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Abstract

Although specular objects have gained interest in recent
years, virtually no approaches exist for markerless recon-
struction of reflective scenes in the wild. In this work, we
present a practical approach to capturing normal maps in
real-world scenes using video only. We focus on nearly pla-
nar surfaces such as windows, facades from glass or metal,
or frames, screens and other indoor objects and show how
normal maps of these can be obtained without the use of an
artificial calibration object. Rather, we track the reflections
of real-world straight lines, while moving with a hand-held
or vehicle-mounted camera in front of the object. In con-
trast to error-prone local edge tracking, we obtain the re-
flections by a robust, global segmentation technique of an
ortho-rectified 3D video cube that also naturally allows ef-
ficient user interaction. Then, at each point of the reflective
surface, the resulting 2D-curve to 3D-line correspondence
provides a novel quadratic constraint on the local surface
normal. This allows to globally solve for the shape by in-
tegrability and smoothness constraints and easily supports
the usage of multiple lines. We demonstrate the technique
on several objects and facades.

1. Introduction
Reflective surfaces are a key design element in modern

architecture and facades of skyscrapers and office towers
are often dominated by glass and metal. Also many shops
and even some particular private houses show large reflec-
tive surfaces, sometimes designed specifically to generate a
certain impression.

The appearance of such buildings depends largely on
what is reflected and in which way the surrounding scenery
is distorted by the reflection. Many of the reflective sur-
faces are flat or nearly flat, but small deviations of the sur-
face normals can nevertheless generate very strong distor-
tions in the reflections. The reason for the small variations
of the normals can be imperfections of the glass manufac-
turing, mechanical fixation, or can be part of the intended
design. This results in many reflecting surfaces having their
own specific distortion patterns, e.g. Fig. 1 shows a charac-
teristic example. It has been shown very recently that con-
sidering reflections can significantly improve the realism of

∗This work was done while this author was employed by ETH Zürich.

Figure 1. Real-world glass reflection. Notice that reflection in dif-

ferent windows on the same facade can appear very different due to

minor deformations and normal variations. Our goal is to capture

normal maps of real windows to faithfully reproduce this effect.

image-based rendering techniques [22], however this was
restricted to objects that behave like perfectly planar mir-
rors. One reason for this restriction might be that no practi-
cal way is known to capture the surface normals of big real
world objects like shop windows or entire glass facades.
Consequently, when digitally modeling distorted windows
as perfectly flat this will dramatically hurt realism of the
virtual 3D building or virtual city model. It is well known
that realism can be added to the glass reflections by using a
normal map [5] and the current state of the art practice for
modeling windows in such models consists of using a plau-
sible, generic bumpmap template (e.g. bulge), potentially
perturbed with some low-frequency random noise pattern.
Such a ’randomized surface’ approach avoids the immedi-
ate synthetic impression created by perfect mirrors. How-
ever, it cannot easily be used to mimic the specific visual
reflection patterns characteristic for a particular building or
window. In contrast, our goal with this paper is to propose
a practical approach to capture these small, but visually sig-
nificant normal variations of real-world reflective surfaces
outside the lab. As we will discuss in the related work sec-
tion, to the best of our knowledge, this is the first approach
demonstrated to be able to capture normal maps of outdoor
windows, in place.

Our work should be seen as fitting in a major trend in
computer vision and graphics that consists of developing
techniques for capturing 3D models [19, 17] and measur-
ing surface properties [6, 4] of surfaces to generate faithful
copies of the real-world. More specifically, there has re-
cently been a lot of interest in capturing visual models of
cities [9, 18, 11]. It should be noted that existing techniques
for capturing buildings struggle with windows as these do
not reflect sufficient laser-light back to the range sensor or
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due to their reflective nature violating the Lambertian as-
sumption underlying most image-based techniques.

The key idea we follow is to track the (curved) reflections
of real world straight lines (e.g. typically a line observed on
the opposing facade) when moving a video camera (hand-
held, or mounted on a capture vehicle) in front of the win-
dow of interest. Under the assumption that the window is a
plane at a certain distance, we attribute the deformation of
the straight line to variation of the local normal. Essentially,
first we estimate the pose of the camera and the position
of the 3D line before we track the curved reflection in the
video. As we have to estimate the two degrees of freedom
of the normal and each observation provides a single con-
straint, two passes of different lines (e.g. a horizontal and a
vertical one) would be required and sufficient to determine
each normal locally. However, similarly as in shape-from-
shading, when we consider only physically plausible, global
solutions for the set of normals forming a smooth surface,
a single pass combined with integrability and smoothness
assumptions are sufficient to recover the whole normal map
for the window. This normal map can be used e.g. in ray-
tracers to realistically render the reflections of the window
that was captured. Before describing our approach more in
detail, we discuss previous work with respect to normal and
shape estimation of reflective surfaces.

2. Previous Work and Contribution
Specular surfaces, although present everywhere in man-

made environments, still pose challenges for camera track-
ing, 3D reconstruction (cf. to Ihrke et al. [12] for a recent
survey) or view interpolation. Towards this end, recently
Sinha et al. [22] have presented an image-based rendering
approach that addresses the problem of realistic mixing of
reflected light and transmitted light using proxy geometries.
In terms of 3D reconstruction of the specular surface itself,
e.g. Zisserman et al. [29] infer surface properties from a
specular reflection of a single light source. Later, Savarese
et al. [21] use a calibrated camera observing a planar pattern
and analyze which surface properties could be inferred from
local measurements of a point plus a variable number of lo-
cal directions (e.g. a point-to-point correspondence and two
local directions can be used at each corner position when
clicking correspondences on a chessboard pattern). Roth
and Black [20] formalize the concept of specular flow and
show that for a distant reflected scene it can in principle
be used to recover shape. The theoretical properties of the
specular flow are further studied by Vasilyev et al. [25] who
also propose reconstruction algorithms under the assump-
tion that the specular flow is given. In fact, this is a major
stumbling block as the specular flow is much more compli-
cated to estimate than the standard (diffuse) optical flow and
no algorithms exist for doing this from real-world imagery.
This is also the reason why we have resorted to track the
reflection of lines instead of points as this is more feasible.
However, in this case we only obtain a single constraint per
point traversed by the reflection of the line. Notice also that
the reflection of a line can consist of multiple curves as the

topology of the reflection can change (as we will see later),
which makes optical flow virtually impossible and even the
tracking of lines very challenging. The shape from specular
reflection problem, as we pose it, creates a constraint on the
surface normal at each position that is quadratic, but, apart
from this last fact, it is closely related to the shape from
shading problem [28] as only a single constraint on the two
degrees of freedom of the normal is obtained directly from
the measurements.

The novelty of our work lies in the fact that we do
not require a specifically designed calibration target like
a checkerboard [7] or a pattern on a calibrated moni-
tor [8, 24, 14, 2, 15]. To our knowledge, our paper is the
first to present practical results on outdoor reconstruction
of specular surfaces. As we focus in particular on near-flat
surfaces like windows, we discuss related work addressing
this case more in detail. Here, Ding and Yu [7] also recon-
structed properties of almost flat surfaces. However, they
require a calibration object to be held in front of the sur-
face. The object they use is a color-coded checkerboard pat-
tern that allows to establish point correspondences between
the reflection and known 3D coordinates on the checker
board. In a later work Ding et al. [8] also use reflections
of lines, however, they require many known 3D lines that
intersect the specular surface, which in practice makes the
approach impossible to use in uncontrolled environments.
Recently Liu et al. [15] uses dense (or sparse with B-spline
parametrized smooth surface) correspondences between a
known calibration pattern and a single image to reconstruct
the surface. The need to know exactly the calibration pat-
tern to compute correspondences makes also this method
impracticable in uncontrolled environments. Consequently,
we consider the main contributions of our work :

• the exploitation of existing scene structures only (in
practice big windows would require unrealistically big
calibration targets)

• a novel constraint on the surface normal derived
from point-to-line correspondences rather than point-
to-point. The line reflection passing over the surface
allows to scan very densely instead on a few sparse
feature positions

• camera tracking in reflective scenes where patch-
feature-based approaches fail, allowing to rectify video
frames with respect to the window frame

• robust, efficient line reflection tracking by 3d ortho-
video cube segmentation that supports line topology
changes

• both direct local estimation of normals (by using more
than one 3D line) or global optimization by incorpo-
rating integrability constraints and shape priors

This altogether results in - to the best of our knowledge -
the first system that is able to capture normal maps in real-
world conditions, at physically inaccessible facades, on top
of being very practical as all it needs is a video camera.
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Figure 2. Overview of our normal map capturing pipeline.

3. Normal Map Capture
In this section we will present the general system (see

also Fig. 2). After having moved a camera such that a 3D
line’s reflection passes over a window, we compute the cam-
era path. We then rectify the video and track the reflection
of the line in order to first approximate the 3D line’s pa-
rameters (using reflection on the boundaries). Finally, we
estimate a normal map for the window that in turn can be
used to improve the 3D line’s estimate and vice versa.

3.1. Tracking the Camera

When using a capturing vehicle for acquiring panoramic
street-level data, the trajectory is often already available or
could be computed reliably from omni-directional images
and additional sensors eg. GPS/INS or wheel odometry.
Using images only, for big reflective facades often every-
thing is reflective but a grid of lines. This fools state of
the art Structure-from-Motion algorithms like [26]. Con-
sequently, in the following we briefly outline a technique
based on vanishing points and chamfer matching to track
the camera motion in planar, highly reflective scenes like
the one shown in Fig. 1.

For each frame of the video that scans e.g. a window on a
facade we estimate vanishing points using the software pub-
lished1 by Baatz et al. [1]. Although orthogonality of van-
ishing points can also reveal the focal length, we assume a
camera with known intrinsics. After rectifying with respect
to vanishing points we obtain a video with constant cam-
era orientation (aligned with facade directions). We set our
world coordinate system origin into the plane such that the
first image’s camera center has coordinates (0,0,-1).

In order to obtain the relative camera motion, we track
the edges that support the vanishing points (i.e. we remove
curved reflections). Rather than tracking all edges at once,
we exploit the fact that we have stable orientation and sub-
divide the remaining (horizontal and vertical) edges into
the four directions according to their gradient (north, south,
east, west). For each of the four sets of edges, Chamfer
matching[3] between subsequent frames is performed, how-
ever with a joint set of parameters for x,y and z translation
(z-translation corresponding to scaling). To compensate for
potential drift and small jitter from vanishing point estima-
tion, we finally register all images to the first one using a
full 6 degree of freedom pose parameterization also using
Chamfer matching, where we can also optionally enforce
straight motion, e.g. for sequences taken from a vehicle.

1available at http://people.inf.ethz.ch/gbaatz/software/

Figure 3. Ortho-rectified input image (left) and oriented edge im-

age (right): Vertical edges are in green and blue (positive and neg-

ative gradient), horizontal ones are in red and magenta.

Figure 4. Monotonicity of traversal. For a point O with normal n,

the reflection of the line l would intersect a straight path from A to

C in a unique point B. Therefore l is only seen at O from B.

3.2. Tracking the reflected lines
As a first step the facades and windows need to be de-

tected in the input video. While recent advances on facade
parsing (e.g. Martinović et al. [16]) have shown the pos-
sibility to detect facades and find facade elements such as
windows fully automatically, in the present work windows
were hand-selected in one reference frame.

In order to estimate the normal map of a detected win-
dow, the position of the 3D line’s reflection inside that win-
dow has to be known. A difficulty of this task is that, due to
the distortions, this reflection is no longer a line in the im-
age, it is not even guaranteed to be one connected curve as
depicted in Fig. 5. Therefore standard line tracking methods
cannot be applied.

We will use the fact that the camera moves approxi-
mately along a straight line to reformulate the problem of
tracking the line as a volumetric segmentation problem.

Observation 1. Having a straight camera path, the reflec-
tion of a static 3D line will be observed at a certain position
O = (u, v) of a static window only in one frame t (or in
no/all frames).

Proof. Let π(O,�n) be the plane going through O with nor-
mal �n, πl be the plane going through O containing l, and
πsym
l the reflection of πl with respect to π(O,�n). πsym

l is the
only location where l can be seen at O. The straight cam-
era path will hence intersect πsym

l in one single frame (or in
all/no frames). See Fig. 4 for a 2D illustration.

Obs. 1 means that once the reflection has passed over
a particular window position (u, v), it cannot be seen there
again from a later camera position and this allows to formu-
late the reflection tracking as a binary segmentation prob-
lem: before and after the reflection.

The input video is first rectified to a u-v-t video volume
per window. Given that the camera positions and the facade
plane are known, we can warp the images to fronto-parallel
views (see Fig. 3). Stacking the fronto-parallel views of
the extracted windows along the t direction leads to a video
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volume per window. (u, v) are the pixel coordinates in the
local window coordinate frame. According to Obs. 1 at
each point on the window the line can only pass once and
therefore the surface that separates “before” and “after” the
line forms a height field (in temporal direction). The height
for a particular (u, v) position tells when the line has passed
this position.

As the segmentation boundary should be at the position
of the reflected line we expect a high gradient in the input
video volume at this position. Furthermore the normal of
the segmentation boundary should align with the gradient
inside the volume.

There are many volumetric segmentation methods pub-
lished that can handle this situation. We chose to use the
method described in Zach et al. [27]. The segmentation
is described as a convex optimization problem in the con-
tinuum. It is particularly applicable for this problem as
it allows to directly align the normal of the segmentation
boundary with the gradient orientation inside the volume.
This is in contrast to graph based methods where only the
weights of the graph’s edges can be adapted. Additionally,
the height map constraint can be directly enforced.

To bootstrap the optimization we learn the appearance of
the reflected line as follows. Even though the distortions
can be quite strong and the reflected line might even dis-
connect, there are in general always a few frames where
the line is strong enough to be segmented. Therefore we
treat each frame individually in a first step. A cut through
the window along pixels with strong gradient is optimized,
which gives us candidate line reflections. For each candi-
date two boosted decision tree classifiers [10] are trained.
The first one outputs the likelihoods that a patch is centered
on the line and the second one outputs whether a patch is
likely to lie right before or right after the reflected line (c.f .
Fig. 12). The classification is done pixel-wise. For each
pixel q we use as feature vector the color values of all the
pixels in a window centered around q. Finally we apply
[27] by weighting the gradient lengths in spatial (respec-
tively temporal) direction by line (respectively before/after)
classifier based values.

At this point we want to make a few remarks:

• For difficult cases hard constraints can be added by an-
notating some before and after areas in a few of the
input frames.

• Using a vehicle-mounted omni-directional camera it
would also be possible to train the appearance of the
reflection from a direct image of the 3D line.

• Filtering out candidates resulting in impossible seg-
mentations or normal maps and keeping only the con-
sensus validated normal map leads to a fully automatic
system to track the reflected lines.

• Overall, using volumetric segmentation instead of lo-
cal line tracking, we can naturally handle complex
topology changes of the reflected line as depicted in
Fig. 5.

3.3. Estimating the 3D line position in the world

For the subsequent normal estimation steps we need to
know the position of the 3D line in the world. The parame-
ters for this line are obtained in a two step process, first by
an approximate solution improved afterwards using nonlin-
ear refinement.

Initial 3D Line estimate In practice, it is often quite easy
to obtain a sufficiently good initial guess of the 3D line pa-
rameters e.g. for a vertical line at the opposite side of the
street, just by comparing the camera distance to the facade
and the 3D line distance to the facade. However, the initial
3D line parameters can also be obtained by an image-based
method: When having a closer look at Fig. 1 it can be seen
that the reflection at the boundaries between adjacent win-
dows behaves consistently. This is a general observation
that is also true for the overwhelming majority of facades
that we saw:

Observation 2. All curved line intersections with their
frame boundaries lie on a straight line and this is approx-
imately the perfect mirror reflection of the 3D line on the
facade.

An explanation to this observation would be that the win-
dows have the canonic normal close to the boundary and we
will use this for the initial estimate of the 3D line that is now
derived:

First, we observe that given the camera pose P and the
normal n, a particular point X l on the 3D line in space is
projected to image position c � PMnX l. Herein, Mn
is the 4 × 4 matrix that encodes the reflection on the plane
with normal n. Now given two endpoints of the curve (e.g.
top and bottom for a vertical line) in the image and given
the expected canonic normal ñ close to the boundary (ñ =
(0, 0, 1)�, due to observation 2) we can construct a 2D line
l through these endpoints and backproject the line into 3D
space, resulting in a plane πi for the ith frame of the video:

πi = M�
ñP

�
i li (1)

We bring all planes to normal form and stack the m 4-
vectors to construct a matrix Π. All points X l on the 3D
line must be on all these planes:

ΠX l = 0 with Π = (π1 π2 . . . πm)
�

(2)

The 3D line is then determined as the 2D null space of the
above matrix Π (through singular value decomposition).

3D Line Optimization Once an initial 3D line estimate
is available and given the camera poses and the canonic
normals at the boundaries, we can project the initial 3D
line into image space and minimize the difference between
projected and measured curve for each frame using the
Levenberg-Marquardt method. This allows also to con-
strain the line to being vertical or horizontal. Later, once
the whole normal field is recovered, one can go back to this
stage and even reoptimize the line using all normals and all
observations.
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Figure 5. Cross sections of the video cube with overlayed tracked

line in red. The first two rows show the tracked line on different

frames of the input video. The occuring topology change of the

line is handled properly. In the last row the video cube is cut along

another direction, along which the tracked line forms a height map.

3.4. Estimating the Normal Field
At this point we know the camera poses for each im-

age, the 3D line position and the reflection of the 3D line
in each of the images. To start reconstructing the normals,
we assume that the window is geometrically planar (i.e. all
window points are in the z = 0 plane) but that there are
small variations which we capture in the local normals.

We will now first look locally at a single point in the
image, where we see some points of the 3D line being re-
flected. Tracing back the ray from the camera onto the re-
flective surface, it must be reflected in a way such that it
meets the 3D line in 3D space. However, we do not know
which point on the 3D line we are observing. Each of these
points on the 3D line would give rise to a different local
normal, since the normal is the bisection of the incoming
and the outgoing ray of the reflective surface. We will first
derive the set of normals compatible with a local observa-
tion and show that we obtain a quadratic constraint on the
normal. Given this local constraint, we will discuss how
to disambiguate this by exploiting the fact that the normal
components are actually the slopes of the surface’s height
field and thus cannot vary freely.

Local quadratic constraint on normal The two degrees
of freedom of the local normal are not fully determined
by observing the line’s reflection at some local position.
Rather, depending on which point of the 3D line we are
seeing, this leads to a different geometric configuration.

Let us take the position of the reflective surface point O
in Fig. 6 (left). We wish to find the normal n and for this
consideration we assume that O is the origin of the coor-
dinate system. We also assume we observe this reflective
surface in a camera with center S, and the (normalized) di-

rection of the ray from O to S is Ŝ. The light from a point

X on the line l comes in from a (normalized) direction X̂ .
It is easy to verify that the normal n is aligned with the

sum of the two unit vectors X̂ + Ŝ (as it is the bisector of

the angle ∠(X̂, Ŝ)). When X takes different positions on

the line, X̂ describes the half-circle C0 because of its unit

Figure 6. Left : Illustration of the cone constraint on the normal

n when a point X on the 3D line l is reflected at the origin O
and observed in the camera with center S. n must be the angular

bisector between normalized rays X̂ and Ŝ, forcing it somewhere

on a cone C. The true position on the cone depends on the actually

observed point along the line, an information that is not available.

Right : Normal change implied by a missestimation of the camera

center S: If S is missestimated by some δS, this causes some

angular error α/2 that is approximately the ratio of the error δS
and the (usually very large) distance d to the surface point.

length and Ŝ stays fixed, therefore X̂ + Ŝ is also bound

to be on the half-circle C (C0 lifted by Ŝ). Finally, n is
bound to be on the half-cone with vertex O that contains C.
Algebraically, we start from (� meaning proportional to) :

n � X̂ + Ŝ (3)

Let us name l0 the closest point to O on the line l, l̂0 =

l0/||l0||, l̂dir the unit-length direction of the line l, and θ =

∠(l̂0, l̂dir) (notice that l̂0⊥l̂dir). It derives :

X̂ + Ŝ = cos θ l̂0 + sin θ l̂dir + Ŝ (4)

Then, by using the half-angle substitution t = tan θ
2 (i.e.

cos θ = 1−t2

1+t2 and sin θ = 2t
1+t2 ), we obtain :

X̂ + Ŝ = 1
1+t2

(
Ŝ + l̂0 + 2t l̂dir + t2Ŝ − t2l̂0

)
(5)

n �
(
Ŝ + l̂0 2 l̂dir Ŝ − l̂0

)
︸ ︷︷ ︸

D

(
1 t t2

)�
(6)

Here, the matrix D constructed from the position of the
camera center and the line relative to the surface point
fully encodes the geometric setting. Since the explicitly

parametrized conic
(
1 t t2

)�
has the implicit equation :

( 1 t t2 )
(

1−2
1

)(
1
t
t2

)
= 0, (7)

we obtain : n�D−�
(

1−2
1

)
D−1

︸ ︷︷ ︸
C

n = 0 (8)

which describes an (oblique) cone of normals (of which half
is feasible due to the observation that |t| < 1).

Degenerate Cases The degenerate cases arise when D
does not have full rank. This happens when the point of re-
flection (the origin in this derivation), the line and the cam-
era center are all in one plane (e.g. frontal to a facade and a
vertical line right behind the camera).
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We therefore removed the need of 3D to 2D correspon-
dences of earlier methods by implicitly representing the set
of 3D points possibly reflected at this pixel. The price to pay
is to not directly have the normals but only a cone of possi-
ble normals. The ambiguity could be resolved by observing
another line and intersecting the two (half-)cones to obtain
the normal. Notice that this is different from using the 3D
intersection of 2 lines (tracking a 3D point on a chessboard),
since our 3D lines need not intersect each other (e.g. lamp
post and facade line), and we also allow the other lines to
be acquired independently (e.g. another day). This would
allow for pointwise, independent normal estimates for the
whole window, however due to the local nature of the mea-
surements the estimates might be noisy. Instead, we pro-
pose to exploit constraints related to the physical properties
of the material, i.e. that the normal field has to be smooth
and integrable, therefore resolving the local ambiguity in a
more global manner. As an additional benefit, this allows
recovering normal maps with one single pass, e.g. by a ve-
hicle driving down the road.

Global formulation In order to solve for the normal field,
we design an energy using all the constraints we have on the
normal map, and then minimize it with an iterative method.

E(−→n ) =

∫∫
p∈W

[
1p∈D

(
np

�Cpnp

)2

+ μ

∥∥∥∥∂nx
p

∂y
− ∂ny

p

∂x

∥∥∥∥
2

+ γ

(
∂nx

p

∂x

2

+
∂nx

p

∂y

2

+
∂ny

p

∂x

2

+
∂ny

p

∂y

2)]
dp (9)

Here, −→n stands for the whole 2D vector field over the win-
dow, W ⊂ R2 is the set of points of the window, D ⊂ W
is the set of points where we observed a reflected line,
1p∈D = 1 if p ∈ D else 0, np = [nx

p, n
y
p, 1]

� is the
normal at point p (assuming a near-flat window), Cp is the
quadratic constraint of Eq. (8) at point p.

This energy is made of 3 parts, in order of appearance :

1. the data term, which is the square of the signed alge-
braic distance of each normal to its corresponding al-
lowed cone (note that the square of algebraic distance
to a conic is 4th order and therefore in general not con-
vex).

2. the integrability constraint, we use a soft enforcement
as experiments with hard constraint were more prone
to fall into a local minimum.

3. the smoothness constraint, enforcing neighbor normals
to be close to each other or in other words the curva-
ture of the height field to be low. This energy is also
known as thin plate or bending energy of elastic mate-
rials in physical models. If h is the height map, it can

be rewritten as ∂2h
∂x2

2
+ 2 ∂2h

∂x∂y

2
+ ∂2h

∂y2

2
= div gradh.

Since the window is not infinitely large, we use Neu-
mann boundary conditions, i.e. for the vertical boundaries
we assume that the horizontal normal component stays the
same and vice versa. In terms of window height field as-
sumption that corresponds to linear extrapolation of height

Ground truth

surface, 200×
height-scaled

true horiz.

line pass

rend.

horiz. line

pass

true

vert.

line

pass

rendered

(from

horiz.)

Figure 7. Comparison of reflection on ground truth surface and es-

timated surface. The surface is estimated from a single horizontal

line pass and then this pass is rerendered using the estimated data.

Additionally, reflection of a vertical line on another camera path

is synthesized using the estimated data demonstrating the faithful

reconstruction. Normal error mean and median are 0.1◦.

Figure 8. Three frames of the CD Case sequence, and estimated

height field with z x1000

orthogonal to the boundaries. In our work, we used μ = 100
and γ = 5.

The starting point of the optimization is chosen by as-
suming that each normal lies on the plane defined by the
ray from its point to the camera center and the z direction
(this is a naive per window point constraint, without any
neighborhood or smoothness constraint). The advantages
of the given formulation is its ability to handle missing data
(1p �∈D = 0) as well as multiple reflected 3D lines (it just
adds more constraints), while at the same time limiting the
sensitivity to noise due to global optimization. Once we
have this first estimate for the normal map, it is possible to
refine the position of the 3D line(s) by back-reflecting each
reflected line using the newly computed normal map and
vice versa. However, for the demonstrations of this paper
we did not make use of this possibility and present results
obtained from the first convergence of the normal map.

4. Evaluation
In this section we first evaluate the sensitivity of the ap-

proach with respect to noisy poses. Afterwards we compute
the accuracy using a known ground truth surface (rendered)
and prove that a single pass is sufficient to capture both de-
grees of freedom of the normal. Finally we show qualitative
real-world results.

Expected accuracy on normal map The pose has to be
estimated with respect to the facade and in Fig. 6, we ana-
lyze the sensitivity with respect to noise in the pose. In par-
ticular in planar pose estimation for cameras with limited
field of view there is an almost-ambiguity between rotation
(e.g. panning right) and translation (moving right). Fig. 6
(right) shows that if the error in the camera rotation angle
is α then the normals are shifted by α

2 , which means that
the reachable angular accuracy is in the order of magnitude
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Figure 9. Estimated height field and normal map for the livingroom

sequence (see attached video). 2nd row shows still frames from the

original sequence, 3rd row with our reconstructed normal map and

an artificial checkerboard pattern.

of δθ = 1
2 atan

δS
d where δS stands for the inaccuracy in

the absolute camera centers, and d for the distance to the
plane. Typical values for our sequences are δS = 5cm and
d = 20m, giving an angular accuracy of δθ = 0.08 deg.
This also shows why we see bigger distortions when look-
ing from further, and why the z = 0 assumption does not
contradict the non orthogonal normal computation, since
moving O has the same effect than moving S on angles.

Rendered data with ground truth information As a
proof of concept and to analyze the accuracy of the method,
a virtual surface model has been created that is essentially
one period of a sine in one direction and one period of a co-
sine in the orthogonal direction plus some high frequency
noise. The maximum difference from flat is 1.2◦. Then,
we used a raytracer to render a horizontal edge reflecting
on this surface from a vertical camera path. The resulting
movie has been processed using the complete pipeline in-
cluding camera tracking, rectification and video cube seg-
mentation, 3D line estimation and normal estimation. The
geometric configuration has been chosen to mimick a real
scene and camera motion (i.e. 1x1.5m window, 2m long
hand-held camera path, 8m in front of the facade, 3D line
20m away). We obtain a mean and median error between
estimated and ground truth normal of 0.1◦. Additionally,
we re-render the same movie just changing ground truth
normals with estimated ones and obtain a visually almost
indistinguishable result (see Fig. 7 and even better in the
supplementary video).

To validate that this accuracy obtained from one pass
only is good enough, we also render a reflection of a dif-
ferent vertical line from a completely different viewpoint
using both the normals estimated from the horizontal line
and the ground truth surface: The result looks very simi-
lar (see Fig. 7). This proves that the whole surface can be
reconstructed with a single pass.

Real world surfaces We made several qualitative exper-
iments, first with a simple case like the CD case shown in
Fig. 8, and then with more challenging ones : a poster frame
in a livingroom in Fig. 9, and several real facades, for ex-

Figure 10. Three frames of another facade sequence and estimated

normal map. The window surface contains several parallel visual

discontinuities that are well described in the normal map.

Figure 11. Estimated height field and normal map for a real facade

sequence (see Sec. 4 and attached video for explanations). 1st

column shows still frames from the original sequence, 2nd with

perfect mirrors, 3rd our reconstruction (red windows do not have

a computed normal map)

ample the one shown in Fig. 10 or 11. Fig. 12 is an example
that demonstrates results with fully automatic tracking of
reflected line. For a better overview of our results, we refer
the reader to the video attached that better shows the distor-
tion induced by the camera motion. On the real facade ex-
ample, we compared the rendering with our computed nor-
mal maps with state-of-the art bulge ramp and we show still
frames for comparison.

5. Conclusion and future work
We have presented a practical method to capture normal

maps for almost-flat, reflective surfaces such as windows or
glass/metal facades. In particular we use no more than a
hand-held or vehicle-mounted video camera and track the
reflection of a straight line, which is typically easy to find
in urban environments. To enable this to be carried out ef-
ficiently, we have also proposed a practical method for 6
DOF tracking of the camera in front of reflective facades.
Clearly, the main application of our work is realistic mod-
eling of glass windows, therefore we also proposed how to
enable automatic city-scale reconstruction using a vehicle-
mounted camera. In this way, statistical models of window
normal distributions can be established. Our approach can
also easily be used to capture other reflective surfaces such
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Figure 12. Left: cut out from three input frames containing two

windows. Right, first row: Line classifier scores of both windows

shown on left side at the respective frame (dark is high score). Sec-

ond row: Before/after score (dark is after). Third row: Estimated

normal maps. Note that no annotations were used.

as e.g. CD-boxes, picture frames, TV-sets and many other
man-made objects found in our environment. It is in fact of-
ten surprising how irregular the reflection of many of these
objects are and how applying generic normal maps reveals
the synthetic nature.

Along the line of [23], we plan to investigate techniques
to suppress or separate out fraction of light coming from
transparency and multi-glazing.

We intend to explore the applicability of our technique
to model distortions in transparent materials that can be ob-
served e.g. in older glass with uneven thickness. There has
already been some interesting work in this area, e.g. [13].
Another future direction is the possibility to extend our
technique to non-flat reflective surfaces by making use of
a proxy-geometry. This would enable to recover the de-
tailed normal maps of cars or other reflective objects with
carefully designed reflection patterns.
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