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Abstract

We present an image editing tool called Content-Aware
Rotation. Casually shot photos can appear tilted, and are
often corrected by rotation and cropping. This trivial so-
lution may remove desired content and hurt image integri-
ty. Instead of doing rigid rotation, we propose a warping
method that creates the perception of rotation and avoids
cropping. Human vision studies suggest that the perception
of rotation is mainly due to horizontal/vertical lines. We de-
sign an optimization-based method that preserves the rota-
tion of horizontal/vertical lines, maintains the completeness
of the image content, and reduces the warping distortion.
An efficient algorithm is developed to address the challeng-
ing optimization. We demonstrate our content-aware rota-
tion method on a variety of practical cases.

1. Introduction
Image rotation is one of the fundamental image editing

operations besides scaling and cropping. Photos casually

shot by hand-held cameras/phones can appear tilted, which

are sensitive to human eyes even when the rotation angle is

small (Fig. 1(a)). On the other hand, artists may adjust the

composition through manipulating the rotation [26]. For

these reasons and others, image rotation has been incorpo-

rated in a majority of image editing softwares.

We assume the rotation angle has been given by users,

algorithms [12], or sensors in devices. A rigidly rotated im-

age inevitably has empty regions, and is often cropped to

fit an upright rectangle (Fig. 1(b)). But this trivial solution

may produce unwanted results: it may remove image con-

tent and hurt the integrity of the image (e.g., the building

in Fig. 1(c)). Actually, the cropping operation reduces the

area of a typical photo by 20% even when the rotation an-

gle is as small as 5◦ . A sophisticated solution is desired for

common users and artists to reduce the loss of content when

rotating images.

Despite little attention has been paid to the above is-

sue on rotation, there have been an abundance of literatures

on image scaling/resizing, popularly known as retargeting
∗This work was done when Huiwen Chang was an intern at MSRA.

(a) input
(b) rotation (-5.8°)

(c) crop from (b) (d) content-aware rotation

Figure 1. Image rotation. (a) An input tilted image. (b) The user

rotates the image by -5.8◦ (clockwise 5.8◦ ), such that its hori-

zontal lines become level. (c) The rotated image is cropped by

the largest inner upright rectangle. (d) Our content-aware rotation

result.

[4, 31, 29, 25, 32, 8]. Instead of cropping or uniformly

scaling, the pioneer work Seam Carving [4] resorts to a

content-aware fashion. The philosophy is that the percep-

tual sensitivity is not equal among different image content.

So it is possible to produce visually pleasing results if the

manipulations are less noticeable, e.g., removing/inserting

seams as in [4]. This method has been implemented as the

Content-Aware Scaling feature in the commercial software

Adobe Photoshop [2]. Recent image retargeting methods

are mostly based on warping [31, 29, 32, 8], and they are de-

signed to preserve high-level content like local shapes and

straight lines. A common motivation of warping methods

is to maintain the completeness of the image content at the

price of distortion (as unnoticeable as possible).

With a similar motivation, in this paper we present

Content-Aware Rotation. We design a warping method that

keeps the image content inside an upright rectangle while

creating the perception of rotation. We are driven by sev-

eral observations on human vision studies [13, 23, 22, 11].

First, the perception of image tilting is mainly due to the
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(d) result(a) input (c) optimized mesh(b) initial mesh

Figure 2. Content-aware rotation using warping. (a) An input image to be rotated by 6.1◦ . (b) The initialized grid mesh. (c) The optimized

mesh. (d) The warping result.
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Figure 3. Perception of angles. Top: for normal angles, human

eyes can easily notice the tilted vertical lines. Bottom: for oblique

angles, human eyes are not sensitive to the absolute angle values.

This figure is due to [13].

perception of the tilted horizon (or lines parallel to it) [11].

This is perhaps because the human visual system is hori-

zontally binocular. Second, the human eyes are sensitive to

the right angles (90◦ ) that are “normal” [13, 23], i.e., right

angles with one edge being horizontal. As a result, the ver-

tical lines are easily noticeable if tilted. Last, the human

eyes are not sensitive to the absolute values of angles when

the angles are acute/obtuse [22] or when they are “oblique”

right angles (i.e., not “normal”) [13, 23]. The readers can

experience this in Fig. 3.

The above studies suggest that the human vision system

is very sensitive to the horizontal/vertical lines but less so to

others. Driven by these studies, we propose to preserve the

orientation of the horizontal/vertical lines (after rotation) so

as to create the perception of rotation. The orientations of

other lines are relaxed because they are less noticeable to

human eyes. This adaptive rotation makes it possible to

maintain the image integrity with less distortion (Sec. 3.4).

Algorithmically, we optimize a grid mesh with several

considerations. We constrain the horizontal/vertical lines

(after rotation) to be horizontal/vertial to create the percep-

tion of rotation, but relax other lines. We constrain the

boundary vertexes on the image boundary to maintain the

completeness of the content. We also minimize local distor-

tion to preserve shapes. We formulate these considerations

as an energy function, and minimize it by a half-quadratic

splitting technique [28, 19]. Our method is very fast (<1s

for a multi-megapixel image) and produces visually com-

pelling results (e.g., Fig. 1(d)).

Our method performs particularly well for “small” rota-

tion angles like <10◦ . We find this range covers most real

cases of correcting careless camera tilt. We also notice that

human eyes are very sensitive to a rotation angle as small as

3◦ or even smaller (the famous Leaning Tower of Pisa leans

at about 3.99◦ 1), so the correction is still desired despite

the angles are “small”. We believe our solution can meet

the need in many practices.

This paper mainly has these contributions: (i) to the best

of our knowledge, this is the first study on content-aware

rotation based on human perception studies; (ii) we devel-

op an optimization-based warping method to create the per-

ception of rotation; (iii) our method is practically fast and

high-quality, and can be a useful tool from common users.

2. Related Work
We review the related methods and tools on image rota-

tion, retargeting, and warping.

Image Rotation Consider a popular way of manual rota-

tion [1]: the user drags a straight line aligned to any hori-

zontal/vertical line, and then the software rotates the image

so that the dragged line becomes horizontal/vertical. This

user interface is inspiring: the human eyes are sensitive to

tilted horizontal/vertical lines. Our method harnesses this

property to create the perception of rotation.

A method [12] that automatically estimates a rotation an-

gle from a single image is based on a similar motivation.

This method finds the vanishing points and determines the

horizon accordingly. The rotation angle that rectifies the

horizon is chosen. Beyond 2D in-plane rotation, the method

in [20] automatically estimates 3D rotation angles (a ho-

mography matrix). This method harnesses both horizontal

and vertical vanishing lines. Given the estimated rotation

angle (2D/3D), conventional methods [12, 20] transform the

image rigidly and globally. On the contrary, our purpose is

to design locally adaptive transforms. We only consider 2D

in-plane rotation in this paper.

1en.wikipedia.org/wiki/Leaning_Tower_of_Pisa
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Image Retargeting Retargeting refers to the problem

of changing image sizes (or most usually, aspect ratios).

Uniform scaling may lead to notorious distortion, while

cropping may remove desired content. The Seam Carving

method [4] removes/inserts the most unnoticeable seams to

resize the image. This method may produce visible dis-

continuities when the number of seams increases because

it is greedy. This problem is addressed by a variety of

optimization-based warping methods [31, 29, 32, 8]. The

warping strategy allows to introduce smooth distortion that

are less noticeable to human eyes. Further, the mesh-based

warping methods are able to preserve high-level perceptual

properties like local shapes [29, 32, 8] and straight lines [8].

Image Warping Warping is a successful solution to

many other computer vision/graphics applications besides

retargeting. The method in [16] introduces an “as-rigid-

as-possible” manipulation of shapes or images. The s-

tudies in [18, 7, 6] use the warping strategy to adaptive-

ly project wide-angle/panaramic images. Warping has al-

so been adopted in image morphing [9], video stabilization

[21], and panorama rectangling [14].

3. Algorithm
We suppose the rotation angle Δ is given by users or au-

tomatic methods like [12], and is fixed. We further suppose

that given this rotation angle, the horizon (or the lines paral-

lel to the horizon) would become horizontal after rigid rota-

tion. This is generally the case in practice. But our method

can easily adapt to “tilted composition” if a tilted horizon is

the artists’ purpose.

We optimize a quad mesh for warping. The warping

result is expected to maintain the orientations of horizon-

tal/vertical lines (after rotation) but relax others. To this

end, we design an energy function that can manipulate the

rotations of lines in different orientations.

3.1. Line Extraction and Quantization

We first extract and quantize the lines that will be used in

the mesh optimization. This step is on the input image. We

extract lines using the code of [27]2 (Fig. 4 left). Then these

lines are cut by the input mesh grid, so each resulting line is

within a single quad. Denote the orientation of the x-axis as

0. We compute the orientations of the detected lines. The

orientations are offset by periods of π such that they are in

the range [−Δ, π − Δ) in the input image. If the image is

rigidly rotated by Δ, these lines would be in the range [0, π)
in the output.

We uniformly quantize the range [−Δ, π − Δ) into

M=90 bins, each bin covering 2◦ . As in [8], our energy

function will encourage all the lines in the same bin to share

a common rotation angle. As such, a long straight line will

2www.ipol.im/pub/art/2012/gjmr-lsd/

input & detected lines output & deformed lines

Figure 4. Top: the input and the content-aware rotation result. The

rotation angle is 5.2◦ . Bottom: the detected lines in the input and

their deformed counterparts in the output. Here the “canonical”

lines are marked as red - they are the lines to be horizontal/vertical

after rotation.

be kept straight, and parallel lines will be kept parallel. We

denote the common rotation angle in the m-th bin as θm.

The set {θm}Mm=1 forms a M×1 vector θ.

We pay special attention to the lines that would be-

come horizontal/vertical after rotation: they are in the bins

m=1,M (horizontal) or M
2 ,M2 + 1 (vertical). We refer to

these four bins as “canonical” bins. We want to preserve the

rotation of the lines in these bins (marked as red in Fig. 4).

3.2. Energy Function

We design an energy function that encourages the fol-

lowing properties. (1) The lines in the canonical bins are

strictly constrained to be rotated by Δ. This is for creat-

ing the perception of rotation. (2) The vertexes in the input

mesh boundary are constrained to be on the upright rect-

angular boundary of the output. This is for maintaining the

content completeness. (3) The local distortion is minimized.

We put a regular quad mesh on the input image (Fig. 2).

We denote the position of a vertex as vi = (xi, yi)
T, and

concatenate all vertexes {vi} into a long vector V. Our

energy function is with respect to V and θ. It has the fol-

lowing terms:

Rotation Manipulation The energy ER manipulates the

rotation angles of the lines:

ER(θ) =
∑
m

δm(θm −Δ)2 +
∑
m

(θm − θm+1)
2 (1)

The first term is a data term. It encourages the rotation an-

gles to follow the desired Δ. The weight δm = 103 if bin m
is canonical, and δm = 0 otherwise. In this way we impose
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strong constraints only on the horizontal/vertical lines. The

second term is a smoothness term. It encourages the two

neighboring bins to be similar. It smoothly propagates the

impact of the canonical bins to the non-canonical ones.

The energy ER(θ) allows to rotate the non-canonical

lines by some angles different from Δ, so enables non-rigid

and adaptive rotation. The energy ER(θ) is quadratic on

the vector θ.

Line Preservation The line preservation energy builds a

relation between the lines and the mesh vertexes.

For the k-th detected line, we can represent its two end-

points as bilinear interpolations of four vertexes. We com-

pute a directional vector ek by the difference of the two

endpoints. So ek can be written as a linear function of the

vertexes V (that is, ek = PkV for some Pk). Also, we

use uk to denote the directional vector of this line in the in-

put image. Denoting the bin of this line as m(k) with the

expected rotation angle θm(k), we consider the following

energy measuring the distortion of line rotation:

EL(V,θ, s) =
1

K

∑
k

‖skRkuk − ek‖2. (2)

where K is the number of lines, the matrix Rk =[
cos θm(k) − sin θm(k)

sin θm(k) cos θm(k)

]
is a rotational matrix, and sk is

a scale associated to the line k. Intuitively, we rotate the

input vector uk by θm(k) and scale it by sk, and then we

measure its distortion to ek.

We assume the scale sk is independent to each other.

Minimizing EL with respect to each sk gives us sk =
(uT

kuk)
−1uT

kR
T
kek. Substituting sk into (2) we obtain:

EL(V,θ) =
1

K

∑
k

‖ (RkUkR
T
k − I

)
ek‖2. (3)

where Uk = uk(u
T
kuk)

−1uT
k and I denotes a unit matrix.

Intuitively, this term encourages the angle between ek and

uk to be θm(k), such that the line is to be rotated by θm(k).

The term EL(V,θ) takes effect like the “angle coupling

energy” in [8]. But unlike [8], we have decoupled from s
and obtained a closed-form on V and θ. This simpler form

allows us to handle the nonlinearity of θ in optimization

(Sec. 3.3). The energy EL(V,θ) is quadratic on V.

Shape Preservation Various shape preservation func-

tions have been proposed, e.g., in [16, 32]. In this paper we

adopt the one in [32]. This energy favors each quad to un-

dergo a similarity transformation (“as-similar-as-possible”).

The shape preservation energy ES is:

ES(V) =
1

N

∑
q

‖(Aq(A
T
qAq)

−1AT
q − I)Vq‖2, (4)

where N is the quad number, q is a quad index. Defined on

the quad q, the 8×4 matrix Aq and the 8×1 vector Vq are:

Aq =

⎡
⎢⎢⎢⎢⎣

x̂q,0 −ŷq,0 1 0
ŷq,0 x̂q,0 0 1
: : : :

x̂q,3 −ŷq,3 1 0
ŷq,3 x̂q,3 0 1

⎤
⎥⎥⎥⎥⎦ , Vq =

⎡
⎢⎢⎢⎢⎣

xq,0

yq,0
:

xq,3

yq,3

⎤
⎥⎥⎥⎥⎦ . (5)

Here (xq,0, yq,0), ..., (xq,3, yq,3) denote the four vertexes of

a deformed quad, and (x̂q,0, ŷq,0), ..., (x̂q,3, ŷq,3) those of

the input quad (see [32] for the derivation). The energy ES

is a quadratic function of V.

It is possible to weight the terms in (4) to preserve faces

[7] or other salient objects. In this paper we ignore these

concerns and keep the presentation of our core idea simple.

Boundary Preservation To avoid the image content go-

ing outside an upright rectangular boundary, we constrain

the boundary vertexes on this rectangle:

EB(V) =
∑
i∈left

x2
i+

∑
i∈right

(xi−w)2+
∑
i∈top

y2i+
∑

i∈bottom

(yi−h)2.

(6)

Here each summation is over the vertexes on each boundary.

The values w and h are the width and height of an upright

rectangle. We use a rectangle of the same size as the input

image. The energy EB(V) is quadratic on V.

Total Energy We optimize the following energy:

E(V,θ) = ES(V)+λBEB(V)+λLEL(V,θ)+λRER(θ).
(7)

We use λB =∞ (108) to impose hard boundary constraint.

For λL and λR, our method involves the issue of parameter

settings as in other multi-term warping methods [7, 6, 8].

We find λL = λR = 100 work well in various experiments.

Throughout this paper we use this fixed setting.

3.3. Optimization

We use an alternating algorithm to optimize the energy

E(V,θ). We divide the problem into two subproblems, and

iteratively optimize each of them:

Fix θ, solve for V. In this case E is a quadratic function

on V. The solution is simply given by a sparse linear sys-

tem. Because V consists of several hundreds of unknowns,

it takes only a few milliseconds to solve this subproblem.

Fix V, solve for θ. In this case the subproblem is to mini-

mize:

min
θ

λL

K

∑
k

‖ (RkUkR
T
k − I

)
ek‖2 + λRER(θ). (8)

This is a nontrivial problem due to the nonlinearity in the

first term. We adopt a half-quadratic splitting technique
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[28, 19] to solve this problem. We introduce a series of

auxiliary variables φ = {φk}Kk=1. Intuitively, each φk de-

notes the individual rotation angle of line k (while θm is

the common rotation angle of the lines in bin m). Denote

R̂k =

[
cosφk − sinφk

sinφk cosφk

]
as the individual rotation ma-

trix of line k. We rewrite the problem in (8) as:

min
θ,φ

λL

K

∑
k

‖
(
R̂kUkR̂

T
k − I

)
ek‖2

+β
∑
k

(φk − θm(k))
2 + λRER(θ). (9)

Here β is a penalty weight, and when β →∞ the solution to

(9) converges to (8). The half-quadratic splitting technique

warms up from a small β and gradually increases it to ∞.

In each step when β has been fixed, the problem in (9) is

split into two subproblems:

(i) Fix φ, update θ. This subproblem is

min
θ

β
∑
k

(φk − θm(k))
2 + λRER(θ). (10)

This is a quadratic function on θ and is solved by a linear

system. This step is fast because θ has M = 90 unknowns.

(ii) Fix θ, update φ. This problem is nonlinear, but the

φk is independent of each other and can be solved separate-

ly. The subproblem involving φk is:

min
φk

λL

K
‖
(
R̂kUkR̂

T
k − I

)
ek‖2 + β(φk − θm(k))

2. (11)

This is a single variable problem. It is possible to solve it

using a gradient descent method. But we adopt a simpler

look-up method inspired by [19]. Notice that if β = 0,

the problem is solved by the angle between ek and uk:

φk = ∠(ek,uk) (this is the intuition of line preservation

(3)); and if β = ∞, it is solved by φk = θm(k). Intuitively,

the problem in (11) trades between these two values. So we

uniformly divide the range [∠(ek,uk), θm(k)] into 100 dis-

crete values, evaluate the cost in (11), and choose φk as the

one that minimizes the cost. This is a very straightforward

solution with clear intuitions.

Algorithm Summary. Our overall optimization method

is in Algorithm 1. The angles θ are all initialized as Δ
(the given rotation angle). There is no need to initialize

V because we start from updating V. The penalty weight

β warms up from β0 = 1, and stops at βmax = 104 with

the increment βinc = 10. The number of the outer iteration

is fixed at itermax = 10, which is empirically sufficient for

producing good visual quality.

We use a mesh with around 400 square quads in this pa-

per. Because the number of unknown is small (several hun-

dreds), the optimization takes about 0.1-0.2 seconds. After

Algorithm 1 Content-Aware Rotation: Optimization

1: Initialize θ.

2: for iter = 1 to itermax do
3: Fix θ, solve for V due to (7).

4: Fix V. Set β = β0.

5: while β < βmax do
6: Fix θ, solve for φk in (11) for all k.

7: Fix φ, solve for θ due to (10).

8: Set β = β · βinc

9: end while
10: end for

optimizing the mesh, we deform the image using bilinear

interpolation to produce the final result. The interpolation

is the main timing bottleneck, depending on image sizes.

Our current implementation takes about 0.5s to interpolate

one 8-megapixel image. Our algorithm is implemented in

C++ and run on a PC with an Intel Core i7 3.0GHz CPU

and 8GB memory.

3.4. Discussions

Adaptive Rotation Algorithmically, our method is de-

signed to strictly preserve the horizontal/vertical lines (after

rotation) while relaxing others. In Fig. 5 we show an exam-

ple illustrating this mechanism. In the input image Fig. 5(a),

the green pencil is tilted +10.5◦. This pencil will be hori-

zontal if the image is rigidly rotated by Δ = +10.5◦. Our

content-aware method maintains such rotation of this pen-

cil, as in Fig. 5(b). But our method relaxes the rotation of

other pixels (i.e., lines in other orientations). In this interest-

ing example, our method behaves like rearranging the pen-

cils but not strictly rotating all of them.

This relaxation gives us more room to trade off other fac-

tors like shape preservation. It can be expected that if lines

of all orientations are treated strictly, the result will be dis-

torted more. To test this effect, we modify the data term

weight δm in Eqn.(1) and set them as equal (103) for all the

bins. Unlike our original way that adapts to the orientations,

this modified way is non-adaptive and forces lines of all ori-

entations to undergo strict rotation. Fig. 6(b)(c) shows the

comparisons of these two ways. Fig. 6 (bottom) shows the

rotation angle θm of each bin m. We see the non-adaptive

way respects all rotation, but at the price of larger distortion

(Fig. 6(c)). On the contrary, our adaptive way produces a

visually more pleasing result (Fig. 6(b)). Fig. 6 (bottom)

also reveals that our adaptive method constrains only the

canonical bins.

Note the “horizontal/vertical” lines are w.r.t. the 2D im-

age coordinate system (not the 3D world coordinate sys-

tem). This is because in this paper we only model the per-

ceptual sensitivities in the 2D coordinate system. We leave

the case of 3D coordinate systems for future studies.
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(a) input (b) content-aware rotate -10.5°

Figure 5. (a) The input image. The green pencil is +10.5◦ tilt-

ed. (b) Content-aware rotation (-10.5◦ ). The green pencil is kept

horizontal, but the others are relaxed. The input is from [24].

(b) adaptive (c) non-adaptive
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(a) input

bin m

θ
m

Figure 6. Content-aware rotation using adaptive and non-adaptive

angles. The desired rotation angle is Δ = −6.5◦ . (a) Input. (b)

Result using adaptive angles. (c) Result using non-adaptive angles.

Bottom: the optimized rotation angle θm for each each bin m.

About Retargeting Our method is related to a line-

preserving retargeting method [8] and a recent panorama

warping method [14]. But our method has major differ-

ences. Unlike [8, 14] that only preserve the straightness

or orientations of lines, our method manipulates the rota-

tional angles θ of the lines - this is the focus of image ro-

tation. Our method is capable of discriminatively handling

rotational directions (horizontal/vertical vs. others), while

[8, 14] are not. Our energy function also leads to a new and

more challenging optimization problem.

Without angle manipulations, existing retargeting meth-

ods including [8, 14] have no effect when applied for

content-aware rotation. In image rotation, the aspect ratio

of the output image is unchanged or almost unchanged3. If

we apply the existing methods, we can only obtain trivial

3In “rigid rotation + cropping”, the output aspect ratio depends on the

cropping strategy. One could find a crop that preserves the input aspect

ratio, or a largest inner crop that may change the aspect ratio.

content-aware rotation

content-aware rotationrotate 6.1°

input input

rotate -7.5° rotate 6.0°

content-aware rotation

input

Figure 7. Rigid rotation + cropping vs. Content-aware rotation.

Figure 8. The cropping results of Fig. 2 and 4.

results that are identical or almost identical to the input.

4. Experiments

We assume the rotation angles are given by the users.

There is no other user interaction. All parameters are fixed.

Comparisons with Rigid Rotation + Cropping In Fig. 1
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(d) Photoshop, content-aware fill (f) He and Sun, ECCV 2012 (g) Kopf et al., Siggraph Asia 2012(e) Darabi et al., Siggraph 2012

(a) input (b) rotated -7° (c) our content-aware rotation

Figure 9. Comparisons with state-of-the-art image completion techniques. (a) Input. (b) Rotated by -7◦ . (c) Our result. (d) Content-aware

filling in Photoshop [3]. (e) Darabi et al.’s [10]. (f) He and Sun’s [15]. (g) Kopf et al.’s [17].

and Fig. 7 we show comparisons with rigid rotation fol-

lowed by cropping. We also show the cropping results of

Fig. 2 and 4 in Fig. 8. Our content-aware rotation method

creates perception similar to the results of rigid rotation, but

maintains the integrity of the image content.

Comparisons with Image Completion Another possi-

ble solution is to fill the missing region (after rigid rota-

tion) using image completion techniques, though they are

not originally designed for this purpose. We compare with

several recent state-of-the-art techniques in Fig. 9: Content-

aware fill in Photoshop [3] (partially based on [30, 5]),

Darabi et al.’s [10], He and Sun’s [15], and Kopf et al.’s
[17]. All these image completion methods are exemplar-

based. They may produce poor results when the required

examples are missing in the images. They also have limi-

tations in synthesizing semantic content. Our warping so-

lution does not suffer from these problems. Please see the

supplementary materials for more comparisons.

From the viewpoint of users, image completion and our

solution are not competing. Users need a new option when

completion fails. We expect our novel solution would help

the users to better solve their practical problems.

Generalizations In some special cases, the artist may de-

liberately tilt the images, known as “tilted composition” in

photography [26]. Our content-aware rotation method can

be easily generalized to this application, thanks to its flex-

ibility on the angle manipulation. For simplicity we sup-

pose the horizons are level in the input images (Fig. 10(a)),

but other cases are compatible. Unlike in Sec. 3.1 where

we considered “canonical” bins as those of output horizon-

tal/vertical lines, here we consider them as those of input
horizontal/vertical lines. In this way, the input horizons will

be strictly rotated and others are relaxed. Fig. 10(c) shows

two examples.

Limitations Like retargeting methods, our content-aware

rotation method attempts to find visually unnoticeable op-

erations. But this task becomes challenging when there is

little room for such operations. This can be the case when

the image content is visually important in many local re-

gions, or the rotation angle is large. In this case our method

may produce noticeable distortion, as in Fig. 11.

5. Conclusion
We have presented the perceptually motivated Content-

Aware Rotation. We believe it is interesting and useful to

harness the human vision properties for developing com-

puter vision/graphics techniques.

Technically, we have introduced a warping method that

can directly and flexibly manipulate the rotation angles.

This formulation can possibly be used in other warping-

based applications and improve the quality.
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