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Abstract

In this paper, we present a novel algorithm for fast track-
ing of generic objects in videos. The algorithm uses two
components: a detector that makes use of the generalised
Hough transform with pixel-based descriptors, and a prob-
abilistic segmentation method based on global models for
foreground and background. These components are used
for tracking in a combined way, and they adapt each other
in a co-training manner. Through effective model adapta-
tion and segmentation, the algorithm is able to track ob-
jects that undergo rigid and non-rigid deformations and
considerable shape and appearance variations. The pro-
posed tracking method has been thoroughly evaluated on
challenging standard videos, and outperforms state-of-the-
art tracking methods designed for the same task. Finally,
the proposed models allow for an extremely efficient imple-
mentation, and thus tracking is very fast.

1. Introduction

Given a video stream, tracking arbitrary objects that are

non-rigid, moving or static, rotating and deforming, par-

tially occluded, under changing illumination and without

any prior knowledge is a challenging task. This uncon-

strained tracking problem where the object model is ini-

tialised from a bounding box in the first video frame and

continuously adapted has been increasingly addressed in the

literature in the past years. When no prior knowledge about

the object’s shape and appearance is available, one of the

main difficulties is to incrementally learn a robust model

from consecutive video frames. This model should gen-

eralise to new unseen appearances and avoid drift, i.e. the

gradual inclusion of background appearance, which can ul-

timately lead to tracking failure.

Our method addresses these issues with an adaptive ap-

proach combining a detector based on pixel-based descrip-

tors and a probabilistic segmentation framework.

1.1. Related Work

Earlier works [21, 11, 32, 30, 41, 18] on visual ob-

ject tracking mostly consider a bounding box (or some

other simple geometric model) representation of the ob-

ject to track, and often a global appearance model is used.

These classical methods are very robust to some degree

of appearance change and local deformations (as in face

tracking), and also allow for a fast implementation. How-

ever, for tracking non-rigid objects that undergo a large

amount of deformation and appearance variation, e.g. due

to occlusions or illumination changes, these approaches are

less suitable. Although some algorithms effectively cope

with object deformations by tracking their contour (e.g.

[31, 42, 10]), most of them require the object to be moving

or need prior shape knowledge [12]. Others, describe an ob-

ject by a relatively dense set of keypoints that are matched

in each frame [26, 19] to track the object. However, these

methods have mostly been applied to relatively rigid ob-

jects.

Many existing methods, follow a tracking-by-detection

approach, where a discriminative model of the object to

track is built and updated “online”, i.e. during the tracking,

in order to adapt to possible appearance changes. For ex-

ample, Adam et al. [1] use a patch-based appearance model

with integral histograms of colour and intensity. The dy-

namic patch template configuration allows to model spatial

structure and to be robust to partial occlusions. Grabner et
al. [16] proposed an Online Adaboost (OAB) learning algo-

rithm that dynamically selects weak classifiers that discrim-

inate between the object image region and the background.

Later, they extended this method to a semi-supervised algo-

rithm [17] that uses a fixed (or adaptive [39]) prior model to

avoid drift and an online boosting framework learning with

unlabelled data. Babenko et al. [4] presented another online

method based on Multiple Instance Learning (MIL), where

the positive training examples are bags of image patches

containing at least one positive (object) image patch. Be-

sides boosting algorithms, Online Random Forests have

been proposed for adaptive visual object tracking [36, 37],

where randomised trees are incrementally grown to clas-
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sify an image region as object or background. Kalal et al.
[22] also use randomised forests which they combine effec-

tively with a Lucas-Kanade tracker in a framework called

Tracking-Learning-Detection (TLD) where the tracker up-

dates the detector using spatial and temporal constraints and

the detector re-initialises the tracker in case of drift.

In order to cope with changing appearance, Mei et al.
[28] introduced the l1 tracker that is based on a sparse set

of appearance templates that are collected during tracking

and used in the observation model of a particle filter. Re-

cently, several extensions have been proposed [6, 20, 43]

to improve the robustness and reduce the complexity of this

method. However, these approaches are still relatively time-

consuming due to the complex l1 minimisation. A sparse

set of templates has also been used by Liu et al. [27], but

with smaller image patches of object parts, and by Kwon

et al. [23] in their Visual Tracking Decomposition (VTD)

method. In a similar spirit, Ross et al. [34] propose a par-

ticle filter algorithm called IVT that uses an observation

model relying on the eigenbasis of image patches com-

puted online using an incremental PCA algorithm. Other

approaches, more similar to ours, consist in using a pixel-

based classifier [3, 9]. Avidan et al. [3], for example, pro-

posed an ensemble tracking method that label each pixel as

foreground or background with an Adaboost algorithm that

is updated online. However, all of these methods still op-

erate more or less on image regions described by bounding

boxed and inherently have difficulties to track objects un-

dergoing large deformations.

To overcome this problem, recent approaches integrate

some form of segmentation into the tracking process. For

example, Nejhum et al. [29] proposed to track articulated

objects with a set of independent rectangular blocks that are

used in a refinement step to segment the object with a graph-

cut algorithm. Similarly, although not segmenting the ob-

ject, Kwon et al. [24] handle deforming objects by track-

ing configurations of a dynamic set of image patches, and

they use Basin Hopping Monte Carlo (BHMC) sampling

to reduce the computational complexity. Other approaches

[33, 40] use a segmentation on the superpixel level. Bibby

et al. [8] propose an adaptive probabilistic framework sep-

arating the tracking of non-rigid objects into registration

and level-set segmentation, where posterior probabilities

are computed at the pixel level. Aeschliman et al. [2] also

combined tracking and segmentation in a Bayesian frame-

work, where pixel-wise likelihood distributions of several

objects and the background are modelled by Gaussian func-

tions the parameters of which are learnt online. In a differ-

ent application context, pixel-based descriptors have also

been used for 3D articulated human-body detection and

tracking by Shotton et al. [38] on segmented depth images.

In the approach recently proposed by Belagiannis et al. [7],

a graph-cut segmentation is applied separately to the image

patches provided by a particle filter.

The work of Godec et al. [15] is probably the most sim-

ilar to ours. The authors proposed a patch-based voting al-

gorithm with Hough forests [14]. By back-projecting the

patches that voted for the object centre, the authors initialise

a graph-cut algorithm to segment foreground from back-

ground. The resulting segmentation is then used to update

the patches’ foreground and background probabilities in the

Hough forest. This method achieves state-of-the-art track-

ing results on many challenging benchmark videos. How-

ever, due to the graph-cut segmentation it is relatively slow.

Also, the segmentation is discrete and binary, which can

increase the risk of drift due to wrongly segmented image

regions.

1.2. Motivation

The algorithm presented in this paper is inspired by

these recent works on combined tracking and segmentation,

which is beneficial for tracking non-rigid objects. Further-

more, patch-based local descriptors have shown state-of-

the-art performance due to their possibility of handling ap-

pearance changes with large object deformations.

In this paper, we integrate these concepts and present

a novel tracking-by-detection algorithm that relies on a

Hough-voting scheme based on pixel descriptors. The

method tightly integrates with a probabilistic segmentation

of foreground and background that is used to incrementally

update the local pixel-based descriptors and vice versa. The

local Hough-voting model and the global colour model op-

erate both at the pixel level and thus allow for very efficient

model representation and inference.

The following scientific contributions are made:

• a fast tracking algorithm using a detector based on

the generalised Hough transform and pixel descriptors

in combination with a probabilistic soft segmentation

method,

• a co-training framework, where the local pixel-based

detector model is used to update the global segmenta-

tion model and vice versa,

• a thorough performance evaluation on standard

datasets and a comparison with other state-of-the-art

tracking algorithms.

Note that the main goal of the proposed approach is to

provide an accurate position estimate of an object to track

in a video. Here, we are not so much interested in a perfect

segmentation of the object from the background. Better ap-

proaches for segmentation exist in the literature but they are

rather complex. Thus, instead of using these, we aimed at

reducing the overall computational complexity.

In the following, we will first describe the overall ap-

proach (Section 2). Then we will detail each of the com-
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Figure 1. The overall tracking procedure for one video frame.

Each pixel inside the search window (blue dotted rectangle) in the

input image casts a vote (1) according to the current Hough trans-

form model (darker: high vote sum, lighter: low vote sum). Then

the maximum vote sum (circled in red) and all pixels that have

contributed (i.e. the backprojection) are determined (2). In par-

allel, the current segmentation model is used to segment the im-

age region inside the search window (3) (binarised segmentation

shown in red). Finally, after updating the objects current position

(4), the segmentation model is adapted (5) using the backprojected

image pixels, and the Hough transform model is updated (6) with

foreground pixels from the segmentation and background pixels

from a region around the object (blue frame).

ponents of the algorithm (Sections 3-5). And finally, some

experimental results will be presented (Section 7).

2. Overall Approach

The overall procedure of detection, segmentation, track-

ing, and model adaptation for one video frame is illus-

trated in Fig. 1. The algorithm receives as input the current

video frame as well as the bounding box and segmentation

from the tracking result of the previous frame. The pixel-

based Hough transform is applied on each pixel inside the

search window, the enlarged bounding box, i.e. each pixel

votes for the centre position of the object according to the

learnt model. Votes are cumulated in a common reference

frame, the voting map, and the position with the highest

sum of votes determines the most likely position of the ob-

ject’s centre (see Section 3 for a more detailed explanation).

Then, the pixels that have contributed to the maximum vote

are determined. This process is called backprojection. In

parallel, the image region corresponding to the search win-

dow is segmented using the current segmentation model.

That is, each pixel is assigned a foreground probability (see

Section 4). The position of the tracked object is updated

using the maximum vote position and the centre of mass of

the segmentation output (see Section 5). Finally, the mod-

els are adapted in a co-training manner to avoid drift. That

means, the segmentation model is updated using the back-

projection, and the pixel-based Hough model is adapted ac-

cording to the segmentation output (see Section 6 for more

details).

3. Pixel-based Hough Voting
We developed a new detection algorithm relying on the

generalised Hough transform [5]. In contrast to existing

models developed recently for similar tasks (e.g. [14, 15])

which use Hough forests, i.e. Random Forests trained on

small image patches, or the Implicit Shape Model (ISM)

[25] our method operates at the pixel-level.
This has the following advantages:

• pixel-based descriptors are more suitable for detecting

objects that are extremely small in the image (e.g. for

far-field vision),

• the feature space is relatively small and does not (or

very little) depend on spatial neighbourhood, which

makes training and updating of the model easier and

more coherent with the object’s appearance changes,

• the training and the application of the detector is ex-

tremely fast as it can be implemented with look-up ta-

bles.

One drawback of using a pixel-based Hough model is when

the object’s image region contains primarily pixels of very

similar colours (and gradients). In that case, the pixels on

their own may not be discriminative enough to infer the ob-

jects centre position. Note that also patch-based methods

have difficulties with uniform regions. In practice, however,

this is rarely the case and may be controlled by increasing

the discriminative power of the descriptors (at the cost of

invariance). Also, in this tracking framework, this risk is

considerably reduced by combining the detector with the

segmentation output.

Let us now consider the model creation and application

in detail. Figure 2 illustrates the model creation (training)

and detection process.

3.1. Training

Let us denote x = (x1, x2) the position of a pixel I(x) in

an image I . In the training image, the pixels inside a given

initial bounding box are quantised according to the vector

composed of its HSV colour values (with separate V quan-

tisation) and its x and y gradient orientation (with a separate

quantisation for low gradient magnitudes) (see Fig. 2 left).

Experiments showed that colour alone is also working well,

but not gradient alone. This amounts to computing D = Dz

(z = 1..N ), an N-dimensional histogram, which is referred

to as pixel-based Hough model in this paper. Here, we use

N = (16× 16+ 16)× (8 + 1) = 2448 (16 colour bins and

8 gradient orientations). The vectors Dz = {d1
z, . . . ,d

Mz
z }
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Figure 2. Training and detection with the pixel-based Hough

model. Left: the model D is constructed by storing for each quan-

tised pixel value in the given bounding box all the displacement

vectors to the object’s centre position (here only colour is used for

illustration). Right: the object is detected in a search window by

accumulating the displacement votes of each pixel in a voting map

(bright pixels: many votes, dark pixels: few votes).

contain Mz displacement vectors dm
z = (xzm, wzm), each

associated with a weight wzm = 1.0. Thus, training con-

sists in constructing D, where each pixel I(x) in the given

bounding box produces a displacement vector dz (arrows in

Fig. 2) corresponding to its quantised value zx and pointing

to the centre of the bounding box.

3.2. Detection

In a new video frame, the object can be detected by let-

ting each pixel I(x) inside the search window vote accord-

ing to Dz corresponding to its quantised value zx. The right

part of Fig. 2 illustrates this. Each vote is a list of displace-

ments dm
z that are weighted by wzm and accumulated in a

voting map. The detector’s output is then simply the posi-

tion in the voting map with the maximum value xmax.

Note that, as illustrated in figure 2, the position estima-

tion is “diffused” by two factors: the deformation of the

object (one of the green pixels in the figure), and pixels of

the same colour (green and blue pixels). But the maximum

value in the voting map is still distinctive and corresponds

well to the centre position of the object. This could also be

observed in our experiments.

Nevertheless, to be robust to very small deformations we

group the votes in small voting cells of 3×3 pixels (as [15]).

3.3. Backprojection

With the position of the maximum in the voting map

xmax, we can determine which pixels in the search window

contributed to it during the detection. This process is illus-

trated in Fig. 1 and is called backprojection. More precisely,

let z be the value of pixel I(x). Then, the backprojection b

at each position x ∈ Ω is defined as:

bx =

{
wzm if dm

z voted for xmax ,
0 otherwise.

(1)

The backprojected pixels are used for adapting the seg-

mentation model (see Section 6 for more details). The idea

behind this is that, intuitively, pixels that contributed to

xmax are most likely corresponding to the object.

4. Segmentation
Complementary to the local pixel-wise Hough model, a

global segmentation model is trained and adapted to allow

for varying object shapes and for a better discrimination be-

tween foreground (object) and background, especially when

the shape and appearance changes drastically and abruptly.

A probabilistic soft segmentation approach is adopted

here (similar to [2]). Let ct,x ∈ {0, 1} be the class of the

pixel at position x at time t: 0 for background, and 1 for

foreground, and let y1:t,x be the pixel’s colour observations

from time 1 to t. For clarity, we’ll drop the index x in the

following. In order to incorporate the segmentation of the

previous video frame at time t− 1 and to make the estima-

tion more robust, we use a recursive Bayesian formulation,

where, at time t, each pixel (in the search window) is as-

signed the foreground probability:

p(ct = 1|y1:t) = Z−1
∑
ct−1

p(yt|ct = 1)

p(ct = 1|ct−1) p(ct−1 = 1|y1:t−1) , (2)

where Z is a normalisation constant to make the probabili-

ties sum to 1. The distributions p(yt|ct) are modelled with

HSV colour histograms with 12 × 12 bins for the H and

S channels and 12 separate bins for the V channel. The

foreground histogram is initialised from the image region

defined by the bounding box around the object in the first

frame. The background histogram is initialised from the

image region surrounding this rectangle (with some margin

between). The transition probabilities for foreground and

background are set to:

p(ct = 0|ct−1) = 0.6 p(ct = 1|ct−1) = 0.4 (3)

which is an empirical choice that has been validated exper-

imentally. Note that the tracking algorithm is not very sen-

sitive to these parameters.

As opposed to recent work on image segmentation (e.g.

[35]), we treat each pixel independently, which, in general,

leads to a less regularised solution but at the same time re-

duces the computational complexity considerably. As stated

in section 1.2, we are not so much interested here in a per-

fectly “clean” segmentation but rather in fast and robust

tracking of the position of an object.
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5. Tracking
In a new video frame, pixel-based detection and segmen-

tation are performed inside a search window Ω, which is set

here to twice the size of the object’s bounding box. Then,

the object’s position Xt can be re-estimated. To this end, we

utilise not only the output of the detector, i.e. the maximum

position in the voting map, but also the segmentation out-

put. Clearly, this makes the tracking algorithm more robust

to non-rigid deformations. More precisely, we calculate the

centre of mass of the soft segmentation produced by Eq. 2:

xs =
1

S

∑
x∈Ω

p(cx = 1|y) x, (4)

where S is the sum of all foreground probabilities

p(cx = 1|y) in the search window Ω. Then, we set the new

object position to a linear combination of voting map max-

imum xmax and xs:

Xt = αxs + (1− α)xmax . (5)

The factor α determines how much we trust in the seg-

mentation’s position compared to the Hough model’s es-

timation. It is computed dynamically at each frame by

a simple reliability measure that is defined as the propor-

tion of pixels in the search window that change from fore-

ground to background or vice versa, i.e. crossing the thresh-

old p(cx = 1|y) = 0.5. A high value of α means that the

shape of the object has changed considerably from the pre-

vious frame to the current one, and consequently the Hough

voting is assumed to be less accurate.

6. Model adaptation
Both pixel-based Hough model and segmentation model

are updated at each frame in a co-training manner, i.e. the

output of one model is used to update the other one. To up-

date the Hough model, only foreground pixels are used, that

is pixels for which p(cx = 1|y) > 0.5. For each of these

pixels x the displacement d to the new object’s centre is cal-

culated, and its weight w is set according to its foreground

probability:

w ←
{

γ p(cx = 1|y) + (1− γ)w if d ∈ Dz ,
p(cx = 1|y) otherwise,

where γ = 0.1 is the update factor. In the second case, d is

added to Dz . For computational and memory efficiency, we

limit the size of each Dz and only keep the K displacements

with the highest weights (K = 20 in our experiments).

The foreground and background distributions of the seg-

mentation model are adapted using the backprojection bx.

That is, the colour distribution p(y|b > 0.5) of the backpro-

jected pixels is calculated, and used to linearly update the

current foreground colour distribution:

p(yt|ct = 1) = δ p(y|b > 0.5)+(1−δ) p(yt−1|ct−1 = 1) ,
(6)

where δ = 0.1 is the update factor. The background colour

distribution is updated in the same way but using the colour

distribution from a rectangular frame surrounding the object

borders (as for initialisation).

7. Evaluation
7.1. Evaluation Protocol

We conducted quantitative evaluation on two sets of

challenging standard videos that are commonly used in

the literature. The tracking accuracy and speed on these

datasets has been measured and compared to two state-of-

the-art tracking methods.

The first dataset1 has been constructed by Babenko et al.
[4] from various other publications, and it has been used by

Godec et al. [15]. It contains 8 videos (with more than 5 000

frames) of objects or faces that undergo mostly rigid defor-

mations and some rather large lighting variations as well as

partial occlusions. Most of these sequences are actually in

grey-scale format (except “David”, “Girl”, and “Face Oc-

clusions 1”). For this reason, we do not use the segmenta-

tion part of our algorithm here because it is based on colour.

That means, tracking is only performed by Hough voting.

The second dataset2 is composed of 11 videos (around

2 500 frames) showing moving objects that undergo consid-

erable rigid and non-rigid deformations. This dataset has

also been used by [15] and partially by [23] among others.

We compared our algorithm which we call PixelTrack to

two state-of-the-art methods: HoughTrack (HT) proposed

by Godec et al. [15] and Tracking-Learning-Detection

(TLD) by Kalal et al. [22]. Although, these and other previ-

ous works have reported tracking accuracy results on some

of the videos from our datasets, we evaluated these methods

again using our performance measure in order to have a con-

sistent comparison. Initialisation is done manually, where

HT has been initialised by the values given by their authors,

and the same initialisation has been used for TLD. For our

method, the initial rectangle is smaller as it should contain

as few background pixels as possible in order to obtain a

good initial segmentation model.

To measure the performance of the different tracking al-

gorithms, we determine, for each video, the percentage of

frames in which the object is correctly tracked. In each

video frame, the tracking is considered correct if the PAS-

CAL VOCC [13] overlap measure RT∩RGT

RT∪RGT
is above a

threshold, where RT is the rectangle from the tracking al-

gorithm, and RGT is the ground truth rectangle surround-

ing the object. We set the threshold to 0.1. A higher

1http://vision.ucsd.edu/ bbabenko/project miltrack.shtml
2http://lrs.icg.tugraz.at/research/houghtrack/
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HT [15] TLD [22] PixelTrack

David 89.25 77.42 45.16

Sylvester 55.02 88.10 36.80

Girl 92.22 97.01 93.21

Face Occlusions 1 99.44 100.00 100.00
Face Occlusions 2 100.00 46.01 88.34

Coke 72.88 88.14 91.53
Tiger 1 26.76 12.68 46.48
Tiger 2 41.10 19.18 98.63

average 72.08 66.07 75.02

Table 1. Babenko sequences: percentage of correctly tracked

frames.

HT [15] TLD [22] PixelTrack

Cliff-dive 1 100.00 69.12 100.00
Motocross 1 100.00 15.38 57.69

Skiing 100.00 6.85 100.00
Mountain-bike 100.00 81.36 94.55

Cliff-dive 2 100.00 8.20 32.79

Volleyball 45.12 42.28 100.00
Motocross 2 100.00 100.00 100.00
Transformer 38.71 33.06 94.35
Diving 21.21 24.68 88.74
High Jump 77.87 35.25 94.26
Gymnastics 98.87 84.75 99.09

average 80.16 45.54 87.41
Table 2. Non-rigid object tracking: percentage of correctly tracked

frames.

value would discriminate our method too much because the

bounding box that is output currently does not change its

size and aspect ratio during the tracking, and it is rarely ini-

tialised to surround the complete object.

Finally, we want to emphasise that we strictly used the

same parameters of our algorithm for all the videos and all

the experiments.

7.2. Results

Table 1 summarises the evaluation results on the

Babenko videos. Although our method is not designed for

grey-scale videos and, thus, does not show its full poten-

tial, it still performs better than other state-of-the-art meth-

ods on many videos of the dataset and also on average.

Fig. 3 shows some tracking results from the “Tiger 2” se-

quence. HoughTrack loses track after frame 100. Also TLD

very early stops to detect the object and removes the track,

whereas PixelTrack is able to follow the object despite the

appearance changes and occlusions.

Table 2 shows the results for dataset 2 with non-rigid de-

formations. For 8 out of 11 video sequences our method

outperforms the other algorithms or is on par. Also the

average of correct tracking is almost 7 percentage points

HT TLD PixelTrack

2.3 5.2 113.8

Table 3. Average overall processing speed in frames per second.

Measured without screen display.

higher than HT . The two videos that are the most difficult

for the proposed method are “Motocross”, where the motor-

bike does a complete flip, changes its size in the video, and

where the background is very cluttered, and “Cliff Dive 2”

where the appearance (and shape) of foreground and back-

ground changes dramatically.

Fig. 4 illustrates some tracking results of the three com-

pared methods on one of the sequences: “Diving”. The two

baseline methods lose the track at some point. The pro-

posed algorithm is able to track the diver despite consid-

erable shape and appearance changes. Fig. 5 shows some

more tracking results of PixelTrack.

Finally, we measured the average processing speed of

each algorithm for all the 19 videos on a 3.4 GHz Intel Xeon

processor. In terms of speed, the proposed method outper-

forms the other two by a factor of around 20 for TLD and 50

for HT. The reason why HT is relatively slow is the graph-

cut segmentation, which is computationally demanding (but

on the other hand also quite accurate). The code of HT is

implemented in C++ using OpenCV library. Whereas, TLD

uses Matlab with pre-compiled OpenCV code. The fast ex-

ecution speed is a real advantage of the proposed approach.

This is due to pixel-based Hough voting that allows for an

extremely efficient implementation with lookup-tables as

well as a fast segmentation algorithm.

8. Conclusions
We presented an algorithm for tracking generic objects

in videos without any prior knowledge. It is an effec-

tive combination of a local pixel-based detector based on

a Hough voting scheme and a global probabilistic segmen-

tation method that operate jointly and update each other

in a co-training manner. Our algorithm is very fast com-

pared to existing methods, which makes it suitable for real-

time applications, or tasks where many objects need to be

tracked at the same time, or where large amounts of data

need to be processed (e.g. video indexation). Experimen-

tal results show that the method outperforms state-of-the-

art tracking algorithms on challenging videos from standard

benchmarks.
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