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Abstract

Most stereo correspondence algorithms match support
windows at integer-valued disparities and assume a con-
stant disparity value within the support window. The re-
cently proposed PatchMatch stereo algorithm [7] over-
comes this limitation of previous algorithms by directly esti-
mating planes. This work presents a method that integrates
the PatchMatch stereo algorithm into a variational smooth-
ing formulation using quadratic relaxation. The resulting
algorithm allows the explicit regularization of the disparity
and normal gradients using the estimated plane parame-
ters. Evaluation of our method in the Middlebury bench-
mark shows that our method outperforms the traditional
integer-valued disparity strategy as well as the original al-
gorithm and its variants in sub-pixel accurate disparity es-
timation.

1. Introduction
Most stereo matching algorithms are based on the as-

sumption that the pixels within the matching window share

the same disparity value. Further very often only discrete

disparity values are considered leading to discrete depth

layers. One reason for the widespread use of this simpli-

fied model is that the number of likelihood evaluations for

more precisely sampled disparities and the inclusion of dis-

cretized surface orientations quickly becomes intractable.

On the other side sub-pixel accurate depth values are neces-

sary to create plausible and precise meshes or point clouds.

Bleyer et al.[7] showed that the PatchMatch algorithm

[4, 5] can be applied for stereo matching using slanted sup-

port windows so that instead of just estimating a single dis-

parity value for each pixel a complete disparity plane es-

timation is made. The PatchMatch algorithm does not try

to discretize the space of the likelihood function, but rather

relies on randomized sampling and propagation of good es-

timates. This also results in an implicit smoothing model,

when good estimates are propagated in the direct neighbour-

hood. But the implicit smoothing can also lead to problems

when wrong or unreliable estimates are propagated. In the

Figure 1: Stereo pair taken from [13] and a point cloud cre-

ated by using the sub-pixel disparity map generated by our

algorithm.

stereo case this problem can occur in homogeneous untex-

tured regions, regions with repeating structures and extreme

sampling choices e.g. normals nearly orthogonal to the view

direction.

To alleviate these problems an explicit smoothing model

based on the combination of PatchMatch and Particle Belief

Propagation resulting in the PMBP Algorithm [6] has been

recently proposed, leading to improved results compared

to the original algorithm. We present an algorithm based

on an explicit variational energy formulation combining the

PatchMatch stereo algorithm with regularization of the dis-

parity and normal gradients resulting in sub-pixel accurate

disparity maps improving the state of the art. Our disparity

maps are well suited for the creation of point clouds without

discretization or staircasing artifacts as shown in figure 1.

1.1. Contribution

In this paper we show that the projections of scene points

belonging to the same planar surface in rectified stereo pairs

are fully related by a linear transformation with three de-

grees of freedom. This has already been shown in [7] for

planes in the disparity space and is in the following ex-

tended to the real scene space of fully calibrated and rec-
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tified stereo cameras.

Our main contribution is an explicit variational smooth-

ness model for the PatchMatch algorithm using quadratic

relaxation [12, 17]. In [17, 14] only the first order deriva-

tives of the optical flow vectors and disparity-values have

been considered, but the proposed algorithm allows us to

control the smoothness of the first-order and second-order

derivatives of the disparities. The second-order derivatives

of the disparities are implicitly determined by the gradient

of the normals estimated by the PatchMatch algorithm. In-

stead of performing an exhaustive search as in [17, 14] for

the evaluation of the data term we employ the PatchMatch

algorithm. Evaluation of the proposed method for stereo

pairs of the Middlebury benchmark [15] shows its effective-

ness in estimating sub-pixel accurate disparity maps. At the

time of writing we are currently ranked at position 1 out of

about 145 algorithms for the sub-pixel error threshold 0.5.

2. Method
2.1. Slanted support windows

In [7] the authors showed how planes in the disparity

space affect the patch neighbourhood. For completeness we

repeat their result. Given an image point p = [x0 y0 1 ]�

with the disparity value z0 and a normal n = [nx ny nz ]
�

we can calculate the d parameter of a plane π =
[
n� d

]�
with d = −nxx0 − nyy0 − nzz0. This follows from

π�[x0 y0 z0 1 ]� = 0, which must hold if the point lies

on the plane π. Therefore the disparity value z of any im-

age point [x y ]� on the plane is given by

z =
−nxx− nyy + (nxx0 + nyy0 + nzz0)

nz
. (1)

We can reformulate this as a linear transformation assuming

that the point in the second image is given by p′ = p −
[ z 0 0 ]� with z being the disparity as

p′ =

⎛
⎝1 + nx

nz

ny

nz
−nx

nz
x0 − ny

nz
y0 − z0

0 1 0
0 0 1

⎞
⎠p. (2)

For the general case we make use of prior knowledge

about the camera projection matrices P = K[I | 0] and

P ′ = K ′[R | t] with the origin set at the first camera. Then

the plane-induced homography from the first to the second

camera [10](p. 327) is given by

Hπ = K ′
(
R− t n�

d

)
K−1 (3)

for a plane π =
[
n� d

]�
with normal n and distance d to

the origin. For a rectified stereo camera setup the rotation

is the identity I and the translation between the cameras is

given by [ b 0 0 ]
�

with b being the baseline between the

cameras. Assuming identical intrinsics K = K ′ due to the

rectification process and K being an upper triangular matrix

the resulting homography is

Hπ = K

(
I − 1

d

�
[ b 0 0 ]

�
n�

)
K−1 (4)

= I −K
1

d

⎛
⎝b nx b ny b nz

0 0 0
0 0 0

⎞
⎠K−1. (5)

From equation (2) and (5) it follows that in the case of

disparity and scene planes the transformation between two

rectified images induced by a plane has only three degrees

of freedom with a being the scaling, b the shearing and c the

translation resulting in the matrix with the following struc-

ture ⎛
⎝1 + a b c

0 1 0
0 0 1

⎞
⎠ . (6)

The effects on the support window is shown in figure 2.

Figure 2: Illustration of the shearing and scaling transfor-

mation induced by disparity and scene planes.

To map from the second image to the first image the in-

verse of the matrix from equation (2) or (5) can be used.

2.2. Model

Given two rectified stereo color images I1, I2 : (Ω ⊂
R

2) → R
3, a disparity map d : Ω → R and a normal map

n : Ω → {x ∈ R
2 : |x| ≤ 1} our algorithm is based on

minimizing an energy of the form

E(d,n) = λEdata(d,n) + Esmooth(d,n), (7)

consisting of a data term describing the similarity between

pointwise matches in the stereo pair and a smoothness

term favoring similar disparity and normal values of ad-

jacent pixels. In the following n refers to the non over-

parametrized representation of the normal containing only

two components. If needed the normal n̂ with three com-

ponents can directly be calculated from n since we only

consider the normals from one half of the unit sphere1. Our

data term is similar to the one used in [7]

Edata(d,n) =

∫
Ω

1

Z

∑
q∈N (p)

w(p,q) ρ(q, T (d,n)q) dp.

(8)

1n̂ = [ nx ny

√
1− n2

x − n2
y ]�
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T is one of the linear transformations parametrized by d
and n given in equation (2) or (5) and ρ measures the pixel

similarity between the patches:

ρ(p,q) =(1− α)min(‖I1(p)− I2(q)‖1, τcol)
+ αmin(‖∇I1(p)−∇I2(q)‖1, τgrad). (9)

I1(p) and I2(q) in the previous equation are the linearly

interpolated pixel color-values in the respective stereo im-

ages and ∇I is an four channel image containing the im-

age derivatives calculated by the horizontal and vertical So-

bel operator and diagonal gradients calculated using central

differences. The derivatives are calculated from grayscale

versions of the stereo images. The function w in equation

(8) computes a weighting mask based on the color similar-

ity between the center pixel p and the other pixels q inside

the patch

w(p,q) = e−γ(p,q)||I1(p)−I1(q)||1 . (10)

In our formulation of w the γ value changes with distance

to the center

γ(p,q) = γmin + γradius smoothstep(0, rmax, |q− p|).
(11)

The reasoning behind the varying γ is that pixels close to the

center belong more likely to the same plane and that pixels

far away have to be very similar in terms of their color-

distance to get the same consideration. This formulation is

different to a decreasing weighting factor with increasing

distance. Z is an normalization constant with

Z =
∑

q∈N (p)

w(p,q). (12)

Our regularization term Esmooth imposes spatial

smoothness on the disparity-values d and the normals n re-

sulting in

Esmooth(d,n) =

∫
Ω

g(p) |∇d|εd + g(p) |∇n|εn dp, (13)

with | . |ε being the robust Huber norm

|x|ε =
{ |x|2

2ε if |x| ≤ ε ,

|x| − ε
2 else

. (14)

As depth and normal discontinuities often occur at strong

image gradients we introduce the per-pixel weighting func-

tion g(p) with

g(p) = e−ζ|∇I1(p)|η . (15)

2.3. Solution

Following [3, 12, 17, 14] we use quadratic relaxation

to decouple our data and regularization term. Introducing

an auxiliary vector field allows us to perform two alternat-

ing minimizations approximating the original minimization

problem. This results in the following auxiliary energy for-

mulation

Eaux(du,nu, dv,nv) =

∫
Ω

λEdata(du,nu)

+
θ

2
(Πv −Πu)

� Σ (Πv −Πu)

+ Esmooth(dv,nv) dp, (16)

with

Πw = [nw dw ]� (17)

and Σ = diag(σn, σn, σd) being a diagonal matrix weight-

ing the squared distances of the normals and the disparity

values. Forcing θ to infinity drives the variables Πu and Πv

together and results in lim
θ→∞

Eaux ≈ E. We split the op-

timization of the Eaux into two sub-problems, namely one

optimization problem involving Πu with fixed Πv and an-

other one with Πv and fixed Πu. We collect all fixed terms

independent of argument minimizing variable in a constant

c.

Fixed Πu, solve for Πv

For optimization of the energy Eaux we make use of a

primal-dual formulation of the Huber-ROF model as de-

scribed by Chambolle et al. [8]. The Legendre-Fenchel

transformation of the weighted Huber norm g |x|ε using

a h(x)⇒ a h∗( pa ) (a > 0) is given by

(g |x|ε)∗(p) =g sup
x

{
1

g
x�p− |x|ε

}

=
ε

2 g
p�p+ δ

(
1

g
p

)
, (18)

where δ is the indicator function. With the previous result

the minimization problem of Eaux with respect to dv can be

written as

arg min
dv

Eaux =arg min
dv

sup
pd

E(dv,pd) (19)

=arg min
dv

sup
pd

{∫
Ω

g(p) 〈∇dv,pd〉

− εd
2 g(p)

p�d pd − δ

(
1

g(p)
pd

)

+
θσd

2
|dv − du|2 dp+ c

}
. (20)
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Figure 3: From left to right: One image of the portal stereo pair from [2], our disparity map after initialisation, disparity map

after the 1st iteration, the final disparity map and two images with different views of a point-cloud generated using the final

disparity map.

We take the derivative of E(dv,pd) with respect to dv and

p and using the divergence theorem we get

∂E(dv,pd)

∂dv
=g(p) divpd + θσd (dv − du) (21)

∂E(dv,pd)

∂pd
=g(p)∇dv − εd

g(p)
pd. (22)

The formulation of the Eaux minimization with respect to

nv is analogous and leads to the following derivatives

∂E(nv,pn)

∂nv
=g(p) divpn + θσn (nv − nu) (23)

∂E(nv,pn)

∂pn
=g(p)∇nv − εn

g(p)
pn (24)

with pn being the dual variable. To solve the energy min-

imization with respect to Πv we use gradient descent and

ascent as in [14]

pt+1
d − ptd
βd

= g(p)∇dtv −
εd

g(p)
pt+1
d (25)

dt+1
v − dtv

νd
=− g(p) divpt+1

d − θσd (d
t+1
v − du) (26)

pt+1
n − ptn
βn

= g(p)∇nt
v −

εn
g(p)

pt+1
n (27)

nt+1
v − nt

v

νd
=− g(p) divpt

n − θσn (n
t+1
v − nu) (28)

and perform several inner iterations using the following up-

date rules

pt+1
d =proj

(
ptd + βd g(p)∇dtv
1 + βdεd g(p)−1

)
(29)

dt+1
v =

dtv + νd (θσddu − g(p) divpt+1
d )

1 + νdθσd
(30)

pt+1
n =proj

(
ptn + βn g(p)∇nt

v

1 + βnεn g(p)−1

)
(31)

nt+1
v =

nt
v + νn (θσnnu − g(p) divpt+1

n )

1 + νnθσn
(32)

where proj projects back onto the unit sphere

proj(x) =
x

max(1, |x|) . (33)

The projection fulfills the constraint of the dual variable

|p| ≤ 1. The super-script denotes here the iteration num-

ber. For the step sizes βd, νd, βn and νn we use the values

of ALG3 reported by Chambolle et al. [8]. Handa et al.

[9] also give a good introduction and further details to the

Legendre-Fenchel transform and its applications.

Fixed Πv , solve for Πu

Instead of performing an exhaustive search as done in

[17, 14] we employ a variant of the PatchMatch stereo al-

gorithm. Given a set of samples S(p) for each point p, the

best sample

s� = arg min
Πu∈S(p)

λEdata(Πu) +
θ

2
(Πu −Πv)

� Σ (Πu −Πv)

(34)

is stored at Πt+1
u (p) after each iteration. We do not follow

the sequential pixel processing scheme from [7], but use a

completely parallel approach. Our set S(p) is defined as

S(p) =SN (p) ∪ {Πv(p)} ∪ SrndN (p) ∪ Srnd(p)
∪ Sview(p) ∪ Srnd �(p). (35)

SN (p) contains the 3× 3 patch of samples centered around

p from the previous iteration. The set SrndN (p) contains

only one particle from Πt
u randomly chosen from the 7× 7

neighbourhood around p. Srnd(p) is one completely ran-

domly chosen sample. The set Sview(p) contains the view

propagated particles. Each position p has storage for a few

view particles and particles from the other view are prop-

agated if storage is still available. Srnd �(p) is an slightly

randomly perturbed particle based on the best particle from

S(p)\Srnd �(p).
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In figure 3 different stages of our algorithm are shown for

a stereo pair and the corresponding final disparity map to-

gether with a generated point cloud. The randomized sam-

pling after the initialisation is clearly visible in the image,

but already after one iteration the first samples have been

successfully propagated in the neighbourhood.

2.4. Implementation Details

We perform the depth and normal map estimation in both

images of the stereo pair. This allows us to perform the

view propagation of samples and also left-right consistency

checking. The left-right consistency checking plays an im-

portant role in our algorithm, because it allows the removal

of inconsistent results. Especially in the occluded areas ar-

bitrary particles with inconsistent disparity and normal val-

ues are very often persistent. Therefore after each Patch-

Match iteration - before we apply the Huber-ROF smooth-

ing - we fill the occluded areas with the next non-occluded

plane-particle from the same scanline with the more distant

depth value at the occluded position as illustrated in figure

4. This is similar to the post-processing proposed in [7] but

without the weighted median filtering step. Our occlusion

checking not only uses the depth values but also the plane

normals and allows only disparity differences up to 0.5 and

normal deviations of 5◦. For lookup of the plane parameters

in the second image we do not use linear interpolation but

nearest neighbour sampling. The occlusion-filling is also

done for the final result and is the only post-processing step

we perform. For the initialisation we found it beneficial

sl

sr

Figure 4: The occluded gray area in the first view is filled

using the plane parameters from position sl. Resulting in

disparity values as indicated by the dotted line. sr although

also visible in both views is not chosen, because its plane

would result in closer disparity values.

to draw normal samples more restrictively and the normals

of the first PatchMatch iteration are within the 0.5 radius

|[nx ny ]
�| ≤ 0.5. To allow propagation and refinement of

the particles in the first iterations of the algorithm we per-

form a few iterations with θ = 0. We control the values of θ
during the iterations using the smoothstep function. Each

iteration consists of one PatchMatch iteration followed by

several inner iterations for smoothing using the weighted

Huber-ROF model.

2.5. Runtime

Our algorithm has been designed to be executed on mas-

sively parallel architectures. Our PatchMatch sampling

strategy is completely parallel in contrast to the original

PatchMatch stereo algorithm. Also the Huber-ROF sub-

problem can be solved very efficiently on parallel architec-

tures. The runtime of our algorithm highly varies with the

parameter settings and number of iterations. For the high-

quality settings as used for the Middlebury benchmark eval-

uation our algorithm has a runtime of about 2 minutes. For

the PatchMatch stereo algorithm the authors reported a run-

time of about 1 minute for an average Middlebury pair [7].

Different settings for our algorithm allow the estimation of

disparity maps in a few seconds. Our current GPU imple-

mentation is completely unoptimized and several obvious

performance enhancements have not been exploited yet.

2.6. Method Parameters

In the following we assume that the values of the stereo

image channels are in the range [0, 1]. The size of the patch

considered in the data term is 41×41 pixels centered around

the pixel p. For setting the α, τcol and τgrad parameters

we mainly follow [7] and set them to {α, τcol, τgrad} =
{0.05, 0.04, 0.01}. The new parameters γmin, γradius are set

to 5 and 39 and rmax to
⌊√

2 · 202
⌋

. The parameters of the

weighting function g are set to {ζ, η} = {3, 0.8}. εn and

εd of the robust Huber norm were both set to 0.001. The

value of θ · σn starts at 0 and goes up to 50 with an addi-

tional offset of 5 for the weighted Huber-ROF smoothing of

the normals. For the intermediate disparity maps we use a

range from 0 to 1, therefore θ · σd takes values between 0
and 50

dmax
again with an special offset of 5

dmax
. dmax is the

maximum allowed disparity value. For the computation of

the data term we set λ = 50.

3. Evaluation
For the evaluation of our algorithm we use the Middle-

bury stereo benchmark [15, 1]. Our results for the Middle-

bury stereo benchmark were made using constant param-

eters as described in the previous section. The maximum

allowed disparity was fixed to 60 and used for all four pairs.

This shows that our algorithm does not necessarily need

to know the disparity range in advance. Our Middlebury

benchmark results for the error threshold 0.5 are shown in

table 1. At the time of writing we are currently ranked at

position 1 out of about 145 algorithms for the sub-pixel er-

ror threshold 0.5. We achieve results comparable or better

than the original PatchMatch stereo implementation [7] and

the PMBP method [6] that also has an explicit smoothing

model. The final disparity maps and also the error maps

for the 0.5 error threshold are shown in figure 5. For the

error-threshold 1 our algorithm has rank 25. As mentioned
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Avg. Tsukuba Venus Teddy Cones

Rank nonocc all disc nonocc all disc nonocc all disc nonocc all disc

1. Our method 5.3 7.12 9 7.80 8 13.7 7 1.00 8 1.40 9 7.8013 5.532 9.362 15.93 2.701 7.901 7.771

2. SubPixSearch 5.8 5.60 2 6.23 2 9.46 3 1.0710 1.6410 7.36 9 6.715 11.04 16.95 4.027 9.765 10.37

3. PMF 8.8 11.030 11.427 16.025 0.72 4 0.92 3 5.27 4 4.451 9.443 13.71 2.892 8.313 8.222

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

5. PMBP 12.9 11.939 12.335 17.842 0.85 6 1.10 4 6.45 7 5.603 12.06 15.52 3.483 8.884 9.414

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

10. PatchMatch 20.1 15.057 15.456 20.369 1.00 9 1.34 8 7.7512 5.664 11.85 16.54 3.805 10.26 10.26

Table 1: First three entries from the Middlebury stereo benchmark [15] and additionally the results from PMBP [6] and the

original PatchMatch-Stereo [7] algorithm. Our algorithm is currently ranked at position 1 out of about 145 algorithms for the

error-threshold 0.5. Subscripts denote rankings in the table.

Figure 5: From left to right: one of the input images, ground-truth disparity map, our result and the disparity errors > 0.5.

From top to bottom: Middlebury stereo pairs [15] Tsukuba, Venus, Teddy and Cones.

before, we did not perform the weighted median filtering

step of the original algorithm and we assume that this leads

to the slightly worse results for the 1 threshold. To empha-

size the sub-pixel accuracy of our algorithm we also created

point clouds of some Middlebury datasets that contain pla-

nar and curved surfaces as depicted in figure 6. The head
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and the ground-plane of the Art scene are well reproduced

by the point cloud. Also the curved surface of the platform

in the Baby1 scene is very smooth and does not exhibit stair-

casing or discrete depth layer effects. For the Phong shaded

point clouds the normals estimated by our algorithm have

been used instead of estimating them using neighbouring

vertices. Videos of the point clouds can be found the sup-

plementary material.

In order to show that our algorithm also works for more

realistic data we tested it using two rectified and down-

scaled images from Strecha et al. [18]. The resulting point

cloud is shown in figure 7. Another point cloud created

from our disparity maps is shown in figure 1.

Figure 6: Colored and Phong shaded point clouds of the

Middlebury datasets Art, Baby1, Cones and Cloth3 [16, 11].

Figure 7: A point cloud created from a rectified stereo pair.

Images provided by Strecha et al. [18].

4. Conclusion
We presented an new approach to combine the random-

ized sampling of the PatchMatch algorithm with an explicit

variational smoothing method that gives control of the dis-

parity and normal gradients. Our evaluation shows that

we achieve very good sub-pixel results in the Middlebury

benchmark that make our algorithm well suited for the gen-

eration of point clouds or meshes. In the future we would

like to extend our algorithm to multi-view, which proba-

bly can be done using equation (3). The estimated normals

are also maybe useful for depthmap merging and multi-

view reconstruction. Additionally we would like to op-

timize our current GPU OpenCL implementation towards

real-time frame-rates. Also a modified version for the esti-

mation of optical flow is already planned.
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