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Abstract

In underwater environments, cameras need to be con-
fined in an underwater housing, viewing the scene through
a piece of glass. In case of flat port underwater housings,
light rays entering the camera housing are refracted twice,
due to different medium densities of water, glass, and air.
This causes the usually linear rays of light to bend and the
commonly used pinhole camera model to be invalid. When
using the pinhole camera model without explicitly model-
ing refraction in Structure-from-Motion (SfM) methods, a
systematic model error occurs. Therefore, in this paper, we
propose a system for computing camera path and 3D points
with explicit incorporation of refraction using new meth-
ods for pose estimation. Additionally, a new error function
is introduced for non-linear optimization, especially bundle
adjustment. The proposed method allows to increase recon-
struction accuracy and is evaluated in a set of experiments,
where the proposed method’s performance is compared to
SfM with the perspective camera model.

1. Introduction
In the last decade, many applications for images captured

underwater arose. They include scientific exploration of ge-

ological or archaeological structures on the sea floor [2],

maintenance of offshore oil rigs, inspection of ship hulls,

and measurements of ships and other fisheries [6]. Due to

the need of gaining measurements in the above described

scenarios, the geometry of image formation is often utilized.

However, cameras used in an underwater environment are

usually confined in an underwater housing filled with air,

viewing the scene through a piece of glass. In case of this

glass being a flat port, the light rays entering the camera

housing are refracted twice, once at the water-glass inter-

face and again at the glass-air interface. Many of the above

described applications require the camera to be lowered into

the deep sea, sometimes to water depths of thousands of me-

ters. Therefore, the underwater housing needs to be strong

enough to withstand immense water pressures, requiring the

glass interface to be several centimeters thick. The double

refraction causes the usually straight rays of light to bend

and change direction depending on the interface incidence

angles. When following the ray in water in Figure 1 with-

out refraction (dashed line), it does not intersect the camera

center. In fact, Treibitz et al. [28] showed that the perspec-

tive camera model is invalid below water due to the rays

not intersecting in one common center of projection. De-

spite that, the perspective camera model is often used for

underwater images, approximating the refractive effect to

some extent. For example Lavest et al. [18] showed that a

camera calibrated below water approximates refraction with

focal length and radial distortion and Sedlazeck and Koch

[25] showed that principal point and camera pose absorb

some of this model error in addition to focal length and

radial distortion. Due to the perspective model being in-

valid, a systematic model error is introduced, when apply-

ing perspective algorithms utilizing imaging geometry like

mosaicing or Structure-from-Motion (SfM) [9, 27] to un-

derwater images. Even though, several works can be found

in the literature, where the perspective camera model is used

to reconstruct 3D scenes in underwater environments (e.g.

[3, 12, 15]).

In contrast to using the perspective camera model in or-

der to approximate refraction, refraction can also be mod-

eled explicitly, where first a parametrization of the glass

port of the housing needs to be found and calibrated. An

early approach was introduced by Li et al. [19] coming from

the area of photogrammetry where the housing of a stereo

rig can be calibrated. The calibration routine proposed

by Treibitz et al. [28] assumes a flat port interface with

very thin glass and parallelism between glass and imag-

ing sensor. More recently, Agrawal et al. [1] showed how

a more general camera with thick glass and a possible in-

clination angle between glass interface and imaging sensor

can be calibrated, and Jordt-Sedlazeck et al. [14] proposed

a non-linear optimization based on an initialization with

Agrawal’s method. Building upon a valid calibration of an

underwater camera, meaning the intrinsics and a housing

parametrization are known, several approaches to refractive

SfM exist. Chari et al. [5] derive a complete theoretical

framework, however it has never been implemented. Chang

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.14

57



et al. [4] proposed a method for refractive SfM, where the

camera views a scene at the bottom of a pool through the

water surface and the camera’s yaw and pitch with respect

to the water surface are assumed to be known. The most

recent work of Kang et al. [16] showed results for 3D re-

construction with relative pose between two images with

explicit incorporation of refraction. They rely on outlier-

free correspondences, which have to be selected manually

and glass thickness is not modeled explicitly. The system

cannot handle image sequences and because of the use of

the reprojection error during bundle adjustment, it cannot

be extended easily.

Our Contribution: In this paper, we propose a more gen-

eral method for refractive SfM that can evaluate video se-

quences with more general patterns of movement compared

to [4]. The main problem to overcome is that due to refrac-

tion, the computation of the refractive re-projection error

is infeasible in large non-linear optimization problems like

bundle adjustment [29]. Therefore we propose a new error

function that can be computed efficiently and even enables

the analytic derivation of the necessary Jacobian matrices

of the error function. In addition, we propose new meth-

ods for relative and absolute pose computation. Finally, a

refractive plane sweep proposed in [13] is used to estimate

dense depth maps for each view, which are then used to

create the final 3D model. Controlled experiments show

that the proposed method performs better than a compara-

ble perspective method, where the refractive effect is only

approximated.

2. Refractive Camera Model and Non-linear
Error Function

The camera model is the standard pinhole camera model

with distortion [9, 27]. Hence the camera’s intrinsics are

defined in the camera matrix K containing focal length f ,

aspect ratio a, and a principal point (cx, cy), complemented

by two coefficients for radial distortion r1 and r2 and two

coefficients for tangential distortion t1 and t2. The cam-

era’s extrinsics are the rotation matrix R and the trans-

lation vector C, resulting in the projection matrix P =
K[RT| − RTC]. Those parameters allow to project 3D

points onto 2D image points, but also to back-project 2D

image points onto 3D rays. Refraction at the underwater

housing is described by Snell’s law [11] and depends on

the different medias’ indexes of refraction na for air, ng for

glass, and nw for water. As seen in Figure 1, the rays com-

ing from the water do not intersect in the camera’s center

of projection. However, [1] determined that a camera be-

hind a flat port underwater housing is an axial camera, i.e.

all rays coming from the water intersect a common axis de-

fined by the camera center and the interface normal (blue
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Figure 1. Left: refractive projection with ray segments in water rw,

glass rg, and air ra. All ray segments together with the interface

normal lie in a common plane, the Plane of Refraction (POR). The

blue line depicts the interface normal passing through the center

of projection which is intersected by all rays rw [1] (dashed line).

Right: projection onto the POR. The virtual camera’s center Cv is

located at the intersection of the un-refracted ray (dashed line) and

the interface normal (blue) and its focal length is fv = d.

line in Fig. 1). Moreover, all segments of the light ray ra
in air, rg in glass, and rw in water, and the interface normal

n lie in one common plane, the Plane of Refraction POR

(pale blue plane in Fig. 1). In order to back-project a ray

from a 2D image point, the ray in air ra is determined using

the perspective parameters explained above. Then, the ray

direction in glass rg is computed by [1]:

rg = (1)

na

ng
ra +

(
−na

ng
rTa n+

√
1− na

ng
(1− (rTa n)

2)

)
n .

Using rg, ng, and nw, the ray in water rw is computed re-

spectively. Along with the interface distance d and the in-

terface thickness dg, ra and rg allow to determine a starting

point p of the ray rw on the outer glass plane (Fig. 1):

p =
d

nTra
ra +

dg
nTrg

rg. (2)

Hence for each pixel, a raxel [8] can be computed using the

proposed parameters, instead of calibrating each raxel inde-

pendently, which is often difficult. Using the proposed pa-

rameter set, [1] derived two constraints for the flat port un-

derwater camera. The first one is called the Flat Refractive

Constraint (FRC) and states that if a 3D point X has been

transformed into the local camera coordinate system, its di-

rection should be the same as the ray in water rw, hence:

(RTX−RTC− p)× rw = 0 (FRC). (3)

From the POR follows that:

(RTX−RTC)T(n× rw) = 0 (PORC). (4)
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2.1. Virtual Camera Error Function

When projecting a 3D point into a camera confined in

an underwater housing with explicit refraction computation,

Agrawal et al. [1] determined that a 12th degree polynomial

needs to be solved. While this insight allows solving the

projection problem much more efficiently than previous ap-

proaches, where usually the projection was determined by

an optimization using the back-projection function [17], it is

still infeasible in classic SfM, especially bundle adjustment.

Therefore, a new error function is introduced. It builds upon

the idea in [24], where a virtual camera is defined for each

2D point into which the corresponding 3D point can be pro-

jected perspectively (Fig. 1 on the right). Note that a simi-

lar idea has been expressed in [23], however, the proposed

method is adapted to the refractive case and is exact for each

pixel. The virtual camera error is computed using the ray in

water rw and its starting point p as described above to de-

fine a virtual perspective camera. However, in contrast to

[24], we propose using the intersection of the ray in wa-

ter with the line defined by the interface normal n and the

camera coordinate system origin to define the virtual cam-

era center Cv (the camera’s axis as in [1]), therefore solv-

ing for the scaling factor λ in p + λrw = n. The virtual

rotation Rv is defined through its rotation axis, which is

the cross product between interface normal and optical axis

and its rotation angle, which is the scalar product between

interface normal and optical axis. The virtual focal length is

fv = d. Thus, a 3D point X in the global coordinate system

is first transformed into a point in the local camera coordi-

nate system Xl and then into the virtual camera coordinate

system Xv by:

Xl = RTX−RTC (5)

Xv = RT
vXl −RT

vCv. (6)

The starting point on the outer interface is also transformed

into the virtual camera:

pv = RT
v p−RT

vCv. (7)

The error is then computed from the 2D projections of Xv

and pv onto the virtual image plane:

gv =

(
fv
Xvz

Xvx
− fv

pvz
pvx

fv
Xvz

Xvy
− fv

pvz
pvy

)
. (8)

gv can be used as a non-linear error function for optimiza-

tion with different parametrizations. For example consid-

ering one camera and a set of n 2D-3D correspondences,

when only extrinsic parameters and 3D points are unknown,

the known ray in water and the virtual camera center are

used:

εext =
∑
i<n

‖ gvi(C,R,Xi,pi, rwi ,Cvi) ‖22 . (9)

load image j

detect features
match features
to last image

relative pose
triangulation

absolute pose
triangulation
bundle adjustment

j < 2

j = 2

j > 2

Figure 2. For both, perspective and refractive SfM, a basic SfM al-

gorithm is used, where two images are used for initialization using

relative pose and triangulation. Once 3D points exist and 2D-3D

correspondences can be matched, absolute pose is determined and

the whole scene is refined using bundle adjustment.

If extrinsics, 3D points, interface distance d, and interface

normal are unknown, then the ray in air rai is used for error

computation:

εext+housing =
∑
i<n

‖ gv(C,R,Xi, d,n, rai) ‖22 . (10)

In case the relative pose between two cameras is optimized,

but no 3D points exist, 2D-2D correspondences between the

two images are used to triangulate the 3D points [10] allow-

ing the use of the following error function:

εext2View =
∑
i<n

‖ gv(C,R,pi, rwi
,Cvi

,p′i, r
′
wi
,C′vi

) ‖22,
(11)

where pi, rwi , Cvi and p′i, r
′
wi , and C′vi describe ray

and virtual camera center in the first and second image for

correspondence i respectively.

3. Refractive SfM
A typical reconstruction system is depicted in Fig. 2. In

two images, features are detected and matched, then the rel-

ative pose of the second camera with respect to the first is

computed. Next, the 2D-2D correspondences and camera

poses are used for triangulation [10]. This allows to find

2D-3D correspondences for the next image, hence the ab-

solute pose with respect to the 3D points is computed. Af-

ter adding a new image and triangulating new points, non-

linear optimization is applied to the scene.

3.1. Relative Pose

At the beginning of the reconstruction process, no 3D

points are known, only a set of n 2D-2D correspondences

between two images can be matched. Therefore, these cor-

respondences are used to compute the relative pose of the

second camera with respect to the first. The first camera is

set into the world coordinate system origin. Let pi and rwi

be the ray for the ith 2D point in image one and p′i and r′wi

be the corresponding ray for the 2D point in the second im-

age. Then, two constraints can be used for determining the
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unknown rotation R and translation C:

pi + λirwi
= Rp′i +C+ λ′iRr′wi

(12)

(Rp′i +C+ λ′iRr′wi
− pi)× rwi

= 0, (13)

where the first constraint describes the triangulation of the

corresponding but unknown 3D point and the second con-

straint is derived from the FRC (3). λi and λ′i are the un-

known lengths of the rays in water rwi
and r′wi

. Hence,

a set of equations for all n correspondences with both (12)

and (13) is non-linear in the unknowns. Consequently, an

alternating, iterative scheme is used, where the equation

system is solved for R and C and the λi and λ′i are updated

by solving for λi and λ′i in the PORC (4):

(Rp′i +C+ λ′iRr′wi
)T(n× rwi

) = 0 (14)

(RT(pi + λirwi)−RTC)T(n× r′wi) = 0.

The initial solution gained by this iterative scheme is often

still quite far from the true relative pose. However, we found

that it is a good initial estimate for a Levenberg-Marquardt

optimization using the virtual camera error εext2View (11).

Both iterative and optimizer schemes are applied within a

RANSAC framework [7] in order to be robust against out-

liers in the data.

Note that due to the rays starting on the glass inter-

face being metric, in theory, relative pose as described here

on underwater cameras can yield the absolute distance to

the second camera as opposed to perspective relative pose,

where the baseline to the second camera is usually scaled to

one. This is due to the fact that common perspective scenes

can be rescaled consistently by applying a scaling transform

T to all 3D points and its inverse T−1 to the extrinsics of

all projection matrices P. However, in the refractive cam-

era model interface distance and thickness would need to be

scaled along with the 3D points and the camera’s extrinsics,

thereby changing the starting points and directions of the

rays corresponding to image points. Consequently, relative

pose in the refractive case is not invariant to scale changes in

the camera translation. In case of synthetic correspondences

with zero noise we found this to be true. However, in case

of small amounts of noise added to the correspondences, we

were not able to determine the scale of the translation, due

to the noise superimposing the signal, i.e. the rays’ start-

ing points are only a few millimeters apart, but the camera

movement and typical 3D point distances are in the order

of centimeters and meters respectively. In Figure 3, the vir-

tual camera error function is depicted for a pair of cameras,

with a random set of correspondences. The curves depict

the sensitivity of the error function to changes of the trans-

lation scale for different noise levels, while keeping every-

thing else constant. In case of zero noise, a minimum at

the correct scale is clearly visible. However, even in case

of noise added to the 2D correspondences with σ = 0.1,
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Figure 3. For two cameras random 2D-2D correspondences were

used to compute the virtual camera error for different scales of the

camera translation. Since the rays were not scaled, the error should

increase for erroneous scales of the camera translation and have a

clear minimum at 1, which is true for zero noise. However, as

soon as noise is added to the correspondences, the error function

does not have a minimum at the correct scale anymore. Hence, the

retrieval of correct scale can only be achieved theoretically.

it is clear, that scale cannot be determined. The same was

true for the re-projection error or the angle error proposed

in [21].

3.2. Absolute Pose

Once 3D points exist, 2D-3D correspondences can be

found for an underwater image. This allows computing the

absolute pose with respect to the 3D points for which the

following equation is utilized for each point i:

Xi = Rpi +C+ λiRrwi
, (15)

with R and C being the unknown pose and λi being the

distance between outer interface point and 3D point, which

is also unknown. Hence, (15) is non-linear in the unknowns.

As in the relative pose case, the absolute pose problem is

solved by an alternating iteration, where a linear system of

equations with all 2D-3D correspondences is solved for R
and C using (15). Then, all λi are updated by:

λi = (Rrwi
)T(Xi −C−Rpi). (16)

The resulting initial solution is optimized using the

Levenberg-Marquardt algorithm with the above described

virtual camera error function εext (9). Both iterative and

non-linear optimization are used within a RANSAC frame-

work. We found this method to compute absolute pose

more robustly than the methods described by Nistér and

Stewénius in [22] or Sturm et al. in [26], whose solutions

work on a minimum number of 3 required 2D-3D corre-

spondences. The reason is that underwater images suffer

from degraded contrast. Consequently, the correspondences

have a certain amount of noise, and hence a method that is

more robust against noise but may require more than the

minimal number of 3 correspondences can outperform [22]

and [26] within a RANSAC framework.
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3D points

camera poses
housing
p. c.

Figure 4. Sparse matrices for refractive bundle adjustment. Left:

general block structure of sparse matrix N . Middle: optimization

of 3D points and camera poses. Note that only colored parts are

non-zero. Right: additional optimization of housing parameters.

Colors: 3D points blue, poses green, housing parameters orange,

constraints between parameters cyan.

3.3. Refractive Bundle Adjustment

When the scene consists of camera poses and 3D points,

bundle adjustment [29] is applied after each newly added

camera, optimizing scene geometry by minimizing a non-

linear error function. In classical bundle adjustment, the

re- projection error can be computed efficiently and is min-

imized in the classical iterative least squares solver. In or-

der to achieve that, each 3D point is projected into each

camera that saw this point numerous times. The Jacobian

of the explicit error function is derived preferably analyt-

ically in the direction of all parameters. Due to these re-

quirements, the use of the re-projection error in case of re-

fractive bundle adjustment is infeasible, even if Agrawal’s

12th degree polynomial is used. However, in contrast to the

refractive projection, the virtual camera error function can

be computed efficiently and its analytic derivatives can also

be computed1. With t containing all camera poses and all

3D points, hence all parameters and l containing all obser-

vations, in this case all rays with starting point, direction,

and virtual camera center, the virtual camera error function

gv(t, l) = 0 is an implicit constraint for bundle adjustment.

Consequently, the minimization problem is solved using the

Gauss-Helmert model [20, 29], a generalization to the com-

monly known least squares solver. Note, that for implicit

constraints the derivatives in parameter direction t and ob-

servation direction l need to be computed. The use of ana-

lytic Jacobi matrices allows fast and accurate computations

in case of the virtual camera error. In addition, as in com-

mon perspective bundle adjustment, the parameter ordering

in the sparse matrix can be arranged such that the Schur

complement [29] can be used to efficiently solve the lin-

ear system of equations in each iteration (Fig. 4). Because

of using the axis intersection instead of the caustic point,

the analytic derivations of the error function, and the appli-

cation of the Schur complement for solving the system of

equations in each iteration, the proposed adjustment method

can run in seconds rather than hours as mentioned in [24].

Note that the described approach to bundle adjustment

1e.g. using Maxima (http://maxima.sourceforge.net/)

with the virtual camera error function can be used to op-

timize camera poses and 3D points in case the observa-

tions are vectors with nine entries with ray starting point

on outer interface p, ray direction rw, and axis intersection

Cv. However, in case of the observations being the nor-

malized rays in air ra, the virtual camera error can also be

computed, thus interface distance d and interface normal n
can also be optimized efficiently (compare to Eq. (9) and

(10)).

4. Experiments
In addition to the refractive SfM presented here, we also

implemented a classical perspective SfM, were a perspec-

tive calibration approximated the underwater conditions and

we will compare both approaches. Initializations for all

λi and λ′i in relative pose estimation were set to 3000 mm,

which is far enough for the distance dependent error to be

initialized robustly. In case of absolute pose it was sufficient

to set all initial λi to one.

4.1. Synthetic Images

In order to evaluate the performance of refractive

SfM, sets of synthetically rendered images with varying

glass port configurations were used. The image size was

800 × 600 pixels in all cases with a focal length of 800
pixels. The principal point was in the middle, and no radial

distortion was set. The interface thickness was fixed to

dg = 30mm, the interface distance was chosen from d ∈
{−5mm, 0mm, 5mm, 10mm, 20mm, 50mm, 100mm}.
The interface normal was determined by its two angles

θ1 and θ2, where θ2 is the angle between optical axis

and normal and θ1 is the angle by which the interface is

turned around the normal. θ1 was set fixed to 30◦, while

θ2 ∈ {0◦, 0.5◦, 1◦, 3◦}. This gives 28 different configura-

tions for which sets of images where rendered. Since the

calibrated approximation of the perspective camera model

is distance dependent, we rendered two different scenes,

one within the calibration distance between 1000 mm and

4000 mm and one being further away. The top rows in in

Figures 5 and 6 show exemplary input images and ground

truth depth maps. In the second row are the average errors

of the 3D points compared to ground truth, the third row

shows the average camera translation error, and the last

row shows the re-projection error. The first column shows

the results for using the perspective camera on underwater

images, while the second column depicts the results for

using the proposed method. As can be seen, the error of

the refractive method is lower than with the perspective

camera method. With increasing interface distance d and

increasing interface tilt θ, the perspective approximation of

refraction becomes less accurate. Hence, the reconstruction

error increases. In case of the proposed method, where the

refractive effect is modeled explicitly, the reconstruction
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Figure 5. Top row left: exemplary input image. Top row right:

ground truth depth map, scene-camera distance was between

1000 mm and 4000 mm. Rows 2-4: In the left column are the

results of perspective SfM on underwater images, the right col-

umn depicts the results from refractive SfM. In the second row

is the average error of the 3D points compared to ground truth.

The third row depicts the translation error of the resulting camera

poses, while the bottom row shows the average re-projection error.

All experiments were conducted on the same camera movement,

only the interface distance d and the interface tilt θ changed.

errors do not increase with increasing interface distance or

tilt.

4.2. Real Images

In order to test the described system on real images in a

controlled environment, a fish tank of the size 500mm ×
500mm × 1000mm was filled with water and a camera

was placed outside of it. The captured scene shows a scaled

model of the entrance to the Abu Simbel temple in Egypt

with a size of about 380mm × 280mm × 180mm. Since

the camera was not allowed to move with respect to the

glass while capturing the images, the Abu Simbel model

was moved inside the water at a distance range between

300 mm and 750 mm from the camera. Consequently, the

back ground of the tank violated the rigid scene constraint,

which is why all images were roughly segmented in order
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Figure 6. In the top row are exemplary input image and ground

truth depth map of the scene. The scene-camera distance was be-

tween 4000 mm and 9000 mm. Rows 2-4 show the same analysis

as in Figure 5.

to eliminate errors caused by features on the background or

the mirrored object at the bottom or the sides of the tank

(see Fig. 7 for exemplary original and segmented images).

Four data sets with different camera-glass configurations (d,

n) were captured and used for reconstruction with the re-

fractive and the perspective method. Calibrations for both

methods were achieved using checkerboard images. As can

be seen in Figure 8 and Table 1 the distance between per-

spectively and refractively reconstructed camera poses in-

creases with increasing interface distance and interface tilt,

indicating the influence of the systematic model error of the

perspective approximation. Note that the gaps in the camera

path really occurred because the model was moved manu-

ally in the water.

The main areas of application for our system are not

small scale fish tanks, but cameras used in deep sea sce-

narios, where often very thick glass needs to be placed in

front of the camera in order to withstand the immense water

pressure. Therefore, we present some preliminary recon-

struction results for images captured of an underwater vol-

cano near the Cape Verdes at water depths of about 3000 m.
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Figure 7. Abu Simbel original image and segmented image. Note

the mirrored scene at the tank bottom. In the background, erro-

neous correspondences were detected and matched as well, mak-

ing a rough segmentation as seen on the right necessary.

a) b)

c) d)
Figure 8. Abu Simbel results. Blue: refractive reconstruction.

Red: perspective reconstruction. At the beginning, both camera

paths are nearly identical. With an increasing number of cameras

added to the reconstruction, the paths diverge.

case d in mm θ in ◦
∅ in mm sd in mm

a 68 1.35 36.9476 19.9553

b 81 0.87 34.1247 17.908

c 50 8.96 102.804 58.0293

d 114 0.36 48.5285 27.9537

Table 1. Abu Simbel reconstruction results of four different

camera-glass configurations. d is the calibrated interface distance,

θ the angle between optical axis and interface normal n. ∅ in

mm and sd in mm are the average distance and standard devia-

tion between perspectively and refractively reconstructed camera

translation respectively.

In this case, we only had an intrinsic calibration of the cam-

era made months after the expedition and no calibration of

the interface or perspective calibration. Therefore, we auto-

calibrate the interface normal and distance using bundle ad-

justment and present the refractive underwater reconstruc-

tions of four short sequences in Figure 9. Table 2 summa-

rizes results of the auto-calibration of the camera housing.

Although there is no means of determining the calibration

error, the results of the first three runs are very close to each

a)

b)

c)

d)

Figure 9. Deep sea volcano crater reconstructions of underwa-

ter volcano near the Cape Verdes at approximately 3000 m water

depth. Left: exemplary input image (by Geomar Helmholtz Centre

for Ocean Research), right: SfM result.

case d in mm θ in ◦

a 48 1.23

b 20 1.24

c 38 1.29

d 47 3.15

Table 2. Auto-calibration results for the underwater housing for

the four volcano sequences. d is the calibrated interface distance,

which should roughly be the same in all four cases. θ, the angle

between optical axis and interface normal n, can vary to some

extend.

other, indicating a successful calibration.

5. Conclusion and Future Work
We presented a system for reconstruction with explicit

incorporation of refraction at an underwater housing allow-

ing to accurately reconstruct underwater scenes captured

through a flat port even in deep sea scenarios, where the

glass can be several centimeters thick. In order to avoid hav-

ing to project 3D points, we introduced an error function us-

ing a virtual camera that allows to efficiently compute bun-
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dle adjustment. Our system is also capable to auto-calibrate

the glass interface using bundle adjustment, if the initial es-

timation is not too far off. It would be interesting to fur-

ther investigate accuracy and limitations of auto-calibrating

the housing parameters, therefore eliminating the need to

capture checkerboard images below water, which is at best

impractical in oceanographic applications.
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