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Abstract

Image colors are biased by the color of the prevailing
illumination. As such the color at pixel cannot always be
used directly in solving vision tasks from recognition, to
tracking to general scene understanding. Illuminant esti-
mation algorithms attempt to infer the color of the light in-
cident in a scene and then a color cast removal step dis-
counts the color bias due to illumination. However, despite
sustained research since almost the inception of computer
vision, progress has been modest. The best algorithms —
now often built on top of expensive feature extraction and
machine learning — are only about twice as good as the sim-
plest approaches.

This paper, in effect, will show how simple moment based
algorithms — such as Gray-World — can, with the addition of
a simple correction step, deliver much improved illuminant
estimation performance. The corrected Gray-World algo-
rithm maps the mean image color using a fixed (per cam-
era) 3x3 matrix transform. More generally, our moment ap-
proach employs 1st, 2nd and higher order moments - of col-
ors or features such as color derivatives - and these again
are linearly corrected to give an illuminant estimate. The
question of how to correct the moments is an important one
yet we will show a simple alternating least-squares training
procedure suffices. Remarkably, across the major datasets
— evaluated using a 3-fold cross validation procedure — our
simple corrected moment approach always delivers the best
results (and the performance increment is often large com-
pared with the prior art). Significantly, outlier performance
was found to be much improved.

1. Introduction

There are 3 important physical variables to consider in
image formation. First, there are the objects in the scene and
their surface reflectance properties. Second we must con-
sider the illumination or illuminations under which a scene
is viewed. Lastly, the spectral characteristics of the sensors
are an important variable. The interaction of surface, light
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and sensor can be elucidated in a single simple equation:

pk:/E(A)S()\)Rk()\)d)\ keR,G,B (1)

Equation (1) teaches that the light with spectral power dis-
tribution E(\) strikes a surface which reflects light on a
per wavelength basis according to its reflectance function
S(A). Then, an integrated response is calculated for each
of 3 sensor classes Ry (A) (usually, short-, medium- and
long-wave sensitive mechanisms or R, G and B). The inte-
gral is taken over the visible spectrum w. Remarkably, this
equation though simple, is a pretty accurate — first order —
model of image formation; i.e. if you can measure the spec-
tral functions involved then evaluating (1) numerically, syn-
thetically generating an R, G and B, will often predict the
actual camera response rather well[48]. Of course (1) does
not account for phenomena such as specular highlights[43]
or surface roughness[38].

In Figure 1 we illustrate the color constancy problem.
The task of an illuminant estimation algorithm is to infer
that the prevailing light on the left is bluish and then the blue
cast is removed to give the correct (i.e. the image conveys
our percept of the color of the scene) image in the middle.
Notice the green leaves now look green. Of the two con-
stituent parts of the color constancy problem — removing
the color cast and illuminant estimation — illuminant esti-
mation is the most difficult. Indeed, if the illuminant color
is known (or correctly estimated) then it is straightforward
to discount[16, 47, 20].

In illuminant estimation it suffices to solve for the R, G,
B response for the illuminant defined as:

of = [ EWROaN 2)

Often[7], but not always[39], (2) is used in tandem with

the RGB model of image formation. Here, the surface re-
sponse is written as:

ot = [ SR 3)



Figure 1. Left shows raw camera image, middle after cor-
recting for the correct illuminant and right when the Gray-
World estimate is used. Left and middle panels from
http://en.wikipedia.org/wiki/Color_balance

and the response to light and surface combined is calculated
as:

pkE S = pEpS  (4: RGB model of image formation)

Even when (4) is found not to apply directly, it generally
holds in some sensor basis (for a linear combination of the
sensors[13]). Given the simple structure in (4) it is now
apparent why color cast removal is straightforward. Given
an accurate estimate of the RGB of the light we divide pkE’S
by pF to recover p3. The color of the surface, by definition,
is the color of the surface seen under white light.

Assuming a single illuminant color across a scene and a
corresponding image with N pixels then there are 3N + 3
unknowns (NN surfaces and 1 light) but only the 3N RGB
knowns. Actually, it turns out it is impossible to recover
the magnitude of the RGB of the light[17] (a bright scene
dimly lit is indistinguishable from a bright light impinging
on darker surfaces) so the number of unknowns reduces to
3N + 2. Even though the degree of ill-posedness for il-
luminant estimation is markedly less than for some vision
problems (e.g. shape from shading and optical flow [4]), it
has proven to be a very hard problem to solve.

The simplest algorithm for illuminant estimation is the
so-called Gray-World approach. Here the illuminant esti-
mate is simply the average[9] (or weighted average [27]) of
the Red, Green and Blue image planes. The approach is
called Gray-World since if the average surface color in the
scene is gray then the mean RGB must — following from
the RGB model of image formation — be the same color
as the illuminant. Intuitively, the Gray-World algorithm
has some merit since if we have an image under a white
light (R=G=B=1) and move to a chromatic light (a yellow
light, R=1, G=.8, B=.1) then clearly the mean image color
[ur pc pp] is mapped to [ur .8ug -1ug], ie. the first
order moments are strongly biased by illumination). Under
a very chromatic yellow light the mean of the image will
almost certainly be yellow.

However, typical lights are less chromatic and range
from bluish to whitish to yellowish (and on occasion into
the oranges). When light is less chromatic it is less obvious
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that the mean RGB correlates directly with the light color.
Indeed, when there a single predominant surface color in a
scene — e.g. the leaves in Figure 1 — then this greeness will
be reflected in the average RGB. Discounting the illumi-
nant by dividing by the mean must, incorrectly, map green
toward gray (as shown in the right panel of Figure 1).

In this paper we propose that the 1st order moments are
useful (indeed intrinsic) but that they need to be corrected to
provide a useful illuminant estimate. Our corrected Gray-
World is simple and it is simply written as:

ﬁEQﬁCH

(5)

Here p denotes the image average RGB vector. C'is a

3 x 3 matrix and ﬁE is the corrected illuminant estimate. We
consider two extensions to (5). First we allow the estimated
illuminant to be a correction from 1st, 2nd and higher order
moments. In the general case we have M simple statistical
measures and these are related to our illuminant estimate
using a M x 3 correction matrix. Crucially, 2nd and higher
moments include ‘cross’ color channel terms. In concert
with previous work[46] we also find that the moments cal-
culated for a ‘color edge’ image to be particularly useful for
illuminant estimation. Of course, as a second extension, we
can also use (5) to ‘correct’ illuminant estimates of other ex-
isting algorithms using a correction matrix. However, this
latter modification is not an important focus of this paper
(not least because we found it did not deliver as good esti-
mation as the moment-based-approach we develop here).

The question of how we solve for C' is important. It is
our contention that because we cannot recover the inten-
sity of the light we must incorporate this reality in the so-
lution strategy. Indeed, we must solve for C' that best maps
the orientation of ;1 toward the orientation of p¥. Signifi-
cantly, this changes the optimisation from a simple closed
form least-squares problem to an alternating least-squares
procedure.

Sections 2, 3 and 4 respectively provides the background
to our work, describes our corrected moment approach and
presents experimental validation. The paper concludes in
section 5.

2. Related work

The majority of the statistical moments previously pro-
posed as illuminant estimates can be summarised in a single

equation[46]:
P 1/p
(15 )

Here, we have an RGB color image where the camera re-
sponse at image location x is the 3-vector p(x). The image

6" p(x)

oxn

~F
—n,p,0

(6)




can be smoothed with a Gaussian averaging filter with stan-
dard deviation o pixels and the smoothed image is differen-
tiated with an order n differential operator (O order means
no differentiation). We then take the absolute Minkowski
p-norm average[22] over the whole image. This results in a
singe illuminant estimate ﬁE . Note k is an unknown scalar
drawing attention to the fact that it is not possible to recover
the true magnitude of the prevailing illuminants. A simple
extension to (6) is to allow arbitrary linear filters to be used
(rather than differential operators)[11].

Building on top of simple summary statistics we can add
additional calibration information such as the gamut of pos-
sible camera RGBs under a known reference light[24] and
the gamut of typical light colors [17]. In gamut mapping
illuminant estimation the idea is to find a plausible illumi-
nant estimate which — after the color cast has been removed
e.g. by dividing by the RGB of the light — returns a set of
image colors inside the reference gamut. Gamut mapping
tends not to return a single estimate but rather a set of plau-
sible lights. A single answer is typically selected by using
a statistical argument[18]. Gamut mapping can also work
with color derivatives[31].

Using only an illuminant constraint it is also possible to
reformulate (6) to find the plausible illuminant RGB which
best summarises the colors (or color derivatives) in an im-
age in the Minkoswki sense[23]. More simply, it is useful
to know what the average image color actually is if it is not
gray. In ‘Database Gray world’ the illuminant estimate is
defined to be a fixed diagonal matrix transform from the
mean RGB[1]. We effectively generalise this method in the
next section.

A natural extension to the gamut idea is to add prob-
ablilities into the mix. If we have access to information
about either or both the likelihood of RGBs under differ-
ent lights or the likelihood of the lights themselves then
we can use a maximum likelihood approach to illuminant
estimation[8, 19]. Of course it is also possible to formulate
illuminant estimation using other parametric formulae such
as KL-divegence[41] or in a voting framework[42]

As machine learning has emerged as an important tool
for computer vision in general so too it has proven useful in
the context of illuminant estimation. Exemplar approaches
including selecting algorithms to apply based on an under-
lying analysis of the spatial characteristics in a scene[29, 5]
and the recent idea of finding useful features in images in an
illuminant invariant way and then using knowledge of how
these features can be mapped to a reference light to solve
for the illuminant[35]. Learning based strategies work very
well and they are leading the field in terms of the illuminant
estimation performance they can deliver.

Wider surveys of color constancy — which include re-
views of physics-based approaches[21, 45] are not consid-
ered here — can be found in [1, 2, 32]. Equally, our algo-

1906

rithm is developed for ‘general’ scenes and so do not con-
sider approaches predicated on identifying known objects —
e.g. faces — in images[37, 6].

3. Moment based illuminant estimation

The premise of our method, simply stated, is that statisti-
cal moments are useful for illuminant estimation. A simple
worked example illustrates our approach (and also why it
shows promise). Following the protocol set forth in[1] we
randomly selected 8 reflectances (from a database of 1995
reflectances) and then chose 1 illuminant from a set of 102
typical lights and with the CIE XYZ color matching curves
used (1) to generate an entirely synthetic image. We then
repeated this experiment 1000 times. An XYZ triplet corre-
lates with a camera RGB and the x- and y-chromaticities are
defined as x=X/(X+Y+Z) and y=Y/(X+Y+Z). This chro-
maticity representation, because it also relates to how we
see[49], is a convenient way to talk about color in an inten-
sity independent way ( if we know x and y we can recover
[X 'Y Z] up to an unknown scalar). Usefully, we can assign
known colors to each point in the chromaticty diagram as
shown in the top panel of Fig. 2.

In the middle panel in blue crosses we show the chro-
maticities of the Gray-World illuminant estimates (mean
colors) for our 1000 Mondrians. The dotted black convex
hull, delimits the set of all chromaticities for all 1000 of our
Mondrians. The colors outside the black line correspond to
‘aperture’ colors: colors that can be made from quite narrow
band lights but which do not occur in nature as light reflect-
ing from surfaces. In red circles we also plot the chromatic-
ities for the actual 102 illuminants. It is remarkable how
given the real-estate that the image colors might occupy —
anywhere in the black convex hull — that the means lie so
close to the actual plausible illuminants. For this test, the
mean appears to correlate roughly with the actual illumi-
nant.

Let us now solve for a 3x3 correction matrix C' that maps
each of our 1000 mean rgb triples as close as possible to the
correct rgb in a intensity independent way (see next 3.3 for
how we do this). The actual correction matrix we use is
shown top right of the bottom panel of Fig. 2. We now draw
the same diagram as before but map the means of the Mon-
drians by our correction matrix. The blue crosses are the
corrected-mean chromaticities. Notice how the corrected
means now sit almost entirely above the set of plausible an-
swers to illuminant estimation. Even if the corrected Gray-
World estimate is wrong it must correspond to a ‘plausible’
illuminant estimate.

3.1. Color moments which scale with intensity

There are many moments which have been used in il-
luminant estimation. These include the average of the R,
G and B channels or the average of the absolute values of
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Figure 2. Top: visulization of the colors we can see in the CIE xy

chromaticity dugram. Middle and bottom show the Gray-World
estimates before and after a 3x3 matrix correction.

derivative images. The simple average has the important ad-
vantage that as the image data scales — e.g. due to a change
of exposure or light brightness — so the moments scale too:

E(apr) = aB(pk) (7)

This is a crucial property in the context of illuminant es-
timation as it implies two images related by a single overall
scale factor will return the same illuminant estimate.

Now, let us consider extending the basic corrected Gray-
World algorithm to apply to a larger set of moments. While
there are many moment-type expansions of multidimen-
sional data (e.g. variance and covariance) it is important to
maintain this ‘intensity scaling’ property. It is natural to use
the p-norms as our moments since clearly E(apg)(l/ P =
aB(p})/P). To these per-channel moments it is natural
add ‘cross moments’. The six 2nd order cross moments of
an image comprise:
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E(G2)0'5
E(RG)O'5

E(B2)O'5

E((RQ))O.S
. E(RB)O.S

E(GB)"®
(8)
We can of course compute higher order moments too.
For a monomial of degree M and 3 variables the number of
terms (moments) is equal to %ﬁ (10 terms of order 3 and
15 order 4). The total number of moments if we calculate
all moments of the Mth order and below is equal to

(m+2)!

_ M
#moments = ¥, _; ol

(9)
and each mth order term is written as

Pu = B EBL 1 Crotw) (10)
u+v+w=m , u,v,w >0

In this paper we use the notation an to denote a row
vector comprising m moments According to (9) there are
respectively 3, 9 and 19 moments for all the monomials of
orders less than equal to 1, 2 or 3. We remark that there are
other ways of calculating moments which scale with inten-
sity. In analogy to Hu-type spatial moments combinations
such as [34], E(R*)/E(G?) also scale linearly with inten-

sity.
3.2. Corrected-moment illuminant estimation

The general corrected-moment approach to illuminant
estimation is calculated as:
)
[P

(11)

where C,, «3 denotes a m x 3 regression matrix. Given
Equation (11) it is apparent why we wish moments to scale
with image intensity. Since if p! — ap! then our illu-

]t = Z_):nCmXS

minant estimate is clearly a,éE , i.e. the magnitude of the
estimate changes but its orientation remains fixed. The mo-
ments that are used can also be calculated from an RGB im-
age post linear filtering (e.g. using a first and second deriva-
tives). In section 4 we find that the moments of 1st order
x- and y- derivative images (we call these color edge mo-
ments) to be particularly useful.

3.3. Finding an intensity independent correction
matrix

Let us assume we have the correct answer, the rgb of the
light, for a set of [V images. We place each rgb in the row
of a N x 3 light matrix L. For each of the corresponding
images we calculate their moment vectors and place these
moments in the rows of the matrix P. P has N rows and
may contain 3, 9 or 19 columns for color or color edge mo-
ments Remembering that we cannot solve for the magnitude
of the illuminant, we propose to find C' by minimizing:



min XN ||d; P,C — Ly||? (12)
C.d;
where d; is a scalar and P; is the ith row of P and L; is the
ith row of L. We solve for the M X 3 correction matrix C'.
Of course we might achieve a slightly better fit by adding in
an additional 3 x 1 offset and minimizing:
min SN | PiC — L; + o| |2 (13)

At first glance (13) would seem to imply that we know
something about the likely magnitude of our illuminant es-
timates. However, without loss of generality we could nor-
maize each L; so it is intensity independent (e.g. divide by
the sum of the vector components). Further, d; could be
chosen to make the corrected moments also sum to 1. In
this case o would be a final offset correction in chromaticity
space and would be perfectly valid and sensible even given
the caveat of intensity indeterminacy.

To minimize (12) we propose a simple alternating least-
squares solution strategy. Below, D is the N x N diagonal
matrix where the ith diagonal component is d;.

1. initialise: D° = Z (the identity matrix) and i = 1

2. C" = [D*1P]* L (where ™ denotes the ‘pre multiply-

ing’ pseudo inverse AT = [AtA] "1 AY)

. D;'.j = L;[P;C*]" (here we find the best scalar using
the ‘post-multiplying’ pseudo inverse [v]T = %)

4. i=1i+1, goto 2 until convergence

While this solution strategy is simple it does not guar-
antee an optimal global solution. However, it empirically
appears to work well. Further, allthough the pseudo inverse
in step 2, for 3rd order moments, requires the inversion of
a 19x19 matrix, we found all our data to be well enough
conditioned that regularisation was not needed.

Alternating least-squares is only one way to solve our
optimisation. In fact we can solve for all unknowns si-
multaneously if (12) is recast as a homogeneous regression
(though, with much poorer estimation results). We also note
that we might find C' through search and perhaps also min-
imize an alternate error measure (e.g. the mean angular er-
ror). Further robust solution strategies could be applied.

3.4. Corrected moments vs committee-based color
constancy

If we compiled row vector p¢ using the outputs from 2 or
more illuminant estimation al_gon'thms then equation (11)
already appears in the literature[10]. However, that work
differs our own in 4 important respects. First, in [10], the
correction matrix C' is solved by direct least-squares i.e. it
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is assumed that the magnitude of the illuminant vectors esti-
mated by the various algorithms are in sync and are directly
relateable to the correct answer (this is not the case). In-
terestingly, the authors acknowledge this point and set forth
a method of mapping chromaticity estimates to the chro-
maticity of the correct answer. In doing so they lose one de-
gree of freedom per algorithm and for the 3-algorithm case
reduce 9 numbers to 6. This loss of information speaks to
the second important difference. Because all our moments
scale linearly with intensity, when we are given a 9-vector
of moments, only 1 degree of freedom is lost due to light
intensity indeterminacy. Third, our moment approach has
access to ‘cross terms’ and these are neither used nor envi-
aged in[10]. Yet, employing them is important to achieve
the best estimation results. Last, and dependent on these
first three observations, the antecedent work only delivers a
modest improvement for illuminant estimation. In contrast
our corrected moment approach delivers a step change in
performance.

4. Experiments

In Figure 3 we show images drawn form 4 image
data sets often used to evaluate lluminant estimation al-
gorithms. Our experiments focus mainly of the so-called
‘Color Checker’ data set[26]. Not only is this image set the
one most commonly used it is large (568 images) and so it
is plausible we have enough data to solve for our correction
matrices. The Color checker dataset also has the advan-
tage that, as reprocessed by Shi and Funt[44], it is linear.
The more processed[40] (i.e. the more pleasing an image
looks) the more unknown variables affect an image and so
the harder illuminant estimation becomes.

Figure 3. Top left an image from the Color Checker data set, Top
right from the gray-ball data set, bottom left an example from a
set of HDR images and bottom right from the SFU object set of
images.

To corroborate our results we also evaluate our method
on the hdr datasets[25] , the grayball[15] image set and the
SFU object data set[3]. For each data set, we try and give
a summary of the performance data that is available and
always include the best prior-art result known to us.



Algorithm Mean | Median 95%
quantile

GrayWorld 6.4 6.3 11.3
Shades of Gray (p=4) 4.9 4 11.9
GrayEdge (n=2,0=1,p=1) | 5.1 4.4 11
Gamut Mapping 4.2 23 14.1
Spatio-Spectral Statistics 34 2.6 9.52
Natural Image Statistics 4.2 3.1 11.7
Exemplar-Based 3.1 23 -

3 Color Moments 4.0 33 8.9
3 Edge Moments 3.0 22 7.2
9 Color Moments 3.6 2.8 9.1
9 Edge Moments 29 2.1 7.1
19 Color Moments 3.5 2.6 8.6
19 Edge Moments 2.8 2.0 6.9

Table 1. Performance statistics for the Color Checker dataset

4.1. Colour checker data set

In this dataset every one of the 568 images contains a
Macbeth Color checker[36], from which the ground truth
illuminant color is measured (the checker is removed when
estimating the illuminant). In Table 1 we recapitulate a
range of experimental results reported by Gijensij[32, 28]
and for which the illuminant estimates are also avail-
able to the community. Results are presented for Gray-
World, Shades of Gray[22], Gray-Edge[46], Spectral-spatio
correlations[12], and Natural Image statistics[30]. To these
we add the results of Exemplar based color constancy[35]
since it is, to our knowledge, the leading current algorithm.
We use the angular error in degrees between the actual RGB
of the light as our error measure. For this dataset we show
the median[33], mean and 95% quantile errors summary
statistics.

For all our data sets we use 3-fold cross validation and
in all cases we minimize (12). For all datasets we have the
option- in analogy to the Minkowski norm approach[23] -
of raising our image data to a power. We find that a linear
power term works well for the Color Checker dataset (i.e.
not gamma encoded).

We remark that for this dataset and the others evaluated
later, color edge moments seem more useful in estimating
the illuminant than moments calculated for colors alone.
We also note that while there seems to be significant benefit
in accuracy in moving from 1st to 2nd order moments there
is little benefit to using 3rd order moments. Notice also that
the 95% quantile statistics are substantially improved com-
pared to the prior art.

Remarkably a 3x3 matrix correction of the simple grey-
edge algorithm provides illuminant estimation that out per-
forms all other algorithms we are aware of.

The reader will be curious to learn the significance of
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Algorithm Mean | Median | Max
GrayWorld 7.9 7.3 30
MaxRGB (post-blur) 6.3 3.9 28
Constrained Minkowski | 5.8 3.6 -
3 Edge Moments 4.0 3.2 17.3
9 Edge Moments 35 2.7 12

Table 2. Performance statistics for the HDR dataset

modelling the unknown intensity of the light in the optimi-
sation set forth in (12) since, in section 3.4, we claimed it
was a matter of some importance. Well, to check, we re-ran
our experiments and fixed the scaling terms as 1 through-
out (the method becomes closed form and no iteration is
needed). For the 9 color edge moments, the mean, median
and 95% quantile error were found to respectively equal 3.6,
2.8 and 9.1 degrees of angular error (compared with 2.9, 2.1
and 7.1 before). Ignoring the variability of intensity leads
to respectively 24%, 33% and 28% higher errors. A signifi-
cant performance impediment was found for whatever order
of moments were employed.

4.2. HDR data set

This data set has been compiled by Funt and Shi[25] and
contains 105 scenes in HDR format. Like the color checker
data set a reference chart is placed in every scene so the
light color can be measured (again, this is removed for test-
ing the illuminant estimation algorithms). The HDR data set
was designed specifically so that image data was not clipped
as it is known that clipping introduces uncertainty into illu-
minant estimation. Indeed, the MaxRGB algorithm (where
the estimate is the max response in each color channel) is, in
particular, known to perform less well in the face of exten-
sive clipping. Max RGB works surprisingly well on the clip
free dataset[25] and Max RGB calculated post blurring the
image delivered very good performance. The idea of lin-
ear filtering to help illuminant estimation is also proposed
in [14]. A slight increment in performance from post-blur
MaxRGB was recently reported for this dataset[23]. .

In Table 2 we show the results (mean, median and
max) for Gray-World, post-blur MaxRGB, the constrained
Minkowski method and our algorithm (running directly on
the linear data and evaluated using a 3-fold cross-validation
procedure). Notice that our corrected 3 Color Edge mo-
ments method works much better than the antecedent al-
gorithms and our corrected 9 moment approach works bet-
ter still. Significantly the maximum error is very much im-
proved — it is reduced by almost 2/3).

4.3. Grayball

This data set is so-called as every image has a gray ball,
bottom right, from which the ground truth RGB of the light
is measured (and then removed when illuminant estimation



Algorithm Median
GrayWorld 7.3
GrayEdge 4.1
Constrained Minkowski 3.81
3 Color-Edge Moments 3.8
9 Color- Edge Moments 33

Table 3. Performance statistics for the grayball dataset

Algorithm Mean | Median | Max
GreyWorld 9.8 7.0 373
GreyEdge (n=1,0=5,p=7) | 5.6 32 31.6
Gamut Mapping 3.6 2.1 27.1
3 Edge-Moments 4.1 3.6 14.1
9 Edge-Moments 2.6 2.0 12.9

Table 4. Performance statistics for the SFU dataset

algorithms are tested). Here we use the 10-image per clip
(150 image) data set compiled by Van der Weijer et al[46].
As before, we use a 3-fold cross validation of the image
set. Here, we raise all images to the power of 2 (to approx-
imately un-do the display gamma) before we estimate our
moment correction matrix.

In Table 3 we report the median results from Gray-world,
Gray-edge (with optimal parameters) — only median statis-
tics are in the journal reference[46] — and the constrained
Minkowski algorithm[23]. We also show the results for our
3- and 9-color edge moment corrected approach.

4.4. SFU object dataset

The SFU image set contains linear images of 31 objects
viewed under, up to, 11 lights (321 images in total). In
rows 1 and 2 of Table 4 we show the results for Gray-World
and Gray-Edge (with optimal parameters selected). Gamut
mapping is the leading algorithm for this dataset. Its perfor-
mance statistics are reported in the third row of the table.

For the ‘Color checker’, ‘HDR’ and *Gray Ball’ datasets
we found good performance was delivered when moments
were calculated from the linear (checker and HDR) or lin-
earized (Grey Ball) images. Here we found it advantageous
to first raise each image to the power of 2 to give brighter
colors slightly greater weight. The performance of our 3-
and 9-color edge moment approach (where again using a 3-
fold cross-validation procedure is used) is shown in the last
two rows of the table. The 9-color edge moments delivers
the best performance observed to date on this data set.

5. Conclusion

This paper unveils a very surprising result: linearly cor-
recting simple Gray-World or Gray-Edge moments leads to
illuminant estimates which are more accurate than those
delivered by almost all other illuminant estimation algo-
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rithms including those which use much more sophisticated
and complex reasoning. Further, the extended method - that
corrects a larger set (say 9) statistical moments - delivers
the very best estimation performance we are aware of. The
novelty of our approach lies not only in the idea of correct-
ing moments but also in the moments we use (and that they
scale with intensity) and how we solve for the correction
matrix. It is universally accepted that we cannot recover the
absolute intensity of the light and so, we argue, this inten-
sity indeterminacy must be incorporated in any optimisation
scheme.

That a simple corrected moment approach works so well
presents an opportunity for the wider field. Indubitably,
some of the innovations developed over the last few decades
to improve upon Gray-World might also further extend the
corrected-moment approach to illuminant estimation.
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