
Restoring An Image Taken Through a Window Covered with Dirt or Rain

David Eigen Dilip Krishnan Rob Fergus
Dept. of Computer Science, Courant Institute, New York University

{deigen,dilip,fergus}@cs.nyu.edu

Abstract

Photographs taken through a window are often compro-
mised by dirt or rain present on the window surface. Com-
mon cases of this include pictures taken from inside a ve-
hicle, or outdoor security cameras mounted inside a pro-
tective enclosure. At capture time, defocus can be used to
remove the artifacts, but this relies on achieving a shallow
depth-of-field and placement of the camera close to the win-
dow. Instead, we present a post-capture image processing
solution that can remove localized rain and dirt artifacts
from a single image. We collect a dataset of clean/corrupted
image pairs which are then used to train a specialized form
of convolutional neural network. This learns how to map
corrupted image patches to clean ones, implicitly capturing
the characteristic appearance of dirt and water droplets in
natural images. Our models demonstrate effective removal
of dirt and rain in outdoor test conditions.

1. Introduction
There are many situations in which images or video

might be captured through a window. A person may be

inside a car, train or building and wish to photograph the

scene outside. Indoor situations include exhibits in muse-

ums displayed behind protective glass. Such scenarios have

become increasingly common with the widespread use of

smartphone cameras. Beyond consumer photography, many

cameras are mounted outside, e.g. on buildings for surveil-

lance or on vehicles to prevent collisions. These cameras

are protected from the elements by an enclosure with a

transparent window.

Such images are affected by many factors including re-

flections and attenuation. However, in this paper we address

the particular situation where the window is covered with

dirt or water drops, resulting from rain. As shown in Fig. 1,

these artifacts significantly degrade the quality of the cap-

tured image.

The classic approach to removing occluders from an im-

age is to defocus them to the point of invisibility at the time

of capture. This requires placing the camera right up against

Figure 1. A photograph taken through a glass pane covered in rain,

along with the output of our neural network model, trained to re-

move this type of corruption. The irregular size and appearance of

the rain makes it difficult to remove with existing methods. This

figure is best viewed in electronic form.

the glass and using a large aperture to produce small depth-

of-field. However, in practice it can be hard to move the

camera sufficiently close, and aperture control may not be

available on smartphone cameras or webcams. Correspond-

ingly, many shots with smartphone cameras through dirty or

rainy glass still have significant artifacts, as shown in Fig. 9.

In this paper we instead restore the image after capture,

treating the dirt or rain as a structured form of image noise.

Our method only relies on the artifacts being spatially com-

pact, thus is aided by the rain/dirt being in focus — hence

the shots need not be taken close to the window.

Image denoising is a very well studied problem, with

current approaches such as BM3D [3] approaching theo-

retical performance limits [13]. However, the vast majority

of this literature is concerned with additive white Gaussian

noise, quite different to the image artifacts resulting from

dirt or water drops. Our problem is closer to shot-noise re-

moval, but differs in that the artifacts are not constrained to

single pixels and have characteristic structure. Classic ap-

proaches such as median or bilateral filtering have no way

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.84

633

of leveraging this structure, thus cannot effectively remove

the artifacts (see Section 5).

Our approach is to use a specialized convolutional neural

network to predict clean patches, given dirty or clean ones

as input. By asking the network to produce a clean output,

regardless of the corruption level of the input, it implicitly

must both detect the corruption and, if present, in-paint over

it. Integrating both tasks simplifies and speeds test-time op-

eration, since separate detection and in-painting stages are

avoided.

Training the models requires a large set of patch pairs

to adequately cover the space inputs and corruption, the

gathering of which was non-trivial and required the devel-

opment of new techniques. However, although training is

somewhat complex, test-time operation is simple: a new

image is presented to the neural network and it directly out-

puts a restored image.

1.1. Related Work
Learning-based methods have found widespread use in

image denoising, e.g. [23, 14, 16, 24]. These approaches

remove additive white Gaussian noise (AWGN) by building

a generative model of clean image patches. In this paper,

however, we focus on more complex structured corruption,

and address it using a neural network that directly maps cor-

rupt images to clean ones; this obviates the slow inference

procedures used by most generative models.

Neural networks have previously been explored for de-

noising natural images, mostly in the context of AWGN,

e.g. Jain and Seung [10], and Zhang and Salari [21]. Al-

gorithmically, the closest work to ours is that of Burger

et al. [2], which applies a large neural network to a range of

non-AWGN denoising tasks, such as salt-and-pepper noise

and JPEG quantization artifacts. Although more challeng-

ing than AWGN, the corruption is still significantly easier

than the highly variable dirt and rain drops that we address.

Furthermore, our network has important architectural dif-

ferences that are crucial for obtaining good performance on

these tasks.

Removing localized corruption can be considered a form

of blind inpainting, where the position of the corrupted re-

gions is not given (unlike traditional inpainting [5]). Dong

et al. [4] show how salt-and-pepper noise can be removed,

but the approach does not extend to multi-pixel corruption.

Recently, Xie et al. [20] showed how a neural network can

perform blind inpainting, demonstrating the removal of text

synthetically placed in an image. This work is close to ours,

but the solid-color text has quite different statistics to natu-

ral images, thus is easier to remove than rain or dirt which

vary greatly in appearance and can resemble legitimate im-

age structures. Jancsary et al. [11] denoise images with a

Gaussian conditional random field, constructed using deci-

sion trees on local regions of the input; however, they too

consider only synthetic corruptions.

Several papers explore the removal of rain from images.

Garg and Nayar [7] and Barnum et al. [1] address air-

borne rain. The former uses defocus, while the latter uses

frequency-domain filtering. Both require video sequences

rather than a single image, however. Roser and Geiger

[17] detect raindrops in single images; although they do not

demonstrate removal, their approach could be paired with

a standard inpainting algorithm. As discussed above, our

approach combines detection and inpainting.

Closely related to our application is Gu et al. [9], who

show how lens dust and nearby occluders can be removed,

but their method requires extensive calibration or a video se-

quence, as opposed to a single frame. Wilson et al. [19] and

Zhou and Lin [22] demonstrate dirt and dust removal. The

former removes defocused dust for a Mars Rover camera,

while the latter removes sensor dust using multiple images

and a physics model.

2. Approach
To restore an image from a corrupt input, we predict a

clean output using a specialized form of convolutional neu-

ral network [12]. The same network architecture is used

for all forms of corruption; however, a different network is

trained for dirt and for rain. This allows the network to tai-

lor its detection capabilities for each task.

2.1. Network Architecture
Given a noisy image x, our goal is to predict a clean

image y that is close to the true clean image y∗. We

accomplish this using a multilayer convolutional network,

y = F (x). The network F is composed of a series of layers

Fl, each of which applies a linear convolution to its input,

followed by an element-wise sigmoid (implemented using

hyperbolic tangent). Concretely, if the number of layers in

the network is L, then

F0(x) = x

Fl(x) = tanh(Wl ∗ Fl−1(x) + bl), l = 1, ..., L− 1

F (x) =
1

m
(WL ∗ FL−1(x) + bL)

Here, x is the RGB input image, of size N × M × 3. If

nl is the output dimension at layer l, then Wl applies nl

convolutions with kernels of size pl × pl × nl−1, where pl
is the spatial support. bl is a vector of size nl containing the

output bias (the same bias is used at each spatial location).

While the first and last layer kernels have a nontrivial

spatial component, we restrict the middle layers (2 ≤ l ≤
L − 1) to use pl = 1, i.e. they apply a linear map at each

spatial location. We also element-wise divide the final out-

put by the overlap mask1 m to account for different amounts

of kernel overlap near the image boundary. The first layer

1 m = 1K ∗1I , where 1K is a kernel of size pL×pL filled with ones,

and 1I is a 2D array of ones with as many pixels as the last layer input.

634

Figure 2. A subset of rain model network weights, sorted by l2-

norm. Left: first layer filters which act as detectors for the rain

drops. Right: top layer filters used to reconstruct the clean patch.

uses a “valid” convolution, while the last layer uses a “full”

(these are the same for the middle layers since their kernels

have 1× 1 support).

In our system, the input kernels’ support is p1 = 16, and

the output support is pL = 8. We use two hidden layers (i.e.

L = 3), each with 512 units. As stated earlier, the middle

layer kernel has support p2 = 1. Thus, W1 applies 512

kernels of size 16× 16× 3, W2 applies 512 kernels of size

1× 1× 512, and W3 applies 3 kernels of size 8× 8× 512.

Fig. 2 shows examples of weights learned for the rain data.

2.2. Training

We train the weights Wl and biases bl by minimizing the

mean squared error over a dataset D = (xi, y
∗
i) of corre-

sponding noisy and clean image pairs. The loss is

J(θ) =
1

2|D|
∑

i∈D
||F (xi)− y∗i ||2

where θ = (W1, ...,WL, b1, ..., bL) are the model parame-

ters. The pairs in the dataset D are random 64 × 64 pixel

subregions of training images with and without corruption

(see Fig. 4 for samples). Because the input and output ker-

nel sizes of our network differ, the network F produces a

56 × 56 pixel prediction yi, which is compared against the

middle 56× 56 pixels of the true clean subimage y∗i .

We minimize the loss using Stochastic Gradient Descent

(SGD). The update for a single step at time t is

θt+1 ← θt − ηt(F (xi)− y∗i)
T ∂

∂θ
F (xi)

where ηt is the learning rate hyper-parameter and i is a ran-

domly drawn index from the training set. The gradient is

further backpropagated through the network F .

We initialize the weights at all layers by randomly draw-

ing from a normal distribution with mean 0 and standard de-

viation 0.001. The biases are initialized to 0. The learning

rate is 0.001 with decay, so that ηt = 0.001/(1+5t ·10−7).
We use no momentum or weight regularization.

(a) (b) (c)

Figure 3. Denoising near a piece of noise. (a) shows a 64×64 im-

age region with dirt occluders (top), and target ground truth clean

image (bottom). (b) and (c) show the results obtained using non-

convolutional and convolutionally trained networks, respectively.

The top row shows the full output after averaging. The bottom

row shows the signed error of each individual patch prediction for

all 8 × 8 patches obtained using a sliding window in the boxed

area, displayed as a montage. The errors from the convolutionally-

trained network (c) are less correlated with one another compared

to (b), and cancel to produce a better average.

2.3. Effect of Convolutional Architecture
A key improvement of our method over [2] is that we

minimize the error of the final image prediction, whereas [2]

minimizes the error only of individual patches. We found

this difference to be crucial to obtain good performance on

the corruption we address.

Since the middle layer convolution in our network has

1 × 1 spatial support, the network can be viewed as first

patchifying the input, applying a fully-connected neural

network to each patch, and averaging the resulting output

patches. More explicitly, we can split the input image x
into stride-1 overlapping patches {xp} = patchify(x),
and predict a corresponding clean patch yp = f(xp) for

each xp using a fully-connected multilayer network f . We

then form the predicted image y = depatchify({yp}) by

taking the average of the patch predictions at pixels where

they overlap. In this context, the convolutional network F
can be expressed in terms of the patch-level network f as

F (x) = depatchify({f(xp) : xp ∈ patchify(x)}).
In contrast to [2], our method trains the full network F ,

including patchification and depatchification. This drives

a decorrelation of the individual predictions, which helps

both to remove occluders as well as reduce blur in the fi-

nal output. To see this, consider two adjacent patches y1
and y2 with overlap regions yo1 and yo2, and desired output

y∗o . If we were to train according to the individual predic-

tions, the loss would minimize (yo1 − y∗o)
2 + (yo2 − y∗o)

2,

the sum of their error. However, if we minimize the er-

ror of their average, the loss becomes
(
yo1+yo2

2 − y∗o
)2

=
1
4 [(yo1 − y∗o)

2 + (yo2 − y∗o)
2 + 2(yo1 − y∗o)(yo2 − y∗o)].

635

The new mixed term pushes the individual patch errors in

opposing directions, encouraging them to decorrelate.

Fig. 3 depicts this for a real example. When trained at the

patch level, as in the system described by [2], each predic-

tion leaves the same residual trace of the noise, which their

average then maintains (b). When trained with our convolu-

tional network, however, the predictions decorrelate where

not perfect, and average to a better output (c).

2.4. Test-Time Evaluation

By restricting the middle layer kernels to have 1×1 spa-

tial support, our method requires no synchronization un-

til the final summation in the last layer convolution. This

makes our method natural to parallelize, and it can eas-

ily be run in sections on large input images by adding

the outputs from each section into a single image output

buffer. Our Matlab GPU implementation is able to restore a

3888 × 2592 color image in 60s using a nVidia GTX 580,

and a 1280× 720 color image in 7s.

3. Training Data Collection
The network has 753,664 weights and 1,216 biases

which need to be set during training. This requires a large

number of training patches to avoid over-fitting. We now

describe the procedures used to gather the corrupted/clean

patch pairs2 used to train each of the dirt and rain models.

3.1. Dirt

To train our network to remove dirt noise, we gener-

ated clean/noisy image pairs by synthesizing dirt on im-

ages. Similarly to [9], we also found that dirt noise was

well-modeled by an opacity mask and additive component,

which we extract from real dirt-on-glass panes in a lab

setup. Once we have the masks, we generate noisy images

according to

I ′ = pαD + (1− α)I

Here, I and I ′ are the original clean and generated noisy

image, respectively. α is a transparency mask the same size

as the image, and D is the additive component of the dirt,

also the same size as the image. p is a random perturbation

vector in RGB space, and the factors pαD are multiplied

together element-wise. p is drawn from a uniform distri-

bution over (0.9, 1.1) for each of red, green and blue, then

multiplied by another random number between 0 and 1 to

vary brightness. These random perturbations are necessary

to capture natural variation in the corruption and make the

network robust to these changes.

To find α and αD, we took pictures of several slide-

projected backgrounds, both with and without a dirt-on-

2The corrupt patches still have many unaffected pixels, thus even with-

out clean/clean patch pairs in the training set, the network will still learn to

preserve clean input regions.

Figure 4. Examples of clean (top row) and corrupted (bottom row)

patches used for training. The dirt (left column) was added syn-

thetically, while the rain (right column) was obtained from real

image pairs.

glass pane placed in front of the camera. We then solved

a linear least-squares system for α and αD at each pixel;

further details are included in the supplementary material.

3.2. Water Droplets
Unlike the dirt, water droplets refract light around them

and are not well described by a simple additive model. We

considered using the more sophisticated rendering model

of [8], but accurately simulating outdoor illumination made

this inviable. Thus, instead of synthesizing the effects of

water, we built a training set by taking photographs of mul-

tiple scenes with and without the corruption present. For

corrupt images, we simulated the effect of rain on a window

by spraying water on a pane of anti-reflective MgF2-coated

glass, taking care to produce drops that closely resemble

real rain. To limit motion differences between clean and

rainy shots, all scenes contained only static objects. Further

details are provided in the supplementary material.

4. Baseline Methods
We compare our convolutional network against a non-

convolutional patch-level network similar to [2], as well as

three baseline approaches: median filtering, bilateral fil-

tering [18, 15], and BM3D [3]. In each case, we tuned

the algorithm parameters to yield the best qualitative per-

formance in terms of visibly reducing noise while keeping

clean parts of the image intact. On the dirt images, we used

an 8 × 8 window for the median filter, parameters σs = 3
and σr = 0.3 for the bilateral filter, and σ = 0.15 for

BM3D. For the rain images, we used similar parameters,

but adjusted for the fact that the images were downsampled

by half: 5 × 5 for the median filter, σs = 2 and σr = 0.3
for the bilateral filter, and σ = 0.15 for BM3D.

636

Original Our Output

Original Ours Nonconv Median

Figure 5. Example image containing dirt, and the restoration produced by our network. Note the detail preserved in high-frequency areas

like the branches. The nonconvolutional network leaves behind much of the noise, while the median filter causes substantial blurring.

5. Experiments
5.1. Dirt

We tested dirt removal by running our network on pic-

tures of various scenes taken behind dirt-on-glass panes.

Both the scenes and glass panes were not present in the

training set, ensuring that the network did not simply mem-

orize and match exact patterns. We tested restoration of

both real and synthetic corruption. Although the training

set was composed entirely of synthetic dirt, it was represen-

tative enough for the network to perform well in both cases.

The network was trained using 5.8 million examples

of 64 × 64 image patches with synthetic dirt, paired with

ground truth clean patches. We trained only on examples

where the variance of the clean 64 × 64 patch was at least

0.001, and also required that at least 1 pixel in the patch

had a dirt α-mask value of at least 0.03. To compare to [2],

we trained a non-convolutional patch-based network with

patch sizes corresponding to our convolution kernel sizes,

using 20 million 16× 16 patches.

5.1.1 Synthetic Dirt Results
We first measure quantitative performance using synthetic

dirt. The results are shown in Table 1. Here, we generated

test examples using images and dirt masks held out from the

training set, using the process described in Section 3.1. Our

convolutional network substantially outperforms its patch-

based counterpart. Both neural networks are much better

PSNR Input Ours Nonconv Median Bilateral BM3D

Mean 28.93 35.43 34.52 31.47 29.97 29.99

Std.Dev. 0.93 1.24 1.04 1.45 1.18 0.96

Gain - 6.50 5.59 2.53 1.04 1.06

Table 1. PSNR for our convolutional neural network, nonconvolu-

tional patch-based network, and baselines on a synthetically gen-

erated test set of 16 images (8 scenes with 2 different dirt masks).

Our approach significantly outperforms the other methods.

than the three baselines, which do not make use of the struc-

ture in the corruption that the networks learn.

We also applied our network to two types of artificial

noise absent from the training set: synthetic “snow” made

from small white line segments, and “scratches” of random

cubic splines. An example region is shown in Fig. 6. In

contrast to the gain of +6.50 dB for dirt, the network leaves

these corruptions largely intact, producing near-zero PSNR

gains of -0.10 and +0.30 dB, respectively, over the same

set of images. This demonstrates that the network learns to

remove dirt specifically.

5.1.2 Dirt Results
Fig. 5 shows a real test image along with our output and the

output of the patch-based network and median filter. Be-

cause of illumination changes and movement in the scenes,

we were not able to capture ground truth images for quanti-

tative evaluation. Our method is able to remove most of the

corruption while retaining details in the image, particularly

around the branches and shutters. The non-convolutional

637

(a) (b) (c) (d)

Figure 6. Our dirt-removal network applied to an image with (a)

no corruption, (b) synthetic dirt, (c) artificial “snow” and (d) ran-

dom “scratches.” Because the network was trained to remove dirt,

it successfully restores (b) while leaving the corruptions in (c,d)

largely untouched. Top: Original images. Bottom: Output.

network leaves many pieces of dirt behind, while the me-

dian filter loses much detail present in the original. Note

also that the neural networks leave already-clean parts of

the image mostly untouched.

Two common causes of failure of our model are large

corruption, and very oddly-shaped or unusually colored cor-

ruption. Our 16× 16 input kernel support limits the size of

corruption recognizable by the system, leading to the for-

mer. The latter is caused by a lack of generalization: al-

though we trained the network to be robust to shape and

color by supplying it a range of variations, it will not recog-

nize cases too far from those seen in training. Another in-

teresting failure of our method appears in the bright orange

cones in Fig. 5, which our method reduces in intensity —

this is due to the fact that the training dataset did not contain

any examples of such fluorescent objects. More examples

are provided in the supplementary material.

5.2. Rain
We ran the rain removal network on two sets of test data:

(i) pictures of scenes taken through a pane of glass on which

we sprayed water to simulate rain, and (ii) pictures of scenes

taken while it was actually raining, from behind an initially

clean glass pane. Both sets were composed of real-world

outdoor scenes not in the training set.

We trained the network using 6.5 million examples of

64 × 64 image patch pairs, captured as described in Sec-

tion 3.2. Similarly to the dirt case, we used a variance

threshold of 0.001 on the clean images and required each

training pair to have at least 1 pixel difference over 0.1.

5.2.1 Water Droplets Results
Examples of our network removing sprayed-on water is

shown in Fig. 7. As was the case for the dirt images, we

were not able to capture accurate ground truth due to illu-

mination changes and subject motion. Since we also do not

have synthetic water examples, we analyze our method in

this mode only qualitatively.

Figure 8. Shot from the rain video sequence (see supplementary

video), along with the output of our network. Note each frame is

processed independently, without using any temporal information

or background subtraction.

As before, our network is able to remove most of the

water droplets, while preserving finer details and edges rea-

sonably well. The non-convolutional network leaves behind

additional droplets, e.g. by the subject’s face in the top im-

age; it performs somewhat better in the bottom image, but

blurs the subject’s hand. The median filter must blur the

image substantially before visibly reducing the corruption.

However, the neural networks mistake the boltheads on the

bench for raindrops, and remove them.

Despite the fact that our network was trained on static

scenes to limit object motion between clean/noisy pairs, it

still preserves animate parts of the images well: The face

and body of the subject are reproduced with few visible ar-

tifacts, as are grass, leaves and branches (which move from

wind). Thus the network can be applied to many scenes

substantially different from those seen in training.

5.2.2 Real Rain Results
A picture taken using actual rain is shown in Fig. 8. We

include more pictures of this time series as well as a video

in the supplementary material. Each frame of the video was

presented to our algorithm independently; no temporal fil-

tering was used. To capture the sequence, we set a clean

glass pane on a tripod and allowed rain to fall onto it, tak-

ing pictures at 20s intervals. The camera was placed 0.5m

behind the glass, and was focused on the scene behind.

Even though our network was trained using sprayed-on

water, it was still able to remove much of the actual rain.

The largest failures appear towards the end of the sequence,

when the rain on the glass is very heavy and starts to ag-

glomerate, forming droplets larger than our network can

handle. Although this is a limitation of the current ap-

proach, we hope to address such cases in future work.

Lastly, in addition to pictures captured with a DSLR, in

Fig. 9 we apply our network to a picture taken using a smart-

phone on a train. While the scene and reflections are pre-

served, raindrops on the window are removed, though a few

small artifacts do remain. This demonstrates that our model

is able to restore images taken by a variety of camera types.

638

Original Our Output

Original Ours Nonconv Median

Original Our Output

Original Ours Nonconv Median

Figure 7. Our network removes most of the water while retaining image details; the non-convolutional network leaves more droplets

behind, particularly in the top image, and blurs the subject’s fingers in the bottom image. The median filter blurs many details, but still

cannot remove much of the noise.

639

6. Summary
We have introduced a method for removing rain or dirt

artifacts from a single image. Although the problem appears

underconstrained, the artifacts have a distinctive appearance

which we are able to learn with a specialized convolutional

network and a carefully constructed training set. Results on

real test examples show most artifacts being removed with-

out undue loss of detail, unlike existing approaches such as

median or bilateral filtering. Using a convolutional network

accounts for the error in the final image prediction, provid-

ing a significant performance gain over the corresponding

patch-based network.

The quality of the results does however depend on the

statistics of test cases being similar to those of the training

set. In cases where this does not hold, we see significant

artifacts in the output. This can be alleviated by expanding

the diversity and size of the training set. A second issue is

that the corruption cannot be much larger than the training

patches. This means the input image may need to be down-

sampled, e.g. as in the rain application, leading to a loss of

resolution relative to the original.

Although we have only considered day-time outdoor

shots, the approach could be extended to other settings such

as indoor or night-time, given suitable training data. It could

also be extended to other problem domains such as scratch

removal or color shift correction.

Our algorithm provides the underlying technology for a

number of potential applications such as a digital car wind-

shield to aid driving in adverse weather conditions, or en-

hancement of footage from security or automotive cam-

eras in exposed locations. These would require real-time

performance not obtained by our current implementation.

High-performance low-power neural network implementa-

tions such as the NeuFlow FPGA/ASIC [6] would make

real-time embedded applications of our system feasible.

Acknowledgements
The authors would like to thank Ross Fadeley and Dan

Foreman-Mackay for their help modeling, as well as David

W. Hogg and Yann LeCun for their insight and suggestions.

Financial support for this project was provided by Microsoft

Research and NSF IIS 1124794 & IIS 1116923.

References
[1] P. Barnum, S. Narasimhan, and K. Takeo. Analysis of rain and snow in fre-

quency space. IJCV, 86(2):256–274, 2010. 2

[2] H. Burger, C. Schuler, and S. Harmeling. Image denoising: Can plain neural
networks compete with BM3D? In CVPR, 2012. 2, 3, 4, 5

[3] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising with
block-matching and 3D filtering. In Proc. SPIE Electronic Imaging, 2006. 1, 4

[4] B. Dong, H. Ji, J. Li, Z. Shen, and Y. Xu. Wavelet frame based blind image
inpainting. Applied and Comp’l Harmonic Analysis, 32(2):268–279, 2011. 2

[5] M. Elad and M. Aharon. Image denoising via learned dictionaries and sparse
representation. In CVPR, 2006. 2

[6] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. LeCun.
NeuFlow: A runtime reconfigurable dataflow processor for vision. In IEEE
Workshop on Embedded Computer Vision (ECV at CVPR), 2011. 8

[7] K. Garg and S. Nayar. Detection and removal of rain from videos. In CVPR,
pages 528–535, 2004. 2

Figure 9. Top: Smartphone shot through a rainy window on a train.

Bottom: Output of our algorithm.

[8] J. Gu, R. Ramamoorthi, P. Belhumeur, and S. Nayar. Dirty Glass: Rendering
Contamination on Transparent Surfaces. In Eurographics, Jun 2007. 4

[9] J. Gu, R. Ramamoorthi, P. Belhumeur, and S. Nayar. Removing Image Artifacts
Due to Dirty Camera Lenses and Thin Occluders. SIGGRAPH Asia, Dec 2009.
2, 4

[10] V. Jain and S. Seung. Natural image denoising with convolutional networks. In
NIPS, 2008. 2

[11] J. Jancsary, S. Nowozin, and C. Rother. Loss-specific training of non-parametric
image restoration models: A new state of the art. In ECCV, 2012. 2

[12] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning ap-
plied to document recognition. Proc. IEEE, 86(11):2278–2324, Nov 1998. 2

[13] A. Levin and B. Nadler. Natural image denoising: Optimality and inherent
bounds. In CVPR, 2011. 1

[14] B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set:
A strategy employed by V1? Vision Research, 37(23):3311–3325, 1997. 2

[15] S. Paris and F. Durand. A fast approximation of the bilateral filter using a signal
processing approach. In ECCV, pages IV: 568–580, 2006. 4

[16] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli. Image denoising
using scale mixtures of Gaussians in the wavelet domain. IEEE Trans Image
Processing, 12(11):1338–1351, November 2003. 2

[17] M. Roser and A. Geiger. Video-based raindrop detection for improved image
registration. In ICCV Workshop on Video-Oriented Object and Event Classifi-
cation, Kyoto, Japan, September 2009. 2

[18] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In
CVPR, 1998. 4

[19] R. G. Willson, M. W. Maimone, A. E. Johnson, and L. M. Scherr. An optical
model for image artifacts produced by dust particles on lenses. In i-SAIRAS,
volume 1, 2005. 2

[20] J. Xie, L. Xu, and E. Chen. Image denoising and inpainting with deep neural
networks. In NIPS, 2012. 2

[21] S. Zhang and E. Salari. Image denosing using a neural network based non-linear
filter in the wavelet domain. In ICASSP, 2005. 2

[22] C. Zhou and S. Lin. Removal of image artifacts due to sensor dust. In CVPR,
2007. 2

[23] S. C. Zhu and D. Mumford. Prior learning and gibbs reaction-diffusion. PAMI,
19(11):1236–1250, 1997. 2

[24] D. Zoran and Y. Weiss. From learning models of natural image patches to whole
image restoration. In ICCV, 2011. 2

640

