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Abstract

Recent advances in computer vision and machine learning
suggest that a wide range of problems can be addressed
more appropriately by considering non-Euclidean geome-
try. In this paper we explore sparse dictionary learning
over the space of linear subspaces, which form Riemannian
structures known as Grassmann manifolds. To this end, we
propose to embed Grassmann manifolds into the space of
symmetric matrices by an isometric mapping, which en-
ables us to devise a closed-form solution for updating a
Grassmann dictionary, atom by atom. Furthermore, to han-
dle non-linearity in data, we propose a kernelised version
of the dictionary learning algorithm. Experiments on sev-
eral classification tasks (face recognition, action recogni-
tion, dynamic texture classification) show that the proposed
approach achieves considerable improvements in discrim-
ination accuracy, in comparison to state-of-the-art meth-
ods such as kernelised Affine Hull Method and graph-
embedding Grassmann discriminant analysis.

1. Introduction
Linear subspaces of R

d can be considered as the core

of many inference algorithms in computer vision and ma-

chine learning. For example, several state-of-the-art meth-

ods for matching videos or image sets model given data by

subspaces [9, 11, 24]. Auto regressive and moving average

models, which are typically employed to model dynamics in

spatio-temporal processing, can also be expressed as linear

subspaces [24]. More applications of linear subspaces in

computer vision include, but are not limited to, chromatic

noise filtering [23], biometrics [20], and domain adapta-

tion [8].

Despite their wide applications and appealing properties

(e.g., the set of all reflectance functions produced by Lam-

bertian objects lies in a linear subspace), subspaces lie on

a special type of Riemannian manifold, namely the Grass-

mann manifold, which makes their analysis very challeng-

ing. This paper tackles and provides efficient solutions to

the following two fundamental problems for learning on

Grassmann manifolds:

1. Sparse coding. Given a signal X and a dictionary

D = {Di}Ni=1 with N elements (also known as atoms),

where X and Di are linear subspaces, how X can

be approximated by a combination of a “few” atoms

in D ?

2. Dictionary learning. Given a set of measurements

{Xi}mi=1, how can a dictionary D = {Di}Ni=1 be

learned to represent {Xi}mi=1 sparsely ?

Our main motivation here is to develop new methods for

analysing video data and image sets. This is inspired by

the success of sparse signal modelling that suggests natu-

ral signals like images (and hence video and image sets as

our concern here) can be efficiently approximated by super-

position of atoms of a dictionary, where the coefficients of

superposition are usually sparse (i.e., most coefficients are

zero). We generalise the traditional sparse coding, which

operates on vectors, to sparse coding on subspaces. Sparse

encoding with the dictionary of subspaces can then be seam-

lessly used for categorising video data. Before we present

our main results, we want to highlight that the proposed

algorithms outperform state-of-the-art methods on various

recognition tasks and in particular has achieved the highest
reported accuracy in classifying dynamic textures.

Related work. While significant steps have been taken

to develop the theory of the sparse coding and dictionary

learning in Euclidean spaces, similar problems on non-
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Euclidean geometry have received comparatively little at-

tention [10, 15]. To our best knowledge, among a handful

of solutions devised on Riemannian manifolds, none is spe-

cialised for the Grassmann manifolds which motivates our

study.

In [10], the authors addressed sparse coding and dictio-

nary learning for the Riemannian structure of Symmetric

Positive Definite (SPD) matrices or tensors. The solution

was obtained by embedding the SPD manifold into Repro-

ducing Kernel Hilbert Space (RKHS) using a Riemannian

kernel. Another approach to learning a Riemannian dictio-

nary is by exploiting the tangent bundle of the manifold,

as for example in [15] for the manifold of probability dis-

tributions. Since the sparse coding has a trivial solution in

this approach, an affine constraint has to be added to the

problem [15]. While having an affine constraint along with

sparse coding is welcome in specific tasks (e.g., cluster-

ing [2]), in general, the resulting formulation is restrictive

and no longer addresses the original problem. Also, work-

ing in successive tangent spaces, though common, values

only a first-order approximation to the manifold at each

step. Furthermore, switching back and forth to the tan-

gent spaces of a Grassmann manifold (as required by this

formulation) can be computationally very demanding for

the problems that we are interested in (e.g., video analy-

sis). This in turns makes the applicability of such school

of thought limited for the Grassmann manifolds arising in

vision tasks.

Contributions. In light of the above discussion, in

this paper, we introduce an extrinsic method for learning

a Grassmann dictionary. To this end, we propose to embed

Grassmann manifolds into the space of symmetric matrices

by a diffeomorphism that preserves Grassmann projection

distance (a special class of distances on Grassmann mani-

folds). We show how sparse coding can be accomplished in

the induced space and devise a closed-form solution for up-

dating a Grassmann dictionary atom by atom. Furthermore,

in order to accommodate non-linearity in data, we propose

a kernelised version of our dictionary learning algorithm.

Our contributions are therefore three-fold:

1. We propose an extrinsic dictionary learning algorithm

for data points on Grassmann manifolds by embedding

the manifolds into the space of symmetric matrices.

2. We derive a kernelised version of the dictionary learn-

ing algorithm which can address the non-linearity in

data.

3. We apply the proposed Grassmannian dictionary learn-

ing methods to several computer vision tasks where

the data are videos or image sets. Our proposed algo-

rithms outperform state-of-the-art methods on a wide

range of classification tasks, including face recognition

from image sets, action recognition and dynamic tex-

ture classification.

2. Background
Before presenting our algorithms, we review some con-

cepts of Riemannian geometry of Grassmann manifolds,

which provide the grounding for the proposed algorithms.

Details on Grassmann manifolds and related topics can be

found in [1].

Geometry of Grassmann manifolds. The space of d×p
(0 < p < d) matrices with orthonormal columns is a Rie-

mannian manifold known as a Stiefel manifold St(p, d), i.e.,

St(p, d) � {X ∈ R
d×p : XTX = Ip} where Ip denotes

the identity matrix of size p × p [1]. Grassmann manifold

G(p, d) can be defined as a quotient manifold of St(p, d)
with the equivalence relation ∼ being: X1 ∼ X2 if and

only if Span (X1) = Span (X2), where Span(X) denotes

the subspace spanned by columns of X ∈ St(p, d).

Definition 1 A Grassmann manifold G(p, d) consists of the
set of all linear p-dimensional subspaces of Rd.

The Riemannian inner product, or metric for two tan-

gent vectors Δ1 and Δ2 at X is defined as 〈Δ1,Δ2〉X =

Tr
(
ΔT

1

(
Id − 1

2
XXT

)
Δ2

)
= Tr

(
ΔT

1 Δ2

)
.Further proper-

ties of the Riemannian structure of Grassmannian are given

in [1]. This Riemannian structure induces a geodesic dis-

tance on the Grassmann, namely the length of the shortest

curve between two points (p-dimensional subspaces), de-

noted δg(X1,X2). The special orthogonal group SO(d)

(think of this as higher-dimensional rotations) acts transi-

tively on G(p, d) by mapping one p-dimensional subspace

to another. The geodesic distance may be thought of as the

magnitude of the smallest rotation (element of SO(d)) that

takes one subspace to the other. If Θ = [θ1, θ2, . . . , θp] is

the sequence of principal angles [1] between two subspaces

X1 and X2, then

δg (X1,X2) = ‖Θ‖2. (1)

Definition 2 Let X1 and X2 be two orthonormal matri-
ces of size d × p. The principal angles 0 ≤ θ1 ≤ θ2 ≤
· · · ≤ θp ≤ π/2 between two subspaces Span(X1) and
Span(X2), are defined recursively by

cos(θi) = max
ui∈Span(X1)

max
vi∈Span(X2)

uT
i vi (2)

s.t.: ‖ui‖2 = ‖vi‖2 = 1

uT
i uj = 0; j = 1, 2, · · · , i− 1

vT
i vj = 0; j = 1, 2, · · · , i− 1

In other words, the first principal angle θ1 is the smallest an-

gle between all pairs of unit vectors in the first and the sec-

ond subspaces. The rest of the principal angles are defined

similarly. The cosines of principal angles are the singular

values of XT
1 X2 [1].
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2.1. Problem statement

Given a finite set of observations X = {xi}mi=1 , x ∈ R
d,

dictionary learning in vector spaces optimises the objective

function

f(D) �
∑m

i=1
lE(xi,D) (3)

with Dd×N = [d1|d2| · · · |dN ] being a dictionary of size N
with atoms di ∈ R

d. Here, lE(x,D) is a loss function and

should be small if D is “good” at representing the signal x.

Aiming for sparsity, the �1-norm regularisation is usually

employed to obtain the most common form of lE(x,D) in

the literature1:

lE(x,D) � min
y

∥∥∥x−∑N

j=1
[y]jdj

∥∥∥2
2
+ λ‖y‖1. (4)

With this choice, finding the optimum D in Eqn. (3) is

not trivial because of non-convexity, as can be easily seen

by rewriting the dictionary learning to:

min
{yi}m

i=1,D

∑m

i=1

∥∥∥∥xi −
∑N

j=1
[yi]jdj

∥∥∥∥
2

2

+λ
∑m

i=1
‖yi‖1.

A common approach to solving this is to alternate between

the two sets of variables, D and Y = [y1|y2| · · · |ym], as

proposed for example by Aharon et al. [5]. More specifi-

cally, minimising Eqn. (4) over sparse codes y while dictio-

nary D is fixed is a convex problem. Similarly, minimising

the overall problem over D with fixed {yi}mi=1 is convex as

well.

Directly translating the dictionary learning problem to

non-flat Grassmann manifolds results in writing Eqn. (4) as:

lG(X,D) � min
y

∥∥∥X�⊎N

j=1
[y]j �Dj

∥∥∥2
G
+ λ‖y‖1. (5)

Here X ∈ R
d×p and Dj ∈ R

d×p are points on the Grass-

mann manifold Gp,d, while the operators � and
⊎

are

Grassmann replacements for subtraction and summation in

vector spaces (and hence should be commutative and asso-

ciative). Furthermore, � is the replacement for scalar mul-

tiplication and ‖·‖G is the geodesic distance on Grassmann

manifolds.

There are several difficulties in solving Eqn. (5). Firstly,

�,
⊎

and � need to be appropriately defined. While the

Euclidean space is closed under the subtraction and addition

(and hence a sparse solution
∑N

j=1[y]jdj is a point in that

space), Grassmann manifolds are not closed under normal

matrix subtraction and addition. More importantly, fixing

sparse codes yi does not result in a convex cost function

for dictionary learning, i.e.
∑m

i=1 lG(Xi,D) is not convex

because of the distance function ‖·‖G in Eqn. (5).

1The notation [·]i and [·]i,j is used to demonstrate elements in position

i and (i, j) in a vector and matrix, respectively.

3. Grassmann Dictionary Learning (GDL)
In this work, we propose to embed Grassmann man-

ifolds into the space of symmetric matrices via map-

ping Π : G(p, d)→ Sym(d),Π(X) = XXT. The embedding

Π(X) is diffeomorphism [14] (a one-to-one, continuous,

differentiable mapping with a continuous, differentiable in-

verse) and has been used for example in subspace track-

ing [22]. It has been used in [2] for clustering and in [9] and

[11] to develop discriminant analysis on Grassmann man-

ifolds amongst the others. The induced space can be un-

derstood as a smooth, compact submanifold of Sym(d) of

dimension d(d − p) [14]. A natural metric on Sym(d) is

induced by the Frobenius norm, ‖A‖2F = Tr(AAT ) which

we will exploit to convexify Eqn. (5). Here Tr(·) is the ma-

trix trace operator. As such, we define:

δs(X1,X2) = ‖Π(X1)−Π(X2)‖F = ‖X1X
T
1 −X2X

T
2 ‖F

as the metric in the induced space. Before explaining

our solution, we note that δs is related to the Grassmann

manifold in several aspects. This provides motivation and

grounding for the follow-up formulation and is discussed

briefly here.

Theorem 3 The mapping Π(X) forms an isometry from
(G(p, d), δp) onto the (Sym(d), δs) where the projection
distance between two points on the Grassmann manifold
G(p, d) is defined as δ2p (X1,X2) =

∑p
i=1 sin

2 θi.

We refer the reader to [9] for the proof of this theorem.

Theorem 4 The length of any given curve is the same un-
der δs and δg up to a scale of

√
2.

The proof of this theorem is in the Appendix.

Since Π(X) is in the manifold of symmetric matrices,

matrix subtraction and addition can be considered for� and⊎
in Eqn. (5). Therefore, we recast the dictionary learn-

ing task as optimising the empirical cost function f(D) �∑m
i=1 l(Xi,D) with

l(X,D) � min
y

∥∥∥XXT −
N∑
j=1

[y]jDjD
T
j

∥∥∥2
F
+ λ‖y‖1. (6)

It is this projection mapping Π(X) = XXT that leads to

a simple and efficient learning approach to our problem.

3.1. Sparse Coding

Finding the sparse codes with fixed D is straightforward,

as expanding the Frobenius norm term in Eqn. (6) results in

a convex function in y:

∥∥∥XXT −
N∑
j=1

[y]jDjD
T
j

∥∥∥2
F
= Tr(XTXXTX)+

N∑
j,r=1

[y]j [y]r Tr(D
T
r DjD

T
j Dr)− 2

N∑
j=1

[y]j Tr(DT
j XXTDj).
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Sparse codes can be obtained without explicit embedding

of the manifold to Sym(d) using Π(X). This can be seen

by defining [K(X,D)]i = Tr(DT
i XXTDi) = ‖XTDi‖2F

as an N dimensional vector storing the similarity between

signal X and dictionary atoms in the induced space and

[K(D)]i,j = Tr(DT
i DjD

T
j Di) = ‖DT

i Dj‖2F as an N × N

symmetric matrix encoding the similarities between dictio-

nary atoms (which can be computed offline). Then, the

sparse coding in Eqn. (6) can be written as:

l(X,D) = min
y

yT
K(D)y − 2yTK(X,D) + λ‖y‖1, (7)

which is a quadratic problem. Clearly the symmetric matrix

K(D) is positive semidefinite. So the quadratic problem is

convex.

3.2. Dictionary Update

To update dictionary atoms we break the minimisation

problem into N sub-minimisation problems by indepen-

dently updating each atom, in line with general practice

in dictionary learning [5]. More specifically, fixing sparse

codes and ignoring the terms that are irrelevant to dictio-

nary atoms, the dictionary learning problem can be seen as

finding min
D

∑N
r=1 J (r), where:

J (r) =
∑m

i=1

∑N

j=1,j �=r
[yi]r[yi]j Tr(D

T
r DjD

T
j Dr)

−2
∑m

i=1
[yi]r Tr(D

T
r XiX

T
i Dr). (8)

Imposing the orthogonality of Dr results in the following

minimisation sub-problem for updating Dr:

D∗
r = argmin

Dr

J (r), s.t. DT
r Dr = Ip. (9)

A closed-form solution for the above minimisation problem

can be obtained by the method of Lagrange multipliers and

forming L(r, ζ) = J (r) + ζ
(
DT

r Dr − Ip
)
. The gradient of

L(r, ζ) is:

∇Dr
L(r, ζ) = 2

∑m

i=1

∑N

j=1,j �=r
[y]r[y]jDjD

T
j Dr

− 4
∑m

i=1
[yi]rXiX

T
i Dr + 2ζDr. (10)

The solution of Eqn. (9) can be sought by finding the roots

of (10), i.e., ∇DrL(r, ζ) = 0, which is an eigen-value prob-

lem. Therefore, the solution of (9) can be obtained by com-

puting p eigenvectors of S, where

S =
m∑
i=1

N∑
j=1,j �=r

[yi]r[yi]jDjD
T
j − 2

m∑
i=1

[yi]rXiX
T
i .

(11)

Note that the mapping Π(X) meets the requirement of a

Grassmann kernel [9, 12]. Consequently, it is possible to in-

terpret the above solution as a kernel method. Nevertheless,

we believe that the explanation through manifold of sym-

metric matrices provides more insight into the solution and

also avoids possible confusion with the following section,

where we present an explicitly kernelised version of GDL.

4. Kernelised GDL
In this section we propose the kernel extension of the

GDL method (KGDL) to model complex nonlinear struc-

tures in the original data.

Assume a population of sets in the form of X =
{Xi}mi=1, with Xi =

{
xi
j

}mi

j=1
; xi

j ∈ R
d and a kernel func-

tion k(·, ·) is given. Therefore, a real-valued function on

R
d × R

d with the property that a mapping φ : Rd → H
into a dot product Hilbert space H exists, such that for all

x,x′ ∈ R
d we have 〈x,x′〉H = φ(x)Tφ(x′) = k(x,x′)

[21]. As before, we are interested in optimising f(D) �∑m
i=1 lΨ(Xi,D) where lΨ(X,D) is the kernel version of (6)

as depicted below:

lΨ(X,D) �

min
y

∥∥∥Ψ(X)Ψ(X)T−
N∑
j=1

[y]jΨ(Dj)Ψ(Dj)
T
∥∥∥2
F
+ λ‖y‖1.

(12)

Here, Ψ(Z) = [ψ1|ψ2| · · · |ψp] denotes a subspace

of order p in the space H associated to samples of

set Z = {zi}mz
i=1. That is, ψj =

∑mz

i=1 ai,jφ(zi) and

Ψ(Z) = Φ(Z)AZ with [AZ]i,j = ai,j .

We note that the coefficients ai,j are given by the

KPCA [21] method for input sets (i.e., Xi) while in the

case of the dictionary atoms Dj , they need to be de-

termined by the KGDL algorithm. We also note that

Ψ(Z)TΨ(W) = AT
ZK(Z,W)AW with K(Z,W) being

the kernel matrix of size mz ×mw between sets Z and W,

i.e., [K(Z,W)]i,j = φ(zi)
Tφ(wj) = k(zi,wj).

Obtaining sparse codes y is a straightforward task

since
∥∥∥Ψ(X)Ψ(X)T −∑N

j=1[y]jΨ(Dj)Ψ(Dj)
T
∥∥∥
2

F
is a con-

vex function in y. Similar to the linear GDL method, dic-

tionary is updated atom by atom (i.e., atoms are assumed to

be independent) by fixing sparse codes. As such, the cost

function to update Ψ(Dr) can be defined as:

JΨ(r)=
∑
i,j

[yi]r[yi]j Tr(Ψ(Dr)
TΨ(Dj)Ψ(Dj)

TΨ(Dr))

−2
m∑
i=1

[yi]r Tr(Ψ(Dr)
TΨ(Xi)Ψ(Xi)

TΨ(Dr)),

=
m∑
i=1

N∑
j=1,j �=r

[yi]r[yi]j Tr(A
T
Dr

B(Dr,Dj)ADr
)

−2
m∑
i=1

[yi]r Tr(A
T
Dr

B(Dr,Xi)ADr ). (13)
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where B(X,Z) = K(X,Z)AZA
T
ZK(Z,X). The orthog-

onality constraint inH can be written as:

Ψ(Dr)
TΨ(Dr) = AT

Dr
K(Dr,Dr)ADr

= Ip. (14)

Ψ(Dr) is fully determined if ADr and K(·,Dr) are known.

If we assume that dictionary atoms are independent, then

according to the representer theorem [21], Ψ(Dr) is a lin-

ear combination of all the Xi that have used it. Therefore,

K(·,Dr) = K(·,⋃i Xi), yi,r �= 0 which leaves us with iden-

tifying ADr
via the following minimisation problem:

min
ADr

m∑
i=1

N∑
j=1,j �=r

yi,ryi,j Tr(A
T
Dr

B(Dr,Dj)ADr
)

−2
∑m

i=1
yi,r Tr(A

T
Dr

B(Dr,Xi)ADr )

s.t. AT
Dr

K(Dr,Dr)ADr
= Ip.

The solution of the above problem is given by the

eigenvectors of the generalised eigenvalue problem

SΨv = λK(Dr,Dr)v, where:

SΨ =
m∑
i=1

[yi]r

( N∑
j=1,j �=r

[yi]jB(Dr,Dj)− 2B(Dr,Xi)
)
.

(15)

5. Further Discussion
The solution proposed in (6) considers Π(X) as a

mapping and solves sparse coding extrinsically, meaning∑
i[y]iDiD

T
i is not necessarily a point on G(p, d). If,

however, it is required that the linear combination of ele-

ments
∑

i[y]iDiD
T
i actually be used to represent a point on

the Grassmannian, it can be accomplished as follows. The

Eckart-Young theorem [7] states that the matrix of rank p
closest in Frobenius norm to a given matrix X is found by

dropping all the singular values beyond the p-th one. This

operation (along with equalization of the singular values)

can easily be applied to a linear combination of matrices

DiD
T
i to obtain a point on the Grassmann manifold. Thus,

in a very concrete sense, the linear combination of elements

DiD
T
i , although not equaling any point on the Grassmann

manifold, does represent such an element, the closest point

lying on the manifold itself.

Furthermore, (6) follows the general principle of sparse

coding in that the over-completeness of D will approximate

XXT and
∑

i[y]iDiD
T
i could be safely expected to be

closely tied to a Grassmannian point. Since d × d sym-

metric matrices of rank p with the extra property of being

idempotent2 are equivalent to points on G(p, d) , an intrinsic

version of (6) can be written as:

min
y

∥∥∥XXT − Proj
( N∑

j=1

[y]jDjD
T
j

)∥∥∥2
F
+ λ‖y‖1, (16)

2A matrix P is called idempotent if P2 = P.

where Proj(·) is the operator that projects a symmetric ma-

trix onto a Grassmann manifold (by forcing the idempo-

tency and rank properties). Based on Eckart-Young theo-

rem, Proj(·) can be obtained through Singular Value De-

composition (SVD). The involvement of SVD, especially

in vision applications, makes solving (16) tedious and chal-

lenging. We acknowledge that seeking efficient ways of

solving (16) is interesting but beyond this paper.

6. Experiments
In this section we compare and contrast the performance

of the proposed GDL and KGDL methods against several

state-of-the-art methods: Discriminant analysis of Canoni-

cal Correlation (DCC) [17], kernel version of Affine Hull

Method (KAHM) [3], Grassmann Discriminant Analysis

(GDA) [9], and Graph-embedding Grassmann Discriminant

Analysis (GGDA) [11]. We evaluate the performance on the

tasks of (i) face recognition from image sets, (ii) dynamic

texture classification and (iii) action recognition.

DCC is an iterative learning method that maximises a

measure of discrimination between image sets where the

distance between sets is expressed by canonical correla-

tions. In KAHM, images are considered as points in a

linear or affine feature space, while image sets are char-

acterised by a convex geometric region (affine or convex

hull) spanned by their feature points. GDA can be consid-

ered as an extension of kernel discriminant analysis over

Grassmann manifolds [9]. In GDA, a transform over the

Grassmann manifold is learned to simultaneously maximise

a measure of inter-class distances and minimise intra-class

distances. GGDA can be considered as an extension of

GDA, where a local discriminant transform over Grass-

mann manifolds is learned. This is achieved by incorpo-

rating local similarities/dissimilarities through within-class

and between-class similarity graphs.

Based on preliminary experiments, the Gaussian ker-

nel [21] was used in KGDL for all tests. In GDL and KGDL

methods, the dictionary is used to generate sparse codes for

training and testing data. The sparse codes are then fed to a

SVM for classification. The size of the dictionary is found

empirically and the highest accuracy is reported here. In all

experiments, the input data has the form of image sets. An

image set F = {f i}bi=1 ;f i ∈ R
d, with f i being the vec-

torised descriptor of frame i, can be modelled by a subspace

(and hence as a point on a Grassmann manifold) through

any orthogonalisation procedure like SVD. More specifi-

cally, let F = UDVT be the SVD of F. The dominant p
left singular-vectors (p columns of U corresponding to the

maximum singular values) represent an optimised subspace

of order p (in the mean square sense) for F and can be seen

as a point on manifold Gp, d. To select the optimum value of

p, (order) of subspaces, the performance of a NN classifier

on Grassmann manifolds will be evaluated for various val-
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Figure 1: Examples of YouTube celebrity dataset (grayscale ver-

sions of images were used in our experiments).

ues of ‘p’ and the value resulted in maximum performance

will be chosen for constructing subspaces for each task.

6.1. Face Recognition

While face recognition from a single still image has been

extensively studied, recognition based on a group of still

images is relatively new. A popular choice for modelling

image-sets is by representing them through linear subspaces

[9, 11]. For the task of image-set face recognition, we used

the YouTube celebrity dataset [16]. See Fig. 1 for examples.

Face recognition on this dataset is very challenging, since

the videos are compressed with a very high compression

ratio and most of them are low-resolution.

To create an image set from a video, we used a cascaded

face detector [25] to extract face regions from each video,

followed by resizing regions to 96×96 and describing them

via histogram of Local Binary Patterns (LBP) [19]. Then

each image set (corresponding to a video) was represented

by a linear subspace of order 5. Our data included 1471

image-sets which ware randomly split into 1236 training

and 235 testing points. The process of random splitting was

repeated ten times and the average classification accuracy

is reported. The results in Table 1 show that the proposed

GDL and KGDL approaches outperform the competitors.

KGDL achieved the highest accuracy of 73.91, more than 3

percentage points better than GDL.

Table 1: Average recognition rate on the YouTube celebrity

dataset.

Method CRR
DCC [17] 60.21± 2.9
KAHM [3] 67.49± 3.5
GDA [9] 58.72± 3.0
GGDA [11] 61.06± 2.2
GDL 70.47± 1.7
KGDL 73.91± 1.9

Figure 2: Example classes of DynTex++ dataset (grayscale im-

ages were used in our experiment).

6.2. Dynamic Texture Classification

Dynamic textures are videos of moving scenes that

exhibit certain stationary properties in the time do-

main [6].Such videos are pervasive in various environments,

such as sequences of rivers, clouds, fire, swarms of birds,

humans in crowds. In our experiment, we used the chal-

lenging DynTex++ dataset [6], which is comprised of 36

classes, each of which contains 100 sequences with a fixed

size of 50 × 50 × 50 (see Fig. 2 for example classes). We

split the dataset into training and testing sets by randomly

assigning half of the videos of each class to the training set

and using the rest as query data. The random split was re-

peated twenty times; average accuracy is reported.

To generate points on the Grassmann manifold, we used

histogram of LBP from Three Orthogonal Planes (LBP-

TOP) [27] which, takes into account the dynamics within

the videos. To this end, we split each video to subvideos

of length 10, with a 7 frames overlap. Each subvideo then

described by a histogram of LBP-TOP features. From the

subvideo descriptors, we extracted a subspace of order 5 as

the video representation on Grassmann manifold.

In addition to DCC [17], KAHM [3], GDA [9] and

GGDA [11], the proposed GDL and KGDL approaches

were compared against Distance Learning Pegasos (DL-

Pegasos) [6]. DFS can be seen as concatenation of two

components: (i) a volumetric component that encodes the

stochastic self-similarities of dynamic textures as 3D vol-

umes, (ii) a multi-slice dynamic component that captures

structures of dynamic textures on 2D slices along various

views of the 3D volume. DL-Pegasos uses three descriptors

(LBP, HOG and LDS) and learns how the descriptors can

be linearly combined to best discriminate between dynamic

texture classes.

The overall classification results are presented in Table 2.

The proposed KGDL approach obtains the highest average

recognition rate. To our best knowledge this is the highest

reported result on DynTex++ dataset.

6.3. Ballet Dataset

The Ballet dataset contains 44 videos of 8 actions col-

lected from an instructional ballet DVD [26]. The dataset
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Table 2: Average recognition rate on the DynTex++ dataset.

Method CRR
DL-PEGASOS [6] 63.7
DCC [17] 53.2
KAHM [3] 82.8
GDA [9] 81.2
GGDA [11] 84.1
GDL 90.3
KGDL 92.8

Figure 3: Examples from the Ballet dataset [26].

consists of 8 complex motion patterns performed by 3 sub-

jects, and is very challenging due to the significant intra-

class variations in terms of speed, spatial and temporal

scale, clothing and movement.

We extracted 2400 image sets by grouping every 6

frames that exhibited the same action into one image set.

We descried each image set by a subspace of order 4 with

Histogram of Oriented Gradient (HOG) as frame descrip-

tor [4]. Available samples were randomly split into training

and testing set (the number of image sets in both sets was

even). The process of random splitting was repeated ten

times and the average classification accuracy is reported.

Table 3 shows that both GDL and KGDL algorithms

have superior performance as compared to the state-of-the-

art methods DCC, KAHM, GDA and KGDA. The differ-

ence between KGDL and the closest state-of-the-art com-

petitor, i.e., GGDA, is roughly ten percentage points.

Please note that in all our experiments, we randomly ini-

tialized the dictionary ten times and picked the one with

Table 3: Average recognition rate on the Ballet dataset.

Method CRR
DCC [17] 41.95± 9.6
KAHM [3] 70.05± 0.9
GDA [9] 67.33± 1.1
GGDA [11] 73.54± 2.0
GDL 79.64± 1.1
KGDL 83.53± 0.8

minimum reconstruction error over the training set. We per-

formed an extra experiment on ONE SPLIT of YT dataset

and evaluated 10 random initialisations. The mean and std

for the GDL were 72.21% and 1.6 respectively, while the

performance for the dictionary with min reconstruction er-

ror was observed to be 73.19%.

Regarding the intrinsic approach which appreciates the

geodesic distance in deriving sparse codes, we performed an

extra experiment on YT, following [15]. To learn the dictio-

nary, the intrinsic approach required 26706s on an i7-Quad

core platform as compared to 955sec for our algorithm. In

terms of performance, our algorithm outperformed the in-

trinsic method (70.47% as compared to 68.51%). While this

sounds counter-intuitive, we conjecture this might be due to

the affine constraint required by the intrinsic approach for

generating sparse codes.

7. Main Findings and Future Directions

With the aim of learning a Grassmann dictionary, we first

proposed to embed Grassmann manifolds into the space of

symmetric matrices by an isometric projection. We have

then shown how sparse codes can be determined in the in-

duced space and devised a closed-form solution for updat-

ing a Grassmann dictionary, atom by atom. Finally, we pro-

posed a kernelised version of the dictionary learning algo-

rithm, to handle non-linearity in data.

Experiments on several classification tasks (face recog-

nition from image sets, action recognition and dynamic

texture classification) show that the proposed approaches

achieve notable improvements in discrimination accu-

racy, in comparison to state-of-the-art methods such as

affine hull method [3], Grassmann discriminant analysis

(GDA) [9], and graph-embedding Grassmann discriminant

analysis [11].

In this work a Grassmann dictionary is learned such that

a reconstruction error is minimised. This is not necessar-

ily the optimum solution when labelled data is available.

To benefit from labelled data, it has recently been proposed

to consider a discriminative penalty term along with the re-

construction error term in the optimisation process [18]. We

are currently pursuing this line of research and seeking so-

lutions for discriminative dictionary learning on Grassmann

manifolds. Moreover, the Frobenius norm used in our work

is a special type of matrix Bregman divergence. Studying

more involved cost functions derived from Bregman diver-

gences is an interesting avenue to explore. On a side note,

Bregman divergences induced from logdet function (e.g.,

Burg or symmetrical ones like Stein) cannot be directly used

here because XXT is rank deficient.
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Appendix
Here, we prove Theorem 4 (from Section 3), i.e., the

length of any given curve is the same under δg and δs up

to a scale of
√
2.

Proof. Without any assumption on differentiability, let

(M,d) be a metric space. A curve in M is a continu-

ous function γ : [0, 1] → M and joins the starting point

γ(0) = x to the end point γ(1) = y. The intrinsic metric

δ̂ is defined as the infimum of the lengths of all paths from

x to y. If the intrinsic metrics induced by two metrics d1
and d2 are identical to scale ξ, then the length of any given

curve is the same under both metrics up to ξ [13].

Theorem 5 If d1(x, y) and d2(x, y) are two metrics defined
on a metric space M such that

lim
d1(x,y)→0

d2(x, y)

d1(x, y)
= 1. (17)

uniformly (with respect to x and y), then their intrinsic met-
rics are identical [13].

Therefore, we need to study the behaviour of

lim
δg(X,Y)→0

δs(X,Y)

δg(X,Y)

to prove our theorem on curve lengths. We note that

δ2s(X,Y) = 2
∑p

i=1 sin
2 θi. Since sin θi → θi for θi → 0,

we have

lim
δg(X,Y)→0

δ2s(X,Y)

δ2g(X,Y)
= lim

δg(X,Y)→0

2
∑p

i=1 sin
2 θi∑p

i=1 θ
2
i

= 2 ,
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