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Abstract

Finding a good binary sequence is critical in determin-
ing the performance of the coded exposure imaging, but pre-
vious methods mostly rely on a random search for finding
the binary codes, which could easily fail to find good long
sequences due to the exponentially growing search space.
In this paper, we present a new computationally efficient
algorithm for generating the binary sequence, which is es-
pecially well suited for longer sequences. We show that the
concept of the low autocorrelation binary sequence that has
been well exploited in the information theory community
can be applied for generating the fluttering patterns of the
shutter, propose a new measure of a good binary sequence,
and present a new algorithm by modifying the Legendre se-
quence for the coded exposure imaging. Experiments using
both synthetic and real data show that our new algorithm
consistently generates better binary sequences for the coded
exposure problem, yielding better deblurring and resolution
enhancement results compared to the previous methods for
generating the binary codes.

1. Introduction
Image deblurring is one of the most traditional problems

in computer vision, in which the goal is to recover a latent

sharp image from an image blurred due to the motion of

the subject or the camera. Although the solution for the

image deblurring problem has been sought for the last few

decades, it still remains as a challenging problem.

An approach that has shown promising deblurring results

is to tackle the problem in an active manner by changing

the way images are captured in a camera. The technique,

which is called the coded exposure photography [19], flut-

ters the camera’s shutter open and close in a special manner

within the exposure time in order to preserve the spatial fre-

(a) Raskar et al. [19] (Ns=10
8) (b) Proposed

Figure 1: Comparison of the deblurring performance with

the fluttering patterns of length 130 generated by different

methods.

quencies, thereby simplifying the deblurring problem to be

invertible.

A key element in the coded exposure imaging is the gen-

eration of the fluttering pattern of the shutter (binary se-

quence). In previous work, a near optimal binary sequence

is computed through a randomized linear search [1, 2, 19] or

a priority search [16] over the space of potential sequences.

While these methods are applicable for generating short se-

quences, they are not suitable for computing long binary

sequences because of the large search space.

Finding binary sequences with low autocorrelation is

a deeply studied problem in the field of information the-

ory and physics because it relates to many applications in

telecommunications (e.g., synchronization, pulse compres-

sion and, especially, radar), physics (e.g., Ising spin glasses)

and chemistry [6]. Among many methods for generating the

binary sequence, the Legendre sequence has shown some

advantages over other methods, especially in terms of the
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computational time and the autocorrelation measure [9].

In this paper, we introduce a new algorithm for generat-

ing binary sequences for the coded exposure imaging using

the Legendre sequence. We show that the concept of the low

autocorrelation binary sequence can be applied for generat-

ing the fluttering pattern of the shutter, and propose a new

algorithm that modifies the Legendre sequence to make it

suitable for the coded exposure problem. Our new algo-

rithm consistently generates better binary sequences for the

coded exposure problem in much shorter time (several or-

ders of magnitude), yielding better deblurring and resolu-

tion enhancement results compared to the previous meth-

ods for generating the binary codes (Fig. 1). Our algorithm

holds significant advantages especially when the sequence

length is large, in which case the previous methods fail to

find good binary codes due to the exponentially growing

search space.

The remainder of the paper is organized as follows. Af-

ter reviewing previous work in Section 2, we introduce the

coded exposure imaging concept and explain the measure

of a good binary sequence developed in the field of Infor-

mation Theory as well as its adaptation to coded exposure

in Section 3. Then a modified Legendre sequence for coded

exposure is proposed in Section 4. The performance of our

algorithm is evaluated in Section 5 and we conclude with

discussions in Section 6.

2. Previous Work
Image deblurring is a classic problem in computer vision

that has been actively studied over the last several decades.

Traditional solutions to the problem include Richardson-

Lucy [15, 20] and Wiener filter [26], but several new direc-

tions have been explored recently to enhance the deblurring

performance. Fergus et al. [5] took a statistical approach in
a variational Bayesian framework by using a natural image

prior on image gradients, while Shan et al. [23] incorpo-
rated spatial parameters to enforce natural image statistics

using a local ringing suppression. In [13], Levin et al. pro-
posed a solution for defocus blur by using the coded aper-

ture and the sparse natural image prior to produce sharper

edges and reduce undesirable ringing artifacts. We refer to

[14] for a comprehensive review of the deblurring literature.

In [19], Raskar et al. introduced the coded exposure pho-
tography, a motion deblurring method using the fluttered

shutter. Rather than having the shutter open for the entire

exposure duration, they flutter the camera’s shutter open and

closed during the exposure with a binary pseudo-random se-

quence [19]. With the fluttered shutter, spatial details in the

blurred image are preserved, making the deconvolution a

well-posed problem. Tai et al. presented a spatially vary-
ing PSF estimation algorithm which jointly utilizes a coded

exposure camera and simple user interactions in [24], while

McCloskey et al. further addressed the problem of motion

deblurring using the coded exposure by analyzing the de-

sign and the estimation of the coded exposure PSF in [17].

The idea of coded exposure photography has also been ex-

tended to the resolution enhancement application in [1].

As expected, the fluttering pattern of the camera shut-

ter plays a critical role in determining the performance of

the coded exposure imaging. Agrawal and Xu proposed

a method for finding optimized codes for both PSF esti-

mation and invertibility in [2]. McCloskey presented the

idea that the shutter sequence must be dependent on the

object velocity and proposed a method for computing the

velocity-dependent sequences in [16]. To actually compute

the binary sequence, previous works rely on either a ran-

dom sample search [1, 2, 19] or a priority search [16] over

the space of potential sequences. Natural image statistics

are incorporated in generating binary sequences for coded

aperture [27] and coded exposure [17]. While the search

based methods are serviceable for short sequences, they are

computationally infeasible for long sequences because of

the large search space. To overcome this limitation, we in-

troduce an algorithm for computing binary sequences suited

for long sequences using Legendre sequence.

3. Measure of a Good Binary Sequence
Assuming spatially-invariant motion blur, the blur pro-

cess is modeled as follows:

B = AI+ n, (1)

whereB, I and n represent the blurred image, the latent un-
blurred image, and the noise, respectively. The matrixA is

called the smearing matrix, which describes the convolution

of the latent input image with a point spread function.

The principal idea behind the coded exposure is to im-

prove the invertibility of the imaging process (the invertibil-

ity of the smearing matrix A) through the fluttered shutter

(see Fig. 2 (a)(b)). Denoting a binary sequence of length n
as U = [u0, . . . , un−1], a near-optimal binary code is com-
puted through a randomized linear search with the following

conditions in [19]:

(i) argmax
U

min(|F(U)|),

(ii) argmin
U

var(|F(U)|) or argmin
U

mean
(
ATA

)−1

where F(U) is the discrete Fourier transform of the binary
sequence and its absolute value |F(U)| is a magnitude of
frequency response of binary sequence (MTF: Modulation

Transfer Function). The condition (i) relates to preserving

the spatial frequency in a blurred image and the condition

(ii) describes the variance of the MTF or the deconvolution

noise.
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3.1. Merit Factor

As mentioned earlier, finding binary sequences is also of

importance in the field of information (coding) theory. In

information theory, the merit factor is widely used as the
criterion of “goodness” for binary sequences whose aperi-

odic autocorrelations are collectively small. For a binary

sequence U = [u0, u1, · · · , un−1], the merit factor M(U)
is defined as follows:

M(U) =
n2

2
∑n−1
k=1 a2

k

, (2)

where ak is the aperiodic autocorrelation at shift k given
by

ak =

n−k−1∑
i=0

uiui+k. (3)

The merit factor is closely related to the signal to self-

generated noise ratio, which corresponds to the deconvo-

lution noise in the coded exposure imaging. In [10], the

relation between the merit factor and the spectral properties

of the sequence is denoted as

n−1∑
k=1

a2
k =

1

2

∫ 1

0

[|F(U)|2 − n
]2

dθ. (4)

For a fixed sequence of length n, Eq. (4) shows that the
merit factor measures how much the amplitude spectrum of

the sequence deviates from the constant value n, therefore a
sequence with a higher merit factor has a flatter MTF. This

corresponds to condition (ii) of the binary sequence mea-

sure for coded exposure and we can rewrite the merit factor

as follows:

M(U) =
n2∫ 1

0
[|F(U)|2 − n]2dθ

� n2

var(|F(U)|) . (5)

3.2. Coded Factor

While the merit factor is a good criterion for measur-

ing the MTF variance, it can make the amplitude spectrum

partially peaky as shown in Fig. 2(c), which prevents the

system from preserving the details of a blurred image. To

deal with this problem, we define a new measure called the

coded factor (FC) to measure the quality of a binary se-
quence for coded exposure imaging:

FC(U) = M(U) + λmin[log(|F(U)|)], (6)

where λ is the weighting parameter for balancing two terms
and log is used for normalizing the scales between the two
terms.

We should note that Eq. (3) is derived with the binary

sequence taking the value {−1, 1}. However, the binary se-
quence for the coded exposure should take the value {0, 1},

0 pi/2 pi-20

-10

0

0 pi/2 pi-20

-10

0

0 pi/2 pi-20

-10

0

0 pi/2 pi-20

-10

0

Figure 2: Coded exposure and the measure of a good bi-

nary sequence. (a) In a traditional camera, some informa-

tion are lost at frequencies with MTF value of 0, making

the deblurring problem an ill-posed problem. (b) By us-

ing the coded exposure, the information are preserved and

the deblurring problem becomes invertible. (c) The merit

factor is a good measure of the variance of the MTF (de-

convolution noise), but it may make the spectrum partially

peaky. (d) The proposing coded factor is a good measure of
a binary sequence that minimizes the variance of the MTF

while maximizing the lowest MTF value.

since the value -1 is physically infeasible. If we change the

sequence ui ∈ {−1, 1} to ûi ∈ {0, 1} by substituting 0 for
−1, the aperiodic autocorrelation of U is computed as

ak = 4âk + 4m̂
n−k−1∑
i=0

(ûi + ûi+k + 3μ − 0.5), (7)

where â and μ represent the autocovariance and the mean
of Û , respectively. The derivation of Eq. (7) is provided
in the supplementary material. In Eq. (7), m̂ = μ − 0.5,
which becomes 0 with the assumption that the sequence is

balanced with equal number of zeros and ones for optimal

autocorrelation properties [12]. Therefore, we use the fol-

lowing equation for computing the merit factor from a bi-

nary sequence of 0’s and 1’s.

ak ≈ 4âk. (8)

4. Modified Legendre Sequence for Coded Ex-
posure
Although the importance of both terms in Eq. (6) are

addressed in [19], a solution for finding a good binary se-
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quence that simultaneously satisfies both conditions is not

provided. Instead, they rely on a randomized linear search

that only considers min[log(|F(U)|)] in Eq. (6). To deal
with this issue, we find a solution that would take both terms

into account and return the maximum coded factor FC . For
this, we turn to the Legendre sequence.

The Legendre sequence [7] is a binary sequence with a

high merit factor and it is among the most popular choices

for generating binary sequences in many different fields.

The Legendre sequence of a prime length n is defined as

ui =

{
1 if i = 0,(
i
n

)
if i > 0,

(9)

where u and i represent an element value and index of the
sequence, respectively.

(
i
n

)
is the Legendre symbol that

takes the value 1 if i is a quadratic residue modulo n and
the value 0 otherwise 1.
Advantages of using the Legendre sequence over a ran-

dom binary sequence search for the coded exposure include

higher quality sequences with high merit factor as well as

much less computational load since the Legendre sequence

is solved in a closed form. Although the Legendre sequence

would insure high merit factorM(U), it does not guarantee
the highest coded factor since it does not consider |F(U)|.
Therefore, to further improve the quality of the Legendre

sequence for the coded exposure imaging, we propose an

algorithm for generating a modified Legendre sequence by

applying three sequence operations: rotating, appending,
and flipping to find the sequence with the maximum coded
factor FC(U) in Eq. (6).

Rotating. The merit factor of a Legendre sequence can be
improved by rotating the sequence in a cyclic manner as

shown in [8]. For a given sequence U , an r-rotated Legen-
dre sequence V r is defined as

V r = (Ur+1:n;U1:r) , (10)

where Ui:j is the sub-sequence of U from the ith to the
jth element and (; ) represents an operator for concatenat-
ing two sequences. We search for the enhanced sequence

in terms of the coded factor among all candidate sequences
V r (0 ≤ r ≤ n − 1).

Appending. In [4], Borwein et al. proved that appending
the initial part of a rotated Legendre sequence to itself could

improve the merit factor of the sequence. We adopt the ap-

pending operation to improve the sequence quality as well

as to resolve a restraint of Legendre sequence that it is only

defined for a length of a prime number.

From an r-rotated Legendre sequence V r, a t-appended
Legendre sequence is obtained by appending the first t

1Note that either {0, 1} or {−1, 1} can be used to represent the se-
quence value as shown in [18].

(0 ≤ t ≤ n − 1) elements of the sequence to itself, and
it is denoted as Y t = (V r; (V r)0:t−1). Using the sequence
appending operation, the modified Legendre sequence with

a length m can be generated from any rotated Legendre se-

quence with a prime length n for m2 ≤ n ≤ m.

Flipping. In a recent work [3], Baden presented an efficient
optimization method of the merit factor of binary sequences

by deriving a formulation for measuring the change in the

merit factor by a change of value in an element (flipping) in

the sequence. The formulation is given by

δj = −8yj((Λ � Y )j + (Λ � Y γ)m+1−j)
+8(Y � Y γ)m+1−2j + 8(m − 2), (11)

where δj is the change in the autocorrelation due to the flip-
ping of the element j, � represents the convolution operator,
Λ = [a1, · · · , am] is an aperiodic autocorrelation of the bi-
nary sequence Y of length m, and γ indicates the reversal
of a sequence where yγj = ym−j+1.

From Eq. (11), a candidate set of element indices that are

expected to improve the merit factor is chosen as

Δ1 = {j|δj > 0}. (12)

To extend the above optimization method to the coded
factor, we compute the change in the minimum of MTF by
a single-element flip as follows:

κj =

{
min |F(Y ) + F(yj)| − min |F(Y )| if yj = 0,

min |F(Y ) − F(yj)| − min |F(Y )| if yj = 1,

s.t. F(yj) = e−iω(j+0.5) 2

ω
sinω, (13)

where F(yj) is the DFT of a single element yj . Thus, the
candidate set Δ2 is determined by

Δ2 = {j|κj > 0}. (14)

The two setsΔ1 andΔ2 are then combined to construct a

new candidate setΔ (Δ = Δ1 ∪Δ2). SinceΔ1 is related to

the merit factor andΔ2 is related to the MTF minimum, the

new candidate setΔ includes potential element indexes that

can improve the coded factor FC (Eq. 6). To determine the
elements to flip among the candidates, we apply a variant

of the steep decent algorithm in [3], which is described in

Algorithm 1. Since the number of candidates inΔ is usually

small, the computational load for Algorithm 1 is small.

Algorithm Summary Our framework for generating a bi-

nary sequence for the coded exposure imaging is summa-

rized in Algorithm 2. To generate a sequence of length m,
we first generate Legendre sequences with length n, which
is a collection of prime numbers in the range between m2 and
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Algorithm 1 Optimization by Flipping

1: procedure OPTIMIZESEQUENCE(sequence = Y )
2: Ŷ = Y
3: FC(Ŷ ) = coded factor of Ŷ
4: Δ = candidate set of Ŷ
5: nΔ = the number of candidates in Δ
6: for i = 1 to nΔ do
7: FC(Y

′) = max(FC) with i-bits flipping in Δ
8: if FC(Y

′) > FC(Ŷ ) then
9: Ŷ = Y ′

10: go to line 3

11: end if
12: end for
13: return Ô
14: end procedure

Algorithm 2 Sequence Generation for Coded Exposure
1: procedure GENERATESEQUENCE(length = m)
2: n = {ni|m2 ≤ ni ≤ m, ni is prime number}
3: for all ni in n do
4: Ui = Legendre Sequence of length ni in Eq. (9)
5: Vi = Rotating(Ui)
6: Yi = Appending(Vi)
7: end for
8: O = Yi with the highest coded factor
9: Ô = Optimization by Flipping(O) in Algorithm 1
10: return Ô
11: end procedure

m (n = {ni|m2 ≤ ni ≤ m, ni is prime number}). We then
find the ri-rotated Legendre sequence using the rotating op-
eration for each Legendre sequence and apply the append-
ing operation for all the rotated sequences to make length
m sequences. Among the candidate sequences, we select a

sequence with the highest coded factor and perform the op-
timization using the flipping operation. An example of MTF
changes according to each sequence operation is shown in

Fig. 3.

5. Experiments

To evaluate the performance of the proposed algorithm,

we conducted many coded exposure deblurring experiments

using both synthetic and real-world dataset. We compare

our results with the results obtained by using the method

by Raskar et al. in [19] and by McCloskey et al. in [17].

For our method and the method [19], binary sequences of

length [40, 50, · · · , 200] were generated. We used the code
by the author2 to generate the sequences for the method [19]

as well as to deblur the images. The number of random

2www.umiacs.umd.edu/ aagrawal/MotionBlur/SearchBestSeq.zip

Method TIME (seconds)

Raskar et al. [19] (Ns=106) 268.06

Raskar et al. [19] (Ns=108) 26779.90

Proposed 0.21

Table 1: Average computational times for generating bi-

nary sequences. The computational time of the method

[19] depends on the number of samples, while the proposed

method requires much shorter time for all sequence lengths.

samples Ns of the method [19] was set to 106 and 108

to check the tradeoff between the computational time and

the sequence quality. The average computational times for

generating the sequences are shown in Table 1. The se-

quences for the method [17] were provided by the author

for length [50, 60, · · · , 200]. The λ in Eq. (6) is set to 8.5
for all of our experiments. We use two deconvolution algo-

rithms: (1) matrix inversion approach for the sake of com-

paring the performance of previous methods and the pro-

posed method, and (2) non-blind deconvolution with hyper-

Laplacian prior [11] to maximize the quality of the de-

blurred images. High resolution results and an executable

are available online 3.

5.1. Synthetic results

We performed synthetic experiments for quantitative

evaluations. The synthetic data consist of 29 high quality

images downloaded from Kodak Lossless True Color Im-

age Suite [21]. Blurred images are simulated by 1D filter-

ing with the binary sequences generated by each method

and then adding intensity dependent Gaussian noise with a

standard deviation σ = 0.01
√

i where i is the noise-free in-
tensity of the blurred images in [0, 1] [22]. The peak signal-
to-noise ratio (PSNR) and the gray-scale structural similar-

ity (SSIM) [25] are used as the quality metrics, which are

calculated by averaging the results of 29 synthetic images.

To first show the effectiveness of the coded factor as

a measure of a good binary sequence for coded exposure,

we compared deblurring results using the binary sequences

generated by the merit factor and the coded factor, which

is shown in Fig. 4. The sequences generated by the coded

factor shows stable performance while the sequences gener-

ated by the merit factor sometimes work poorly especially

in terms of the SSIM due to the peaky spectrum as previ-

ously shown in Fig. 2(c).

Fig. 5 shows the comparisons of the deblurring results on

the synthetic dataset. When the sequence length is relatively

short, the method [19] performs slightly better than the pro-

posed method. However, our method consistently produces

good binary sequences for the coded exposure imaging and

the difference in the performance amplifies as the sequence

3sites.google.com/site/jyleecv/legendre_coded_exposure
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(a) Legendre Sequence (b) Rotation (c) Appending (d) Flipping

Figure 3: An example of MTF changes according to each sequence operation. The red lines in (c)&(d) indicate the minimum

MTF of the sequence (c).
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)
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Coded Factor

30 50 70 90 110 130 150 170 190
0.5

0.6

0.7

0.8

0.9

1

Sequence Length

SSIM

Merit Factor
Coded Factor

Figure 4: Comparison of the merit factor and the coded fac-

tor as a measure of a good binary sequence.

length increases. When the sequence length is big, the other

methods fail to find good sequences due to the large search

space. This issue of the sequence length is an important one

since longer sequences are necessary for larger motion blurs

or faster moving objects [1, 16]. The work in [1] specifically

emphasized the need for finding good long sequences.

5.2. Real-world results

We implemented the coded exposure photography us-

ing the PointGrey Flea3 camera, which supports the Trig-
ger mode 5 that enables multiple pulse-width trigger with a
single readout. In our implementation, each shutter chop is

1 ms long, so a fluttering pattern of length 100 has 100 ms
capture time.

Fig. 1 and Fig. 6 show two examples of the deblurring

results using the coded exposure with the fluttering pat-

terns generated by various methods. As expected, deblur-

ring results using the modified Legendre sequence returns

the sharpest images, enabling the contents to be read as op-

posed to other results where the contents remain difficult to

interpret. Fig. 7 shows another example of our coded ex-

posure imaging in action, imaging static objects from a fast

moving camera. By using the fluttering patterns that are

generated by using our method, the scene contents become

legible after deblurring, which otherwise would be very dif-

ficult to read.

The work in [1] showed that the coded exposure imag-

(a) Raskar [19] (Ns=10
6) (b) Proposed

Figure 7: Our coded exposure imaging in action. Fluttering

patterns of length 60 are used.

ing is not only effective for the motion deblurring but also

for the resolution enhancement. In their analysis, the op-

timal code length is approximately k ∗ s for a given en-
hancement factor s and a blur size k. Therefore, they em-
phasized the importance of a long binary sequence as men-

tioned previously. Fig. 8 compares the performance of the

resolution enhancement using different binary sequences of

length 120, and as expected, the sequence generated by our
method shows better visual quality in both the deblurring

and the resolution enhancement.

In Fig. 9, we compare the deblurring performance with

the same exposure time, but with different sequence lengths.

The sequences of length 40 and 120 generated by the pro-
posed method are used for this experiment and we control

the single chop time to make the exposure time the same

under different sequence lengths. As shown in Fig. 9, the

deblurred image with the longer sequence preserves more

spatial frequencies of the blurred image than the shorter se-

quence.
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Sequence Length
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B
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0.6
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0.8

0.9

1
SSIM

Sequence Length

Figure 5: Comparison of the deblurring performance (synthetic): (left) PSNR and (right) SSIM. The difference in the per-

formance amplifies as the sequence length increases; our method consistently generates good binary codes for the coded

exposure imaging.

(a) McCloskey et al. (b) Raskar et al. (Ns = 10
6) (c) Raskar et al. (Ns = 10

8) (d) Proposed

Figure 6: Comparison of the deblurring performance with the fluttering patterns of length 100 generated by various methods.

The blurred images are deblurred by using the matrix inversion method (Magenta) and the hyper-Laplacian prior [11] (Green).

(a) (b)

Figure 9: Comparison of the deblurring performance with

different sequence lengths under the same exposure. (a) se-

quence length = 40, 1 chop duration = 3 ms. (b) sequence
length = 120, 1 chop duration = 1 ms.

6. Discussion
We have presented a new method for computing the flut-

tering sequence for the coded exposure photography by

modifying the Legendre sequence. We validated the effi-

ciency of our algorithm through various experiments, and

we were able to achieve better deblurring and resolution

enhancement performance without any prior by using the

binary codes generated using our algorithm. One of the

biggest advantages of our algorithm is that we can com-

pute binary sequences in near real time. In the future, we

would like to take this advantage and extend our method to

generate scene dependent fluttering sequences.

10071007



(a) Static

McCloskey et al. Raskar et al. 
���� � ��

�

Raskar et al. 
���� � ��

	
Proposed 

(b) Blurred images

McCloskey et al. Raskar et al.  
���� � ��

�
Proposed Raskar et al.  

���� � ��
	

(c) Bicubic upsampled image after deblurring

McCloskey et al. Raskar et al.  
���� � ��

�

Raskar et al.  
���� � ��

	
Proposed 

(d) Resolution enhancement using [1]

Figure 8: Comparison of the resolution enhancement performance. (a) Static image of a barcode. (b) Captured images with

different fluttering patterns of length 120. (c) Bicubic upsampled images by two after deblurring. (d) Resolution enhanced
images using motion blur. In (b, c), the results with the proposed sequence are clearer than results with the other sequences.
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