeon with 3.47GHz CPU and 24G

memory. Both Table 3 and Table 4 indicate that our scheme

achieves relatively high time efficiency.

Case Study. Figure 8 shows some visualized results

of our Co-RGML+AM reranking on Oxford5k, INRIA and

Paris respectively, with comparisons with Baseline III and

1We pre-compute and store all of these features offline.
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Figure 5. Comparisons mAP of four datasets under “unsupervised labeling instances selection” when we set A = 10, in which each group

respects different stages of our approach, such as Baseline III, Baseline IV, graph alignment and anchor learning (Co-RMGL+AI).

Figure 6. Comparisons mAP of four datasets under “supervised labeling instances selection” when we set A = 10, in which each group

respects different stages of our approach, such as Baseline III, Baseline IV, graph alignment and anchor learning (Co-RMGL+AI).

Figure 7. Comparison of Co-RMGL+AM with UDML, Baseline

III, Baseline III+Classeme, and Co-RMGL+AI.

[9]. It is obvious that our approach is superior to Baseline

III and [9] since our scheme has great ability to rank the

relevance images in front for simple object images as well

as complex scene images. For example, for the query “hert-

ford” on Oxford5k, our scheme can rank relevance images

into top 9, because it can automatically refine the initial la-

beling instances and extend the mined relevance to other

images that can not be recognized by previous methods.

6. Conclusion

In this paper we propose a novel visual reranking ap-

proach through performing weakly supervised multi-graph

learning. The contributions of our proposed approach pri-

marily lie in: (1) the reranked result is yielded by integrat-

ing distinct modalities of visual features; (2) the reranking

task is formulated as a multi-graph learning paradigm in-

corporating intra-graph and inter-graph constraints; (3) the

graph anchors are intelligently sought via weakly super-

vised learning; (4) automatic multiple graph alignment and

fusion are achieved by means of the graph anchors. Ex-

tensive experimental results bear out that our approach is

not only effective but also efficient, and significantly out-

performs the state-of-the-arts.
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