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Abstract

Hyperspectral imaging is beneficial to many applica-
tions but current methods do not consider fluorescent effects
which are present in everyday items ranging from paper, to
clothing, to even our food. Furthermore, everyday fluores-
cent items exhibit a mix of reflectance and fluorescence. So
proper separation of these components is necessary for an-
alyzing them. In this paper, we demonstrate efficient sep-
aration and recovery of reflective and fluorescent emission
spectra through the use of high frequency illumination in
the spectral domain. With the obtained fluorescent emis-
sion spectra from our high frequency illuminants, we then
present to our knowledge, the first method for estimating
the fluorescent absorption spectrum of a material given its
emission spectrum. Conventional bispectral measurement
of absorption and emission spectra needs to examine all
combinations of incident and observed light wavelengths.
In contrast, our method requires only two hyperspectral im-
ages. The effectiveness of our proposed methods are then
evaluated through a combination of simulation and real
experiments. We also demonstrate an application of our
method to synthetic relighting of real scenes.

1. Introduction
Hyperspectral reflectance data are beneficial to many ap-

plications including but not limited to archiving for cultural

e-heritage [1], medical imaging [2], and also color relight-

ing of scenes [3]. As a result, many methods for acquir-

ing the spectral reflectance of scenes have been proposed

[4, 5, 6, 7, 8, 9]. Despite the success of these methods, they

have all made the assumption that fluorescence is absent

from the scene. However, fluorescence does frequently oc-

cur in many objects. In fact, Barnard shows that fluorescent

surfaces are present in 20% of randomly constructed scenes

[10]. This is a significant proportion of scenes that have not

been considered by past methods.

Another important point is that reflective and fluorescent

components behave very differently under different illumi-

nants [3, 11]. Thus to accurately predict the color of objects,

(a) White light (b) Reflection (c) Fluorescence

Figure 1. (a) The scene captured under white light. (b) The recov-

ered reflective component. (c) The recovered fluorescent compo-

nent.

separate modeling of all spectral properties of both reflec-

tive and fluorescent components is essential. Specifically,

when a reflective surface is illuminated by incident light, it

reflects back light of the same wavelength. Fluorescent sur-

faces on the other hand, first absorb incident light and then

emit at longer wavelengths. This wavelength shifting prop-

erty is known as Stokes shift [12, 13] and the question of

which wavelengths of light are absorbed and which wave-

lengths are emitted are defined by the fluorescent surface’s

absorption and emission spectrum (Figure 2).

The goal of this paper is to accurately recover the full

spectral reflective and fluorescent components of an entire

scene. Typical fluorescent objects exhibit both reflectance

and fluorescence (Figure 1(a)). So the question of how these

components can be accurately separated also needs to be

addressed. In this paper, we show that the reflective and flu-

orescent spectra of a scene can be efficiently separated and

measured through the use of high frequency illumination in

the spectral domain. Our approach only assumes that the

absorption spectrum of the fluorescent material is a smooth

function with respect to the frequency of the lighting in the

spectral domain. With this assumption, it becomes pos-

sible to separate reflective and fluorescent components by

just two hyperspectral images taken under a high frequency

illumination pattern and its shifted version in the spectral

domain. We show that the reflective and fluorescent emis-

sion spectra can then be fully recovered by our separation

method.

What is interesting is that an analogy can be drawn be-

tween our approach and that of Nayar et al. [14]. Nayar et
al. devised a way to separate direct and indirect compo-

nents using high frequency lighting patterns in the spatial
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domain. We find that reflectance and fluorescence in the

spectral domain can be thought of as similar to direct and in-

direct illumination in the spatial domain. More specifically,

the reflective component may be thought of as a direct com-

ponent in the spectral domain because incident light is re-

flected back at the same wavelength. The fluorescent com-

ponent on the other hand, does not emit light at the same

wavelength as incident light. This is because it always shifts

incident light from shorter wavelengths to longer ones. So

one can think of it as indirect lighting in the spectral do-

main.

In addition to recovering reflectance and fluorescent

emission spectra, we also make the observation that mate-

rials with similar emission spectra tend to have similar ab-

sorption spectra as well. Using this observation, we devise

a method for taking the recovered emission spectra from

high frequency lighting and estimate their corresponding

absorption spectra. There are well established methods for

measuring fluorescent spectra [15]. For example, bispectral

methods are effective approaches that measure fluorescence

in terms of incoming and outgoing wavelengths but only

work for a single point in space. Thus making the capture

of entire scenes very labor and time intensive.

In summary, our contributions are that we devise a

method for efficient separation and recovery of full re-

flectance and fluorescent emission spectra and we present,

to our knowledge, the first method for estimating the ab-

sorption spectrum of a material given its emission. Since

we completely recover the reflective and fluorescent emis-

sion and absorption spectra of the scene, we also show our

ability to accurately predict the relighting of scenes under

novel lighting.

2. Related Work
As noted earlier, there have been a number of papers on

recovering the spectral reflectance of scenes [4, 5, 6, 7, 8, 9].

Despite the effectiveness of these methods for spectral re-

flectance capture, they all do not take the effects of fluores-

cence into account.

Unfortunately, not accounting for fluorescence can have

a detrimental affect on color accuracy. For example, John-

son and Fairchild [3] showed that considering fluorescence

can dramatically improve color renderings. Hullin et al.
[16] showed the importance of modeling and rendering of

reflective-fluorescent materials using their bidirectional re-

flectance and reradiation distribution functions (BRRDF).

Besides color rendering, the observation of fluorescent

emissions on an object’s surface has also been applied to

photometric stereo for shape reconstruction [17, 18]. As

mentioned earlier, Barnard et al. concluded that fluorescent

surfaces are present in 20% of randomly constructed scenes

[10]. Thus the presence of fluorescence is significant and

warrants attention.
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Figure 2. An example of absorption and emission spectra.

In practice, fluorescent objects typically exhibit both re-

flectance and fluorescence so the joint occurrence of these

phenomenon in scenes needs to be considered. Some meth-

ods in the literature have given this issue attention. Alter-

man et al. [19] separated the appearance of fluorescent dyes

from a mixture by unmixing multiplexed images. Zhang

and Sato [11] derived an independent component analysis

based method to estimate the RGB colors of reflectance

and fluorescent emission but not their spectral distributions.

They also did not estimate the excitation spectra of the fluo-

rescent component and so, cannot predict intensity changes

in fluorescent emission due to different illumination spec-

tra. Lee et al. [20] provided a mathematical description for

fluorescent processes and recovered the additive spectra of

reflective and fluorescent components but did not separate

them. Tominaga et al. [21] estimated fluorescent emission

spectra using multispectral images taken under two ordinary

light sources. A limitation is that they assumed fluorescent

emissions to be constant for all absorption wavelengths and

thus cannot accurately predict the brightness of fluorescent

components under varying illumination. Finally, none of

these methods fully recover all reflective and fluorescent

spectral components of scenes.

As mentioned earlier, one of the key challenges in

our problem is the separation of reflective and fluorescent

components from composite objects exhibiting both phe-

nomenon. There have been a number of methods in the

literature on separating components in images. For exam-

ple, Farid and Adelson [22] used independent components

analysis to separate reflections on glass and a painting on

the side of the glass opposite the observer. Nayar et al. [23]

separated specular reflections from diffuse reflections. As

mentioned earlier, there is an analogy between our spectral

domain work and the spatial domain work of Nayar et al.
[14]. In this work, we show the effectiveness of using high

frequency lighting in the spectral domain, not the spatial

domain, for our separation and spectral recovery problem.

3. Separation of Reflection and Fluorescence
3.1. Reflection and Fluorescence Models

We begin with a brief review of how reflective-

fluorescent materials are modeled [11]. Since reflection and

fluorescence have different physical behaviors, they need to

be described by different models.

The radiance of a reflective surface depends on incident

light and its reflectance. The observed radiance of an ordi-
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nary reflective surface at wavelength λ is computed as

pr(λ) = l(λ)r(λ) (1)

where l(λ) is the spectrum of the incident light at wave-

length λ and r(λ) is the spectral reflectance of the surface

at wavelength λ.

The observed radiance of a pure fluorescent surface de-

pends on the incident light, the material’s absorption spec-

trum, and its emission spectrum. Fluorescence typically ab-

sorbs light at some wavelengths and emits them at longer

wavelengths. The way this works is that when incident light

hits a fluorescent surface, the surface’s absorption spectrum

will determine how much of the light is absorbed. Some

of the absorbed energy is then released in the form of an

emission spectrum at longer wavelengths than the incident

light. The remainder of the absorbed energy is released as

heat. Figure 2 illustrates an example of the absorption and

emission spectra for a fluorescent material over the visible

spectrum.

Let l(λ′) represent the intensity of the incident light at

wavelength λ′, the observed spectrum of a pure fluorescent

surface [11] at wavelength λ is described in terms of its ab-

sorption and emission spectra as

pf (λ) =

(∫
l(λ

′
)a(λ

′
)dλ

′
)
e(λ) (2)

where a(λ
′
) and e(λ) represent the absorption and emis-

sion spectrum. Equation (2) 1can be rewritten with k =(∫
l(λ

′
)a(λ

′
)dλ

′
)

as pf (λ) = ke(λ), which means that

the shape or the distribution of the emitted spectrum is con-

stant, but the scale k of the emitted spectrum changes under

different illuminations. Namely, the radiance of the fluores-

cent emission changes under different illuminations, but its

color stays the same regardless of illumination color.

From Equations (1) and (2), the radiance of a reflective-

fluorescent surface point is

p(λ) = l(λ)r(λ) +

(∫
l(λ

′
)a(λ

′
)dλ

′
)
e(λ). (3)

3.2. Separation Using High Frequency Illumination

In our experiments, we use high frequency illumination

defined in the spectral domain for separating reflective and

fluorescent components. Let us start with simple binary illu-

minants to describe the key idea of our method. We denote

a high-frequency illumination pattern shown in Figure 3(b)

by l1(λ) and its complement shown in Figure 3(c) by l2(λ).
The illuminants are defined such that when l1(λ) has inten-

sity, l2(λ) has no intensity and vice versa. Let us consider

a certain wavelength λ1 where l1(λ1) = 1 and l2(λ1) = 0.

1This model assumes that there is little overlap between the absorption

and emission spectra. As far as we examined fluorescent materials in the

McNamara and Boswell fluorescent spectral dataset, such overlap tends to

be small, and therefore the model can approximate the real model well.

Figure 3. An example of a captured scene (a). When a reflective-

fluorescent point in the scene is lit by the illuminant (b), which is

a high frequency binary illumination pattern in the wavelength do-

main, each lit wavelength includes both reflective and fluorescent

components while the unlit wavelengths have only the fluorescent

component. (c) shows its complement.

Figure 4. Sinusoidal illuminant patterns. The blue and pink solid

lines denote two illumination patterns. There is a phase shift be-

tween them.

Since reflection preserves wavelength, we obtain

p1(λ1) = r(λ1) +
1

2
k′e(λ1),

p2(λ1) =
1

2
k′e(λ1).

(4)

Here, we assume that
∫
l1(λ

′)a(λ′)dλ′ =∫
l2(λ

′)a(λ′)dλ′ =
∫
a(λ′)dλ′/2 = k′/2. That is,

the absorptions due to our high-frequency illumination

patterns are the same. We will show later in this section this

is true when the absorption a(λ′) is smooth with respect

to the frequency of the illumination patterns in the spectral

domain as is similarly discussed for the spatial domain by

Nayar et al.[14]. With the same absorptions under the two

illuminants, we obtain the reflectance and emission spectra

at λ1 as
r(λ1) = p1(λ1)− p2(λ1),

k′e(λ1) = 2p2(λ1).
(5)

We obtain the reflectance and emission spectra at λ2 where

l1(λ2) = 0 and l2(λ2) = 1 in a similar manner.

In our work, we use high frequency sinusoidal illumi-

nants (Figure 4) in the spectral domain to achieve the same

effect as the binary lighting patterns because they are both

more practical and fit into the theory of our framework. The

illuminants can be represented as l1(λ) = α+β cos (2πflλ)
and l2(λ) = α + β cos (2πflλ+ φ), where fl is the fre-

quency of illumination. The radiance of a surface under
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these two sinusoidal illuminants can be described as,

p1(λ) = l1(λ)r(λ) + k1e(λ),

p2(λ) = l2(λ)r(λ) + k2e(λ),

kn =

∫
ln(λ

′
)a(λ

′
)dλ

′
.

(6)

Here, assuming that kn are constant for l1 and l2, that is

to say, k1 = k2 = k, the reflectance r(λ) and fluorescent

emission ke(λ) can be recovered as

r(λ) =
p1(λ)− p2(λ)

l1(λ)− l2(λ)
,

ke(λ) = p1(λ)− p1(λ)− p2(λ)

l1(λ)− l2(λ)
l1(λ).

(7)

We now discuss how to satisfy the condition k1 = k2 =
k. In the following, we consider the requirements for our il-

luminants based on the Nyquist sampling theorem [24] and

on an analysis of the McNamara and Boswell fluorescence

spectral dataset [25].

The spectrum of sinusoidal illumination l1(λ) in the fre-

quency domain [24] then becomes

L1(f) =
1

2
[βδ(f − fl) + 2αδ(f) + βδ(f + fl)] (8)

where δ(f) is the Dirac delta function. Let an(λ) =
ln(λ)a(λ) {n = 1, 2}. Let A(f) and An(f) denote the

Fourier transform of a(λ)and an(λ), respectively. Since the

product ln(λ)a(λ) in the spectral domain corresponds to a

convolution in its Fourier domain, the Fourier transform of

a1(λ) is

A1(f) =
1

2
[βA(f − fl) + 2αA(f) + βA(f + fl)] (9)

That is, a replication of the Fourier transform of the original

signal A(f) is centered around +fl and 0 and −fl.
The Fourier transform of l1(λ) and l2(λ) with the phase

offset φ are related as L2(f) = eiφL1(f), and thus the fre-

quency spectrum of a2(λ) is

A2(f) =
1

2
[βeiφA(f − fl) + 2αA(f)

+ βe−iφA(f + fl)]
(10)

From the definition of the Fourier transform An(f) =∫ +∞
−∞ an(λ)e

−i2πfλdλ, substituting f = 0 into this

definition, we obtain An(0) =
∫ +∞
−∞ an(λ)dλ =∫ +∞

−∞ ln(λ)a(λ)dλ = kn. Therefore, kn corresponds to

An(f)’s zero-frequency component. This tells us that we

need to satisfy the condition A1(0) = A2(0) so that k1 =
k2 = k. In Equations (9) and (10), substituting f = 0,

we obtain A1(0) = 1
2 [βA(−fl) + 2αA(0) + βA(fl)] and

A2(0) =
1
2 [βe

iφA(−fl) + 2αA(0) + βe−iφA(fl)]. Let us

define fa as a(λ)’s maximum frequency. Then A(−fl) and

A(fl) become zero for fl > fa. This means that we ob-

tain A1(0) = A2(0) = 2αA(0) for fl > fa to achieve

k1 = k2 = k. Thus, the frequency of the illuminants in

the wavelength domain fl needs to be greater than a(λ)’s
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Figure 5. The percentage of absorption spectra in the McNamara

and Boswell fluorescence spectral dataset where k1 = k2 given

different sampling intervals. The smaller the sampling interval,

the more absorption spectra satisfy our requirement that k1 = k2.

maximum frequency or bandwidth fa.

We now discuss the maximum frequency of a(λ) on the

McNamara and Boswell fluorescence spectral dataset. We

examine the maximum frequency of all 509 materials in

the dataset, and obtain the maximum frequency of each ab-

sorption spectrum while retaining 99% of the energy1. The

mean of the maximum frequency for all absorption spectra

in the dataset is 1/45.9[nm−1] and its standard deviation

is 1/24.1[nm−1]. As mentioned previously, the illumina-

tion frequency fl needs to be greater than a(λ)’s maximum

frequency fa, and the period is the reciprocal of the fre-

quency, so the period of the illumination – which we call

“sampling interval” – in the spectral domain needs to be less

than the minimum sampling interval of all absorption spec-

tra of fluorescent materials in the scene. Figure 5 shows

the percentage of absorption spectra in the McNamara and

Boswell fluorescence spectral dataset that satisfy the condi-

tion k1 = k2 under different sampling intervals. We set the

period of the illumination as 40nm in our experiments due

to limitations of our light source. However, this is still less

than the mean minimum sampling interval of all absorption

spectra (45.9nm) found in the dataset and works well in

practice.

4. Estimating the Absorption Spectra
In this section, we will explain how we estimate the ab-

sorption spectrum of a material from its emission spectrum

that was obtained using our method in Section 3.2.

The basic observation behind our method is that fluo-

rescent materials with similar emission spectra tend to have

similar absorption spectra. From this observation, we derive

a method that uses a dictionary of known emission and ab-

sorption spectrum pairs to estimate an absorption spectrum

from a given novel emission.

Specifically, let ê be an emission spectrum whose ab-

sorption spectrum â is unknown. Let {ej} be a dictionary

of emission spectra and {aj} be the known corresponding

absorption spectra. Representing all these spectra as vec-

tors, we first determine the linear combination of {ej} to

1Since there exists some noise in the original spectra, ignoring some

high frequency components is reasonable.
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Figure 6. All test errors sorted in ascending order. 67% of cases

were below the average error of 0.012.
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Figure 7. Examples of estimated absorption spectra and their root-

mean-square-errors.

reconstruct ê by solving

ê =
∑

j
wjej (11)

The weights {wj} are then used to calculate the corre-

sponding excitation spectrum â by

â =
∑

j
wjaj (12)

Let {e′
j} and {a′

j} denote the subsets of {ej} and {aj}
whose corresponding weights {wj �= 0}. Note that using

the same {wj} in Equation (11) and (12) requires the lin-

ear combination be kept between the subspaces spanned by

{e′
j} and {a′

j}. We assert that an emission spectrum can

typically be well-represented by a sparse basis. To show

this, we perform leave-one-out cross-validation where for

each emission spectrum in the McNamara and Boswell flu-

orescence spectral dataset, we set ê as the testing sample

and use the remaining emission spectra in {ej} as the dic-

tionary. We find that any given emission ê can on average

be well represented by 10 emission spectra from the dic-

tionary, which is very sparse compared to the size of the

whole dictionary, Thus ê can considered to live in a low-

dimensional sub-space spanned by {e′
j}. Therefore, to min-

imize the number of basis vectors used from {ej}, we seek

to reconstruct ê by sparse weights w through l1-norm min-

imization [26, 27, 28], according to

min ‖w‖1 s.t. wj ≥ 0 and
∥∥∥ê−∑

j
wjej

∥∥∥2
2
≤ ε

(13)

To test the accuracy of our method, we chose a sub-

set of materials from the McNamara and Boswell fluo-

rescence spectral dataset where both the emission and ab-

sorption spectra were present in the visible range (400 -

720 nm). This resulted in a collection of 183 materials.

We then performed leave-one-out cross-validation using our

method and the 183 emission and absorption spectra. The

estimated absorption spectrum was then compared against

the ground truth using the root-mean-square-error (RMSE).
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Figure 8. Evaluate the separation method on pink sheet captured.
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Figure 9. Recovered reflectance r(λ), fluorescent emission e(λ)
and absorption a(λ) spectra of the red and yellow sheets.

The ground truth and estimation were also normalized for

scale by setting them to be unit length vectors.

In our results, we obtained an average error of 0.012.

See Figure 6 for a plot of all the errors for the 183 esti-

mated absorption spectra. We did find a minority of cases
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with high errors that violated our assumption that similar

emission spectra map to the same absorption spectra. De-

spite this, the majority of materials fit our assumption and

absorption is accurately estimated as can be seen in Figure

7. We also note that absorption only determines the scale of

the emission and not the color of the material. Thus some

minor loss in accuracy for estimated absorption does not

have a dramatic effect on the predicted color of scenes.

5. Experimental results
In our experiments, we first demonstrate the importance

of high frequency illumination using quantitative results on

the recovery of reflectance and fluorescent spectra from real

scenes. We then present visual examples of separated re-

flective and fluorescent components as RGB images. In ad-

dition, we use our recovered spectra to accurately relight

fluorescent scenes.

5.1. Experimental Setup

With the exception of our near UV light, for all other

illuminants in our experiments, we use a Nikon Equal-

ized Light Source (ELS). The ELS is a programmable light

source that can produce light with arbitrary spectral pat-

terns from 400 nm to 720 nm. We use a PR-670 Spec-

traScan Spectroradiometer to collect ground truth spectra.

For our proposed method, we use a hyperspectral camera

(EBA Japan NH-7) to capture whole scenes.

Figure 8(a) shows two high frequency illuminants pro-

duced by the ELS. Under these illuminants, we use the

hyperspectral camera to capture the scene at wavelengths

where either one of these illuminants have peaks so that the

difference between l1 and l2 would be large and allow for

reliable separation.

5.2. Quantitative Evaluation

In this section, we first compare quantitative results on

recovering the reflective and fluorescent spectral compo-

nents using high and low frequency light on fluorescent col-

ored sheets. Figure 8(a) and (b) show spectral distributions

of the high frequency and low frequency illuminants used

in our experiments.

In Figure 8(c)-(f) we see the recovered reflectance and

fluorescent emission spectra of a pink fluorescent sheet un-

der different illuminants. The recovered reflectance (Fig-

ure 8(c)) and fluorescent emission spectra (Figure 8(e))

under the high frequency illuminants approximate ground

truth well. When the object is captured under the low fre-

quency illuminants, the recovered reflectance (Figure 8(d))

and fluorescent emission (Figure 8(f)) have obvious errors.

Figure 9(a)-(d) shows the recovered reflectance and fluores-

cent emission spectra of red and yellow fluorescent sheets

under the high frequency illuminants. All these results

demonstrate that our method is able to recover reflectance

(a) Illuminant l1 (b) Near UV light

(c) Green light (d) Blue light

(e) Relighted (green light) (f) Relighted (blue light)

(g) Relighted (reflectance

only)

(h) Relighted (reflectance

only)

Figure 10. The relighting results for a scene.

and fluorescent emission spectra efficiently under high fre-

quency illuminants.

In Figure 9(e) and (f), the recovered fluorescent absorp-

tion spectra of the red and yellow fluorescent sheets are

shown. Due to limitations of our capture equipment, the

ground truth could not be accurately measured in the short

wavelength region in cases where absorption was relatively

weak. This issue can be seen in the the shorter wavelengths

for the red sheet (Figure 9(e)). However, we can see that the

recovered absorption spectra and the ground truth measure-

ments still agree quite well.

5.3. Visual Separation and Relighting Results

In this section, we show results for the separation of

reflectance and fluorescence as well as accurate relighting

performance. Our original results are in the form of hyper-

spectral images but to easily visualize them, we have con-

verted them all to RGB images in the paper.

The first scene is an image consisting of colored sheets

on a complex colored background. The scene is taken under

two high frequency illuminants. Since the images under il-

luminants l1 and l2 are similar in the RGB images, we only

show the scene taken under illuminant l1 in Figure 10(a).

Figure 1(b) and (c) are the corresponding recovered re-

flective and fluorescent components. The complex colored

background sheet only has ordinary reflectance so its colors
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(a) Illuminant l1 (b) Recovered pr (c) White light (d) Green light (e) Relighted (f) Relighted(reflectance)

(g) Illuminant l2 (h) Recovered pf (i) Near UV light (j) Blue light (k) Relighted (l) Relighted (reflectance)

Figure 11. The separation and relighting results for color chart.

in the recovered reflective component (Figure 1(b)) is the

same as those seen under white light (Figure 1(a)). Look-

ing at the letter “C” that we cut from the pink sheet in Fig-

ure 1(a), we see that the recovered fluorescent component

appears to be red. The measured emission spectrum of the

pink sheet (Figure 8(e)) indicates that the color of the flu-

orescent component is indeed red. In addition, the scene

captured under near UV light (Figure 10(b)) shows nearly

pure fluorescent emission colors that also agree with our re-

sults. We note that since each fluorescent material has its

own absorption spectrum, the value for
(∫

l(λ
′
)a(λ

′
)dλ

′
)

is different between fluorescent materials captured under

near UV light and high frequency light. As a result, under

different lighting, fluorescent objects can exhibit different

scales of emission, but the chromaticities match well un-

der near UV light (Figure 10(b)) and recovered fluorescent

component (Figure 1(c)). Similar separation results can be

found in Figures 11, 12 and 13(b) and (h).

Since our method is able to recover the full reflectance,

fluorescent emission, and fluorescent absorption spectra for

an entire scene, we are also able to relight scenes. Figure 10

shows that real scenes can be accurately relighted using our

method. The scenes are captured under green (Figure 10(c))

and blue (Figure 10(e)) illuminants. The corresponding re-

lighting results are shown in Figure 10(d) and (f). We can

see that, the relighting results are very similar to the ground

truths (Figure 10(c) and (e)), and demonstrate the effective-

ness of our method to recover the reflectance and fluores-

cent emission and absorption spectra. When the scene is

relighted using the reflective component only, (Figure 10(g)

and (h)), this leads to many fluorescent materials appearing

as black, especially under blue light (Figure 10(h)). Simi-

lar relighting results can be found in Figures 11, 12 and 13

(d)(e)(f)(j)(k)(l).

6. Conclusion

In this paper, we presented a method to simultaneously

recover the reflectance and fluorescent emission spectra of

an entire scene by using high frequency illumination in the

spectral domain. Afterward, we presented, to our knowl-

edge, the first method for estimating the fluorescent absorp-

tion spectrum of a material given its emission spectrum.

Through our method, we also showed that similar emission

spectra tend to map to similar absorption spectra. The effec-

tiveness of the proposed method was successfully demon-

strated with experiments using real data taken by the spec-

troradiometer and camera. In the future, we plan to recover

the reflectance and fluorescent emission and absorption by

using an RGB camera without the need for hyperspectral

imaging.
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