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Abstract

The confluence of robust algorithms for structure from
motion along with high-coverage mapping and imaging of
the world around us suggests that it will soon be feasible
to accurately estimate camera pose for a large class pho-
tographs taken in outdoor, urban environments. In this pa-
per, we investigate how such information can be used to
improve the detection of dynamic objects such as pedes-
trians and cars. First, we show that when rough camera
location is known, we can utilize detectors that have been
trained with a scene-specific background model in order to
improve detection accuracy. Second, when precise camera
pose is available, dense matching to a database of exist-
ing images using multi-view stereo provides a way to elim-
inate static backgrounds such as building facades, akin to
background-subtraction often used in video analysis. We
evaluate these ideas using a dataset of tourist photos with
estimated camera pose. For template-based pedestrian de-
tection, we achieve a 50 percent boost in average precision
over baseline.

1. Introduction

Consider an image of a popular tourist destination shown

in Figure 1. How can we exploit the large set of photographs

available online depicting this same general location in or-

der to better understand the content of this particular image?

It is useful to divide scene components into two categories:

dynamic objects such as people, bikes, cars, pigeons or

street vendors that move about and are likely to only appear

in a single image taken at a particular time and static back-
grounds such as buildings, streets, landscaping, or benches

that are visible in many images taken in the same general

location.

For static (rigid) backgrounds, a classic approach to

scene understanding is to use structure-from-motion (SfM)

and multi-view stereo (MVS) techniques to build up an ex-

plicit model of the scene geometry and appearance. Such
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a model can make strong predictions about a novel test

image including the camera pose and locations of scene

points within the image. These methods are now well de-

veloped and work robustly on large unstructured photo col-

lections [22, 7]. For dynamic objects, the problem is less

constrained. However, past images of a scene can still pro-

vide general information about where objects are likely to

appear in the future. For example, we might expect a priori
to see pedestrians on a sidewalk and cars in the middle of

the street (and not vice versa). This idea has been explored

extensively in the literature on scene context [25, 13] and

more recently in work on affordances [11, 10].

While images of real scenes typically contain both static

and dynamic components, these corresponding approaches

to scene understanding have largely been pursued indepen-

dently. Work on scene context the last few years has focused

on single-image geometry estimation (e.g. [17, 14, 11])

since stereo or other depth estimates were often unavailable.

On the other hand, from the perspective of multi-view ge-

ometry, dynamic objects are a nuisance and must be treated

as outliers during matching. Here we explore how to com-

bine these two ideas, namely: How can strong models of
static backgrounds improve detection of dynamic objects?

We propose two different approaches that utilize static

scene analysis for detection. The first is to perform unsu-

pervised analysis of a large set of scene images in order to

automatically train scene-specific object detectors. At test

time, if we have rough camera localization (e.g., GPS co-

ordinates), we can invoke the appropriate scene-specific de-

tector rather than a generic detector. It seems obvious that

an object detector trained with data from a specific scene

has the potential to perform better than a generic detector

since it can focus on modeling specific aspects of a scene

which may be discriminative. If resources are available to

perform ground-truth labeling for images collected from ev-

ery possible scene location, we could simply use existing

methods to train a large collection of specialized detectors

(one for each object category appearing in each possible

scene). However, this is not a scalable solution as it requires

labeling positive examples in each possible scene as well as

training a huge bank of object detectors. Our key observa-
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(a) input image (b) scene reconstruction

(c) background mask (d) detected foreground

Figure 1: Wide-baseline matching to a collection of photos

provides estimates of which pixels belong to static back-

ground regions. (a) shows an input image and (b) shows

the re-projection of a 3D model built from other images of

the same scene. While this model is not realistic enough

to allow for direct comparison of pixel values, because we

have 3D structure we can easily compare the appearance

of local image patches in the input image to corresponding

patches in the image set used to build the model. (c) shows

those patches for which this match score was above a given

threshold. (d) based on this parsing of the scene into static

background and dynamic foreground objects, we can elimi-

nating spurious false-positives and improve object detector

performance.

tion is that while acquiring scene-specific positive training

instances is expensive, it is possible to automatically pro-

duce large quantities of scene-specific negative training in-

stances in an unsupervised manner by identifying portions

of a scene that are likely to be static background.

The second approach which we term multi-view back-
ground subtraction is inspired by a classic trick used to

analyze video surveillance data or webcam image streams.

When a scene is repeatedly imaged by a fixed camera, one

can build up a model of the scene background (e.g. by com-

puting the median color of a pixel over a sequence of im-

ages) and compare it to a new image (subtraction) in or-

der to segment out regions that are likely to correspond to

dynamic objects of interest. Unfortunately, such a model

is tied to the pixel coordinate system and hence offers lit-

tle help for understanding a new image taken from a novel

viewpoint or with a different camera. If instead we model

the static background in world coordinates (e.g., as a high-

quality 3D mesh) and accurately estimate the camera pose

for a test image, we can render the appropriate background

image and perform subtraction as before to identify static

and dynamic image regions. While this might have seemed

like an unrealistic idea even ten years ago, the availability

of robust algorithms for SfM and MVS along with high-

coverage mapping and imaging of the world suggests that

high-quality 3D models and precise camera localization of

novel photos will be soon be commonplace for a variety

of scenes, particularly urban outdoor environments (see,

e.g., [19]).

At their core, both of these approaches tackle the same

problem of modeling static background for a scene. Scene-

specific object detectors implicitly contain a model of the

scene background derived from negative training examples.

Since the detectors are used in a sliding window fashion,

this model of the background is translation invariant and

must function well at any image location. Multi-view back-

ground subtraction goes one step further by synthesizing

a spatially varying model of the background. The detec-

tor then competes with the background model in order to

explain the image contents at each image location. A key

distinction is that the former works during training to gen-

erate a large collection of object detectors while the later

demands more substantial test-time inference. In our exper-

iments, we find both approaches useful and often provide

independent benefits in detection performance.

In the remainder of the paper we discuss the SfM and

MVS tools we use to analyze image collections, give

specifics of the scene-specific background model and multi-

view background subtraction approaches, and finally de-

scribe a set of experiments evaluating their efficacy. We

conclude with a brief discussion of related work.

2. Isolating Backgrounds with Multi-View
Stereo

We propose to use large photo collections in a unsuper-

vised manner to build up a model of the static rigid back-

ground appearance in a given scene. Such photos will nec-

essarily contain non-static objects but these can generally

be rejected as they are not consistent from one photo to the

next. Our basic technical tools are robust structure-from-

motion and multi-view stereo.
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2.1. Recovering Camera Pose and Scene Geometry

There is a large body of work which has emerged over

the last few years on the problem of camera localization

and large scale SfM [22, 12, 1, 5]. We use an off-the-

shelf software pipeline to reconstruct the static scene in

which our objects are placed. After computing SIFT de-

scriptors for a collection of image keypoints [16], we use

Bundler [21] which performs sparse keypoint matching and

bundle-adjustment in order to estimate scene structure and

camera pose from a large collection of un-calibrated im-

ages. Once camera poses have been estimated, we use

PMVS [8] to perform dense reconstruction using multi-

view stereo. Since stereo matches do not need to be com-

puted across all pairs of views, we use CMVS [7] in order to

perform view clustering prior to running PMVS which sig-

nificantly increases the speed of reconstruction. This gener-

ally yields high quality reconstructions like that one shown

in Figure1(b).

When presented with a novel test image, we would like

to similarly estimate the camera calibration and pose. This

can again be accomplished using SIFT keypoint matching

to find correspondences and standard methods for camera

calibration from epipolar geometry. Since our dataset is

small we use simple batch processing with Bundler. In a

real system, such matching can be carried out incremen-

tally with high accuracy and accelerated with fast index-

ing in order to scale perform matching to large world-wide

datasets [19, 15]. For example [15] demonstrate rapid in-

dexing millions of images and tens of millions of keypoints.

2.2. Identifying Background Pixels

Given a high-quality 3D model of a scene and a known

camera pose and calibration, it is straightforward to synthe-

size an image from that viewpoint as shown in Figure1(b).

Comparison of this re-projected scene with the actual image

should indicate which pixels that differ from the static scene

and hence are likely to be dynamic objects of interest. Un-

fortunately, simply computing the difference between the

re-projected image and the test image does not work well in

practice. While the models generated by the above pipeline

are quite compelling, they are not pixel-perfect. Renderings

of point cloud models typically lack fine-scale features that

provide cues for object detection. Furthermore, because the

library of images used in constructing the model are taken

across a huge range of lighting conditions with different

cameras, even when the recovered geometry is perfect, the

estimated average color may be quite different than the par-

ticular color that appears in a novel test image.

While one could develop a image differencing scheme

that is robust to these variations, we observe that the prob-

lem of determining when an image from a novel viewpoint
matches a model is exactly the problem that multi-view
stereo algorithms are designed to solve! Rather than com-

paring an image patch to the model, we compare it directly

to the appearance of corresponding patches in the images in

our test library. We describe the basic matching function we

use and refer the reader to [8] for more details.

Consider a point p on our scene reconstruction which is

predicted to be visible in our test image I . Let V (p) be

the set of all images in our image collection that depict this

same point (including only those views where the point p is

visible based on the reconstruction). We compute a measure

of photometric discrepancy between the image collection

and our test image given by

match(p) =
1

|V (p)|
∑

J∈V (p)

h(p, I, J) (1)

where h(p, I, J) compares the color at a set of points sam-

pled from a local plane tangent to the static background

reconstruction at p and projected into the test image I
and each other image J using the recovered camera poses.

These sample points lie on a 5x5 grid on the tangent plane.

Their color is estimated from each image using bilinear in-

terpolation and the colors compared using normalized cor-

relation.

Using this match score we generate a background score
map that indicates the quality of match for each pixel to

the images in the dataset. Where appropriate, we can

threshold this score map match(p) > α to yield a binary

background mask as shown in Figure1(c). In our exper-

iments we used a threshold correlation score of α = 0.5
but the system performance is very robust to this choice

(see supplement). To compute patch matches in our test

and training we used a modified version of the publicly

available PMVS software [8, 6] which implements the nec-

essary patch matching functionality in order to compute

background masks. Note that while we use the same dis-

crepancy function as PMVS, our goal is slightly differ-

ent. Stereo reconstruction only requires finding a few high-

scoring matches across the whole image set in order to esti-

mate geometry and color of the point p. Once it has found

enough views, it is free to ignore many images in which

p may actually be visible. In our case, we would like to

estimate a dense collection of match scores over the entire

surface visible from the test image even if this particular test

image does not offer the best match for the point. Addition-

ally, our choice of maximal discrepancy threshold used in

producing the mask is higher than would typically be used

in matching in order to provide denser support in each indi-

vidual image.

In the following two sections, we describe two differ-

ent ways in which to use this background mask. First, at

training time to generate negative training examples in an

unsupervised manner. Second, at test time to prune detec-

tion responses which fire on regions that are estimated to be

background.
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Figure 2: Cumulative distribution of the proportion of back-

ground pixels q(i) inside true-positive object instances in

the scene specific training set.

3. Training Detectors with Scene Specific Back-
ground Models

A standard approach to detection is to train a sliding win-

dow classifier that distinguishes the object of interest from

background. We propose to use the information about the

scene derived automatically from a collection images of that

scene in order to tune the detector to perform better in that

particular context. This can be accomplished by selecting

negative training instances from those regions of the image

that are expected to be background based on the match score

(Equation 1).

Rather than including all possible negative windows of

an image, we utilize a standard approach of hard-negative

mining in order to generate a concise collection of negative

instances with which to train the detector. Given an initial

estimate of the template (e.g., derived from a generic train-

ing set), we run the detector on images (or parts of images)

known not to contain the object. Any location where the

detector responds at a level greater than the SVM margin

specified by the current weight vector is added to the pool

of negatives as it may constitute a support vector. This pro-

cess of hard-negative mining and retraining of the classifier

are interleaved until no further negatives are found at which

point the final weight vector is computed.

When ground-truth annotations of positives for a scene

specific dataset are available, hard negative mining can eas-

ily be used by just dropping any candidate negative win-

dows that overlap significantly with a ground-truth positive.

However, labeling images is a labor intensive process. In-

stead we use the background mask as a proxy that can be

produced in an unsupervised manner. Let Bi be the set of

pixels inside a bounding box associated with a candidate de-

tection i. We compute the proportion of background pixels

in this region as:

qi =
1

|Bi|
∑

p∈Bi

(match(p) > α)

Figure 2 shows the distribution of the background mask

proportions, qi, over the set of true-positive detections in

our training dataset. We use a conservative criteria, declar-

ing a candidate window background if qi > 0.2. As can

be seen in the figure, by and large positive instances are not

confused with static background. Using this criteria, less

than 3% of the ground-truth positives are incorrectly judged

as part of the background by this criteria.

4. Multi-View Background Subtraction

Background-subtraction has long been used in the

surveillance community as it provides a useful approach

to scene segmentation (see, e.g., [23]). A closely related

problem is that of video stabilization which yields back-

ground subtraction in the case of video with relatively high

frame rates [20]. Our scenario differs in that the images

we consider may be taken from very different cameras,

sparsely sampled in time, different lighting, etc., which

make tracking-based approaches used in video inappropri-

ate. Instead we use SfM to estimate the camera parameters

of a novel test image and then utilize the same technique

described in Section 2 for identifying background pixels,

namely those that are photo-consistent with our model and

image collection.

For a novel image, we can view the background mask

as a hypothesized segmentation and ask if the detection is

consistent with this segmentation. Motivated by previous

work on combining segmentation and detection, we inves-

tigated several mechanisms for measuring consistency with

the background mask. This included examining consistency

with average shape masks derived from example segmen-

tations of each object and explicitly learning a mask tem-

plate from example training data (see Experiments). We

also tested using GrabCut [18] or super-pixels in order to

refine the background mask estimate based on local image

evidence such as discontinuities in color and texture. In

the end we found that simply using the proportion of back-

ground mask pixels inside the bounding box with the same

simple threshold used in generating scene specific negatives

(q(i) > 0.2) was as effective at removing false-positives as

any of these more elaborate schemes.

5. Experimental Results

In order to evaluate performance of our ideas we con-

structed a labeled dataset of pedestrians from a collection

of images of Notre Dame provided online by the authors of

Bundler [21]. Images were annotated with bounding boxes

around each pedestrian using a protocol similar to the PAS-

CAL VOC detection set. Bounding boxes were tight around

the visible portion of the person. Difficult examples such

as seated or heavily occluded people were included in the

ground truth but tagged as “difficult” and not used in com-

puting the test performance numbers presented here (i.e.,

they neither count as true or false positives). Low resolu-
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Figure 3: Precision-Recall for pedestrian detection with

scene specific detectors. DT is the baseline Dalal-Triggs

template detector trained on the INRIA dataset. +SS− is

trained using scene-specific negative instances mined in an

unsupervised manner from images of Notre Dame. +GC
prunes detections where the bottom of the detection ap-

pears above the horizon based on the camera pose esti-

mated using SfM. +MVBS prunes detections whose bound-

ing box contain more than 20% estimated background pix-

els based on multi-view matching. The scene-specific

model performs significantly better than the baseline with

multi-view background-subtraction and geometric consis-

tency both providing additional gains in detector precision.

tion people (< 40 pixels) were marked as difficult or not an-

notated. Benchmarking used the standard PASCAL detec-

tion benchmark criteria in which 50% overlap between a de-

tection and ground-truth bounding box is sufficient (where

overlap is the ratio of intersection area to area of union).

The 401 images available were randomly split into 200

test and 201 training. The training images were used when

automatically generating negative examples to train the

scene-specific detector as well as during algorithm develop-

ment to validate the choice of bounding box mask threshold

parameter and SVM regularization.

Baseline Detectors: We focus our experiments on two pop-

ular object detectors. First, we consider an implementation

of the Dalal-Triggs (DT) rigid template model [2]. We train

our implementation of the detector on positive and negative

examples provided in the INRIA Person dataset. The re-

sulting baseline detector achieves an AP=0.79 on the IN-

RIA test set, comparable to the results reported elsewhere

[2]. Performance of this baseline detector on the Notre

Dame test dataset (AP=0.296) is lower than on INRIA due

to the greater variety of appearances of pedestrians labeled

in the ND dataset (e.g. more poses, occlusion and trunca-

DT DT+SS− DPM DPM+SS−

Detection 0.296 0.395 0.455 0.551

+MVBS 0.412 0.430 0.558 0.552

PoP [13] 0.323 0.322 0.348 0.323

PoP+SfM 0.405 0.406 0.404 0.337

DT+FS− DT+FS DPM+FS− DPM+FS

Detection 0.41 0.43 0.55 0.63

Figure 4: Average Precision for pedestrian detection with

scene-specific detectors. DT is the baseline Dalal-Triggs

template detector [2] and DPM is the deformable parts

model of [4]. +SS− indicates the detector was trained with

automatically acquired scene-specific negative instances.

+MVBS prunes detections whose bounding box contain

more than 20% estimated background pixels based on wide-

baseline matching. PoP shows the results obtained by us-

ing the approach in [13], while +SfM enforces the horizon

estimation using structure from motion results. The unsu-

pervised scene-specific model performs significantly better

than the baseline, with multi-view background-subtraction

providing additional gains in detector precision. For com-

parison we also show performance for fully supervised

scene-specific training. +FS indicates results using scene

specific positive and negative instances, +FS− uses only

negtive instances. Our unsupervised approach achieves

similar levels of performance and is scalable to large num-

bers of scenes.

tion, wider range of scale, etc.) We set the SVM regular-

ization parameter C to maximize performance on the Notre

Dame training images.

In addition to the DT model, we also test with the de-
formable parts model (DPM) of Felzenswalb et al. [4], us-

ing the implementation from [9] trained on the PASCAL

VOC 2007 (train+val) dataset [3]. This model is substan-

tially more complex but achieves better baseline perfor-

mance (AP=0.455) by modeling deformation as well as

mixture components which better detect truncated people

marked in the dataset.

Training Scene-Specific Background Models: The 201

training images were used in building the scene specific

background model (denoted DT+SS− and DPM+SS− in

the figures). For this purpose we did not use the ground-

truth annotations but did utilize the background mask with

the qi > 0.2 background threshold. We found that both

models performed significantly better when trained with

scene specific negatives. DT improved from 0.296 to 0.395

and DPM from 0.455 to 0.551 average precision (compare

columns of Figure 4). We did find it necessary to decrease

the degree of regularization when changing the size of the

training data set (C went from 0.1 to 0.01).
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We also compared our scene-specific background model

with unsupervised hard-negative mining to a supervised

version (FS-) in which the scene-specific negatives were

chosen to not overlap with any positive bounding boxes by

more than 10%. This achieved an AP of 0.41 for DT and

0.55 for DPM suggesting that our unsupervised negative

mining based on masks is capturing most of the useful neg-

ative examples. Finally, we evaluated fully supervised ver-

sions (FS) of the DT and DPM models which include both

scene-specific positives and negatives in addition to the IN-

RIA and PASCAL training sets, respectively. This yielded

an AP of 0.43 for DT and 0.63 for DPM respectively.

In training the scene specific model, it is useful to start

with a pretrained model and then perform additional passes

of hard negative mining on the scene specific images. We

found that this hot-starting was significantly more efficient

than retraining the model from scratch. For example, train-

ing the DT detector from scratch took 83 minutes compared

to only 37 minutes to hot start. Similarly, the DPM model

takes days to train on the whole PASCAL dataset but only

hours to hot start.

Multi-View Background Subtraction: We tested the

multi-view background subtraction scheme (MVBS) using

simple thresholding by rejecting detections with q(i) > 0.2.

Results are shown in Figure 3 and 4. Rejecting such false

positives increased the average precision of both detectors.

In the case of the DT detector, the combination of MVBS

and SS− training achieves even better performance while

the DPM model saturates at 0.55 average precision.

In addition to the simple mask thresholding scheme, we

also experimented with learning various features derived

from the mask including the mean count of background pix-

els in the bounding box, the mean match score, and a spatial

mask template with various spatial binnings. We found that

none of these gave huge performance gains over the sim-

plest thresholding. Learning a spatial mask template on the

ND training set with spatial binning at the same resolution

of the HOG descriptor gave AP = 0.476 while using pixel-

sized bins yielded performance of AP = 0.480. However,

the resulting templates had relatively little structure and are

likely over-fit to the statistics of the background masks re-

covered for this particular scene rather than being univer-

sally applicable for all pedestrians.

Figure 5 shows qualitative example outputs of the base-

line detector, scene-specific detector and the effect of multi-

view background subtraction. There are many textured re-

gions on the cathedral facade where the baseline detector

produces false positives. In particular, the carved human

figures on the facade naturally match the template well.

The model trained with additional scene-specific negatives

is able to reject some of the false-positives as it finds very

similar examples in the training set which are used as nega-

tive support vectors.

Geometric Context: A skeptical reviewer might be con-

cerned that all we are doing is removing those detections

up “in the sky”, something that could be accomplished us-

ing SfM alone without constructing a dense background

mask. To check this, we estimated the position of the hori-

zon line based on the recovered camera pose for each test

image. Since the plaza in front of the Cathedral is largely

planar, we do not expect any pedestrians to appear floating

above the horizon. This simple check of geometric consis-

tency also achieves substantial performance improvements

for the Dalal-Triggs detector, raising the average precision

to AP = 0.42. However, multi-view background subtrac-

tion is able to prune additional detections which satisfy ge-

ometric constraints but include patches of facade visible

in the training set providing small but distinct gains over

purely geometric pruning (see +GC curves in Figure 3 and

qualitative examples in Figure 5). This distinction would

be even more obvious in a more complicated scene with el-

evated structures (balconies, stairs, playground equipment,

trolly platforms, etc.)

Putting objects in perspective: We evaluated the Putting

Objects in Perspective (PoP) system of Hoiem et al. [13]

which performs more sophisticated joint probabilistic infer-

ence over the camera pose, scene geometry, and detection

hypotheses. We considered two different scenarios. In the

first we simply substituted our baseline detector but used the

camera pose and geometry priors graciously provided by

the authors. In the second scenario, we replaced the default

prior Gaussian distribution over horizon line position with

a tightly peaked double-exponential (b=0.005) centered at

the horizon estimate based on SfM camera pose estimation.

We also tried using a prior derived from the camera heights

produced during bundle adjustment but were unable to find

a scaling that yielded better results than the prior from the

original paper.

For the default camera pose priors, the PoP inference

routine is able to boost the DT detector performance from

0.296 to 0.323. Substituting in the much stronger horizon

estimate produced by SfM provides a much more significant

boost, up to an average precision of 0.4. Surprisingly, these

gains are not present when using the DPM detector. We be-

lieve this might be because the conversion of the detector

score into a probability based on logistic fitting produces an

overestimate of the detector confidence which skews the in-

ference result. We include example detections and horizon

estimates produced by PoP in the supplementary material.

6. Discussion

Much of the work on general-purpose object recogni-

tion has focused on detecting objects against arbitrary back-

grounds of non-objects or other object categories. Such

systems are typically trained with negative examples taken
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from random images off the web. The idea proposed here

is in some ways counter to much contemporary research

in category-level object recognition which has focused on

generic detectors that will work in a wide range of envi-

ronments. Indeed, it is a topic of hot debate whether our

models are over-fitting to even the most general detection

benchmarks[24]. Of course, such over-fitting is useful if

you know which dataset (in this case scene) that you will be

tested on.

Perhaps the most closely related work to ours is the

“Putting objects in perspective” by Hoiem et. al. [13]

which makes joint inferences about scene geometry, cam-

era pose and detection likelihoods. PoP only attempts to

encode generic prior knowledge about the scene geometry

and camera pose in the form of a surface orientation classi-

fier [14]. In contrast, we argue that for many scenes, it is not

unreasonable to expect that other photos of the same scene

are available from which to do more aggressive geometric

reasoning. It thus seems worthwhile to revisit the idea of

geometric context in the setting of large-scale SfM which

can provide much more reliable estimates of scene geome-

try for many parts of a novel test image as well as camera

pose. From a research perspective, this would help isolate

the benefits of geometric context for detection from the dif-

ficulties of single-image geometry estimation. Our experi-

ment with pruning detections based on the horizon line from

camera pose estimates touches on this but one could clearly

go much further. For example, one could utilize the surface

estimates returned from multi-view stereo or even re-project

a 3D map which was annotated with “affordances” indicat-

ing what spatial volumes are likely to contain which objects

and in which poses.

Finally, it seems valuable to think how recent work on ro-

bust reconstruction relates to problems of recognition. Ef-

forts such as Google Street View that are assembling ever

larger collections of images and other data into rich maps

and models of city-scapes must constantly deal with dy-

namic objects (tourists, cars, pigeons, trash, etc.) which

constitute outliers to be ignored during matching or bet-

ter yet eliminated. However, from a broader perspective of

scene understanding, one model’s outlier is another model’s
signal and these annoyances should be transmuted into use-

ful cue for recognizing dynamic objects.
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DT DT+SS− DT+SS−+MVBS DT+SS−+GC DT+SS−+MVBS+GC

Figure 5: Example detector outputs at 50% recall. Unsupervised scene specific training makes the detector better able to reject

common distractors (e.g. the statues in row 2). MVBS can prune additional false positives at test-time by performing stereo

matching to a database of existing images. Note that MVBS is able to remove some false positives which are not caught by

geometric consistency (GC) with the horizon line because the hypothesized detections overlap heavily with regions identified

as background.
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