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Abstract

High-resolution depth maps can be inferred from low-
resolution depth measurements and an additional high-
resolution intensity image of the same scene. To that end,
we introduce a bimodal co-sparse analysis model, which is
able to capture the interdependency of registered intensity
and depth information. This model is based on the assump-
tion that the co-supports of corresponding bimodal image
structures are aligned when computed by a suitable pair of
analysis operators. No analytic form of such operators ex-
ist and we propose a method for learning them from a set
of registered training signals. This learning process is done
offline and returns a bimodal analysis operator that is uni-
versally applicable to natural scenes. We use this to exploit
the bimodal co-sparse analysis model as a prior for solving
inverse problems, which leads to an efficient algorithm for
depth map super-resolution.

1. Introduction

Many technical applications in fields like robotics, 3D

video rendering, or human computer interaction are built

upon precise knowledge of the surrounding 3D environ-

ment. This information is typically acquired either via pas-

sive or active range sensors. Passive range sensing, i.e. 3D

from stereo intensity images, is essentially based on three

steps. First, ambient light that is reflected from the same

object surfaces is captured at multiple displaced views. Sec-

ond, the disparities of corresponding light intensity samples

between the different views are determined. Third, the dis-

tance to the sensor is obtained using the computed dispar-
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ities together with the knowledge of the relative positions

between all views. Despite very active research in this area

and significant improvements over the past years, stereo

methods still struggle with noise, texture-less regions, repet-

itive texture, and occluded areas. For an overview of stereo

methods, the reader is referred to [25].

Figure 1: Top row: color image (left) and corresponding

registered depth map (right) recorded by the Kinect sensor.

Bottom row: a 3D rendering of the tiger head detail visual-

izing the difference between the original sensor data (left)

and the refined version using our proposed method (right).

Active sensors, on the other hand, emit light and either

measure the time-of-flight of a modulated ray, e.g. LIDAR

or PMD, or capture the reflection pattern of a structured

light source to infer the distance to objects, as is done for

example by the well-known Microsoft Kinect. Such sen-

sors become more and more popular, because they acquire

reliable depth measurements independent of the occurring

texture and are real-time capable. However, the main draw-

backs are that the acquired depth maps are of low-resolution

(LR) and corrupted by noisy and missing values. To over-
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come these limitations, different methods for upsampling

and denoising LR depth maps from range sensors have been

proposed, see Section 2.

A co-occurrence of signal patterns in both the depth map

obtained by an active range sensor as well as in a corre-

sponding registered camera intensity image, is suggested

by the fact that both ambient and artificially emitted light

is reflected by the same object surfaces. Indeed, some of

the most successful methods for reconstructing and refining

depth maps aim at exploiting this statistical dependency.

In this paper, we introduce a joint intensity and depth

(JID) co-sparse analysis model that exploits the dependen-

cies between the two modalities. This model is based on the

assumption that the co-supports of corresponding structures

are aligned when computed by a suitable pair of analysis

operators. To that end, we propose a method for learning

the required bimodal analysis operator from aligned train-

ing data. This procedure is done only once and offline, and

results in a universally applicable operator, which is valid

for all intensity and depth pairs of natural scenes. This op-

erator together with a high-resolution (HR) intensity image

is employed for reconstructing a HR depth map that corre-

sponds to the HR intensity image. The problem is consid-

ered as a linear inverse problem, which is regularized using

the bimodal analysis operator. Our numerical experiments

show that our method compares favorably to state-of-the-art

methods both visually and quantitatively, and they underpin

the validity of our proposed joint intensity and depth data

model. In summary, the two main contributions of this pa-

per are:

• The new bimodal co-sparse analysis model that reflects

the dependencies between properly aligned intensity

and depth samples from the same scene.

• An algorithm for simultaneous depth map super-

resolution (SR) and inpainting of missing depth values,

which exploits the introduced data model and allows to

cope with various noise models.

2. Related Work
Increasing the resolution of depth images obtained from

range sensors has become an important research topic, and

diverse approaches treating this problem have been pro-

posed throughout the past years. Many of these meth-

ods originate from the closely related problem of inten-

sity image super-resolution. However, these mostly aim

at producing pleasantly looking results, which is different

from the goal of achieving geometrically sound depth maps.

Straightforward upsamling methods like nearest-neighbor,

bilinear, or bicubic interpolation produce undesirable stair-

casing or blurring artifacts, see Figure 2. Here, we shortly

review more sophisticated methods for depth map SR that

aim at reducing these artifacts.

In a first attempt, methods have been proposed that

use smoothing priors from edge statistics [9] or local self-

similarities [10]. These methods only require a single im-

age, but either have difficulties in textured areas, or only

work well for small upscaling factors. A different approach,

which also solely requires depth information is based on

fusing multiple displaced LR depth maps into a single HR

depth map. Schuon et al. [24] develop a global energy opti-

mization framework employing data fidelity and geometry

priors. This idea is extended for better edge-preservation by

Bhavsar et al. in [4].

A number of recently introduced methods aim at exploit-

ing co-aligned discontinuities in intensity and depth images

of the same scene. They fuse the HR and LR data utiliz-

ing Markov Random Fields (MRF). Depth map refinement

based on MRF has been first explored in [6], extended in

[16] with a depth specific data term, and combined with

depth from passive stereo in [30]. In order to better preserve

local structures and to remove outliers, Park et al. [21] add

a non-local means term to their MRF formulation. Aodha et
al. [2] treat depth SR as an MRF labeling problem of match-

ing LR depth map patches to HR patches from a predefined

database.

Inspired by successful stereo matching algorithms, Kopf

et al. [14] and Yang et al. [29] iteratively employ a bilateral

filter to improve depth SR using an additional HR intensity

image. Chan et al. [5] extend this approach by incorpo-

rating a noise model specific to depth data. Xiang et al.
[27] include sub-pixel accuracy, and Dolson et al. [7] ad-

dress temporal coherence across a depth data stream from

LIDAR scanners by combining a bilateral filter with a Gaus-

sian framework.

Finally, methods exist that exploit the dependency be-

tween sparse representations of intensity and depth signals

over appropriate dictionaries. In [11], the complex wavelet

transform is used as the dictionary. Both the HR intensity

image and the LR depth map are transformed into this do-

main and the resulting coefficients are fused using a dual

tree to obtain the HR depth map. Instead of using pre-

defined bases, approaches employing learned dictionaries

are known to lead to state-of-the-art performance in diverse

classical image reconstruction tasks, cf. [8, 18]. Surpris-

ingly, applying those techniques for depth map enhance-

ment has only very recently been explored. Mahmoudi et
al. [17] first learn a depth dictionary from noisy samples,

then refine and denoise these samples and finally learn an

additional dictionary from the denoised samples to inpaint,

denoise, and super-resolve projected depth maps from 3D

models. Closest to our approach are the recent efforts of

[15] and [26]. They independently learn dictionaries of

depth and intensity samples, and model a coupling of the

two signal types during the reconstruction phase. In [15],

three dictionaries are composed from LR depth, HR depth,
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and HR color samples to learn a respective mapping func-

tion based on edge features. In contrast, only two dictio-

naries for intensity and depth are learned in [26], where the

similarity of the support of corresponding sparse represen-

tations is used to model the coupling.

3. Proposed Approach
In our approach, we treat the problem of depth map

super-resolution as a linear inverse problem. Basically, the

goal is to reconstruct a HR depth map s ∈ R
n from a set of

measurements y ∈ R
m that are possibly corrupted by noise

and missing values, i.e. a LR depth map, with m ≤ n.

Formally, the relation between s and y is given by

y = As+ e, (1)

with A ∈ R
m×n modeling the sampling process, and e ∈

R
m modeling noise and potential sampling errors. Here,

the dimension m of the measurement vector is significantly

smaller than the dimension n of the HR depth map. Con-

sequently, reconstructing s in (1) is highly ill-posed. Using

additional information about the signal’s structure helps to

tackle this linear inverse problem.

One prior assumption that has proven useful, is that the

signals of interest allow a sparse representation. A vector

is called sparse, when most of its entries are equal to zero

or sufficiently small in magnitude. The co-sparse analy-
sis model [19] assumes that applying an analysis operator

Ω ∈ R
k×n with k ≥ n to a signal s ∈ R

n results in a

sparse vector Ωs ∈ R
k. If g : Rk → R denotes a function

that measures sparsity like the �0-pseudo-norm, the analysis

model assumption can be exploited to tackle linear inverse

problems by solving

s� ∈ arg min
s∈Rn

g(Ωs) subject to dE(As,y) ≤ ε, (2)

where dE denotes an appropriate error measure and ε ∈ R
+
0

is an estimated upper bound of the noise energy. Typical

examples for dE include the squared Euclidean distance.

Most crucial for the success of the analysis approach is

the choice of an appropriate analysis operator. Analytic op-

erators, e.g. the finite difference operator, exist. However,

using an operator that is learned from signal examples is

known to yield better performance [12, 20, 22, 28].

Our approach to depth map SR utilizes the interdepen-

dency of the two modalities intensity and depth. In a first

step we describe a new data model and how it can be learned

in the form of an analysis operator pair that incorporates

both, signal structure and their according bimodal interde-

pendency. In a second step, we explain how this learned

prior model can be used for HR signal reconstruction.

3.1. Bimodal Co-Sparse Analysis Model

In the analysis model, the zero entries of the analyzed

vector Ωs determine the signal’s structure [19]. Geomet-

rically, s lies in the intersection of all hyperplanes whose

normal vectors are given by the rows of Ω indexed by the

zero entries of Ωs. This index set is called the co-support
of s, and is given by

cosupp(Ωs) := {j | (Ωs)j = 0}. (3)

Therein, s is a vectorized patch and (Ωs)j is the j-th en-

try of the analyzed vector. Now assume that intensity sig-

nals sI ∈ R
n1 as well as depth signals sD ∈ R

n2 allow a

co-sparse representation with an appropriate pair of anal-

ysis operators (ΩI ,ΩD) ∈ R
k×n1 × R

k×n2 . Based on

the knowledge that a signal’s structure is encoded in its co-

support (3), we postulate that a pair of analysis operators
exists such that the co-support of sI and sD are statistically
dependent, if both signals originate from the same scene.

The bimodal co-sparse analysis model assumes that the con-

ditional probability of j belonging to the co-support of sD
given that j belongs to the co-support of sI is significantly

higher than the unconditional probability, i.e.

Pr({j ∈ cosupp(ΩDsD)} | {j ∈ cosupp(ΩIsI)})
� Pr({j ∈ cosupp(ΩDsD)}). (4)

Clearly, this model is idealized, since in practice, the entries

of the analyzed vectors are not exactly equal to zero. In

the next section, we explain how the coupled pair of anal-

ysis operators (ΩI ,ΩD) can be jointly learned, such that

aligned intensity and depth signals analyzed by these oper-

ators adhere to the introduced model.

3.2. JID Analysis Operator Learning

Generally, the goal of learning an analysis operator can

be formulated as follows: Given a set
{
s(i) ∈ R

n
}M

i=1
of

training samples representing the signal class of interest,

find an operator Ω ∈ R
k×n with k ≥ n such that all repre-

sentations Ωs(i) are maximally sparse.

Here, we aim at learning the coupled pair of bimodal

analysis operators (ΩI ,ΩD) ∈ R
k×n1 × R

k×n2 for in-

tensity and depth signals. Therefore, we use a set of M

aligned and corresponding training pairs {(s(i)I , s
(i)
D ) ∈

R
n1 × R

n2}Mi=1. More specifically, these are HR inten-

sity and HR depth patches representing the same excerpt

of a scene. Now, we incorporate the proposed condition

(4) into the learning process by enforcing the zeros of cor-

responding analyzed vectors ΩIs
(i)
I ,ΩDs

(i)
D to be at the

same positions. Throughout the paper, the function x �→∑k
j=1 log(1 + νx2

j ), with ν > 0 being a positive weight,

serves as an appropriate sparsity measure. Note, that any

other smooth sparsity measure principally leads to similar

results. With this, the coupled sparsity is controlled through
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the function

g(ΩIs
(i)
I ,ΩDs

(i)
D ) (5)

:=
k∑

j=1

log

(
1 + ν

(
(ΩIs

(i)
I )2j + (ΩDs

(i)
D )2j

))
.

To find the ideal pair of bimodal operators we minimize the

sum of squares of (5), which can be interpreted as a bal-

anced optimization over the expectation and the variance of

the analyzed vectors’ sparsity and reads as

G(ΩI ,ΩD) := 1
M

M∑
i=1

g(ΩIs
(i)
I ,ΩDs

(i)
D )2. (6)

Additionally, we take separate constraints on the operator

into account which are motivated in [12] and summarized

in the following.

The possible solutions of the transposed of a single anal-

ysis operator are restricted to the set of full-rank matrices

with normalized columns, known as the oblique manifold

OB(n, k). Since OB(n, k) is open and dense in the set of

matrices with normalized columns, the penalty function

h(Ω) := − 1
n log(n) log det(

1
kΩ

�Ω) (7)

is used to adhere to the rank condition and to prevent iter-

ates to approach the boundary of OB(n, k). Furthermore,

a penalty function is incorporated that enforces the opera-

tors to have distinctive rows, and which controls the mutual

coherence of each operator

r(Ω) := −
∑

1≤i<l≤k

log(1− (ω�i ωl)
2), (8)

with ωi denoting the transposed of the i-th row of Ω.

Combining the two penalties into p(Ω) := κh(Ω) +
μr(Ω), with κ, μ ∈ R

+ being positive weights, and us-

ing n1 = n2 =: n for legibility reasons, our problem of

learning the pair of JID analysis operators is given by

(
Ω�I ,Ω

�
D

) ∈ argmin
XI ,XD∈OB(n,k)

G(X�I ,X�D )

+ p(X�I ) + p(X�D ).

(9)

The arising optimization problem is solved with a geometric

CG method using an Armijo step size rule, cf. [1].

For the evaluation of our approach we train one fixed op-

erator pair and use it in all presented experiments. To that

end, we gather a total of M = 15000 pairs of squared sam-

ple patches of size
√
n = 5 from the five registered inten-

sity and depth image pairs ’Baby1’, ’Bowling1’, ’Moebius’,

’Reindeer’ and ’Sawtooth’ of the Middlebury stereo set. As

it is common in dictionary learning methods, we require all

training patches to have zero-mean. Furthermore, we learn

the operators with twofold redundancy, i.e. k = 2n, result-

ing in the operator pair (ΩI ,ΩD) ∈ R
50×25 × R

50×25. In

general, a larger redundancy of the operators leads to bet-

ter reconstruction quality but at the cost of increased com-

putational complexity of both learning and reconstruction.

Twofold redundancy provides a good trade-off between re-

construction quality and computation time. We empirically

set the remaining parameters to ν = 10, κ = 9 · 104 and

μ = 102.

3.3. Depth Map Super-Resolution

In this section, we explain how the pair of patch based bi-

modal analysis operators (ΩI ,ΩD) is used to jointly recon-

struct an aligned pair of intensity and depth signals sI , sD ∈
R

N from a set of measurements yI ∈ R
m1 ,yD ∈ R

m2 .

Here sI , sD are the vectorized versions of an HR intensity

image and an HR depth map obtained by ordering their en-

tries lexicographically, with N = wh where w and h denote

the height and width of both HR signals.

To use our bimodal operator for reconstructing entire im-

ages or depth maps, we need to extend the application of the

operator beyond local patches. To achieve this, we recall

the approach in [12] for the unimodal case. Instead of re-

constructing each patch individually and combining them in

a final step to form the image, the complete N -dimensional

signal is reconstructed by minimizing the average sparsity

of all patches. In this way, neighboring patches support

each other during the optimization process. Accordingly,

a global analysis operator ΩF ∈ R
K×N is constructed

from a patch based operator Ω ∈ R
k×n. Therefore, let

Prc ∈ R
n×N denote the operator, which extracts the zero-

mean normalized (
√
n × √n)-dimensional patch centered

at position (r, c) from the signal, then the global operator is

given as

ΩF :=

⎡
⎢⎢⎣
ΩP11

ΩP21

...

ΩPhw

⎤
⎥⎥⎦ ∈ R

K×N , (10)

with K = whk, i.e. all patch positions are considered. The

reflective boundary condition is used to deal with problems

along boundaries.

Now, with the global operator pair (ΩF
I ,Ω

F
D), the bi-

modal extension of the signal reconstruction in (2) is given

by

(s�I , s
�
D) ∈ arg min

sI ,sD∈RN
g(ΩF

I sI ,Ω
F
DsD)

subject to dE ((AIsI ,ADsD) , (yI ,yD)) ≤ ε.
(11)

Therein, the sparsity measure g is the same as the one in

Equation (5). Consequently, the analyzed versions of both

modalities are enforced to have a correlated co-support and

hence the two signals are coupled.
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The measurement matrices AI ∈ R
m1×N and AD ∈

R
m2×N model the sampling process of each modality.

Here, we focus on enhancing the quality of depth mea-

surements yD, given a fixed high quality intensity signal

yI = sI by simultaneously upsampling and inpainting

missing measurements. In this case, AI is the identity

operator and the analyzed intensity signal is constant, i.e.

ΩF
I sI = c = const. This simplifies Problem (11) for recov-

ering a HR depth map to

s�D ∈ arg min
sD∈RN

g(c,ΩF
DsD)

subject to dE(ADsD,yD) ≤ εD.
(12)

The data fidelity term dE depends on the error model of

the depth data and can be chosen accordingly. For instance,

this may be an error measure tailored to a sensor specific

model, cf. Section 4.2. In this way, knowledge about the

scene gained from the intensity image and its co-support

regarding the bimodal analysis operators helps to determine

the HR depth signal.

4. Results and Comparison
In this section we experimentally evaluate our approach

by conducting two sets of experiments. First, we evalu-

ate our approach numerically on synthetic data using the

well-known Middlebury stereo dataset [23], which provides

aligned intensity images and depth maps for a number of

different test scenes. Second, we evaluate our method on

real-world data by processing scenes captured with the pop-

ular Microsoft Kinect sensor.

4.1. Quantitative Evaluation

To compare our results to the state-of-the-art, we quan-

titatively evaluate our algorithm on the four standard test

images ’Tsukuba’, ’Venus’, ’Teddy’, and ’Cones’ from the

Middlebury dataset. To artificially create LR input depth

maps, we scale the ground truth depth maps down by a fac-

tor of d in both vertical and horizontal dimension. We first

blur the available HR image with a Gaussian kernel of size

(2d− 1)× (2d− 1) and standard deviation σ = d/3 before

downsampling. The LR depth map and the corresponding

HR intensity image are the input to our algorithm.

Here, we assume an i.i.d. normal distribution of the er-

ror, which leads to the data fidelity term dE(ADsD,yD) =
‖ADsD − yD‖22. From (12) we get the unconstrained op-

timization problem for reconstructing the HR depth signal

as

s�D ∈ argmin
sD∈RN

λg(c,ΩF
DsD) + ‖ADsD − yD‖22. (13)

Larger values of the weighting factor λ ∝ ε−1
D lead

to a faster convergence of the algorithm but may cause

d method Tsukuba Venus Teddy Cones

2x

nearest-neighbor 1.24 0.37 4.97 2.51

Yang et al. [29] 1.16 0.25 2.43 2.39

Hawe et al. [12] 1 1.03 0.22 2.95 3.56

our method 0.47 0.09 1.41 1.81

4x

nearest-neighbor 3.53 0.81 6.71 5.44

Yang et al. 2.56 0.42 5.95 4.76
Hawe et al. 2.95 0.65 4.80 6.54

our method 1.73 0.25 3.54 5.16

8x

nearest-neighbor 3.56 1.90 10.9 10.4

Yang et al. 6.95 1.19 11.50 11.00

Lu et al. [16] 5.09 1.00 9.87 11.30

Hawe et al. 5.59 1.24 11.40 12.30

our method 3.53 0.33 6.49 9.22

Table 1: Numerical comparison of our method to other

depth map SR approaches for different upscaling factors

d. The figures represent the percentage of bad pixels with

respect to all pixels of the ground truth data and an error

threshold of δ = 1.

d method Tsukuba Venus Teddy Cones

2x

nearest-neighbor 0.612 0.288 1.543 1.531

Chan et al. [5] n/a 0.216 1.023 1.353

Aodha et al. [2]1 0.601 0.296 0.977 1.227

Hawe et al. [12]1 0.278 0.105 0.996 0.939

our method 0.255 0.075 0.702 0.680

4x

nearest-neighbor 1.189 0.408 1.943 2.470

Chan et al. n/a 0.273 1.125 1.450

Aodha et al. 0.833 0.395 1.184 1.779

Hawe et al. 0.450 0.179 1.389 1.398

our method 0.487 0.129 1.347 1.383

8x

nearest-neighbor 1.135 0.546 2.614 3.260

Chan et al. n/a 0.369 1.410 1.635
Hawe et al. 0.713 0.249 1.743 1.883

our method 0.753 0.156 1.662 1.871

Table 2: Numerical comparison of our method to other

depth map SR approaches. The figures represent the RMSE

in comparison with the ground truth depth map.

larger differences between the measurements and the recon-

structed depth map. To achieve the best results with few

iterations, we start with λ = 1 and restart the conjugate

gradient optimization procedure five times, while consecu-

tively shrinking the multiplier to a final value of λ = 10−2.

Following the methodology described in the work of

comparable depth map SR approaches, we use the Mid-

dlebury stereo matching online evaluation tool2 to quanti-

tatively assess the accuracy of our results with respect to

the ground truth data. We report the percentage of bad pix-

els over all pixels in the depth map with an error threshold

1only takes depth as input and therefore solves a harder problem
2http://vision.middlebury.edu/stereo/eval/
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(a) ground truth (b) nearest neighbor

(c) bicubic (d) proposed method

Figure 2: Visual comparison of different upscaling methods

on a detail in the test image Tsukuba from [23] which was

downsampled by a factor of 8 in both vertical and horizontal

direction.

of δ = 1. Additionally, we provide the root-mean-square

error (RMSE) based on 8-bit images. We rely on the results

reported by the authors of comparable methods regarding

the numerical comparison in Table 1 and Table 2, since an

implementation is not publicly available. To show the ad-

vantage of enforcing a coupled co-support in the analysis

formulation, we further employed a single modal operator

learned by the code provided by the authors of [12]. This

operator has been learned from the same training images

as described above, and with the parameters documented in

their paper. Note that the methods in Tables 1 and 2 which

are marked with * only take the depth map as an input and

therefore solve a harder problem.

As illustrated in Figure 2, our method improves depth

map SR considerably over simple interpolation approaches.

Neither staircasing nor substantial blurring artifacts occur,

particularly in areas with discontinuities. Also, there is no

noticeable texture cross-talk in areas of smooth depth and

cluttered intensity. Edges can be preserved with great detail

due to the additional knowledge provided by the intensity

image, even if SR is conducted using large upscaling fac-

tors. The quantitative comparison with other depth map SR

methods demonstrates the superior performance of our JID

analysis operator across all test images. It reaches near per-

fect results for small upscaling factors and the improvement

over state-of-the-art methods is of particular significance for

larger magnification factors. We refer the reader to the sup-

plementary material for illustrations of our synthetic test re-

sults.

4.2. Validation on Kinect Data

In order to demonstrate the applicability of our algorithm

to real data, we captured color images of size 1280x960

and corresponding depth maps of size 640x480 using the

Microsoft Kinect sensor and then upscale the depth map by

a factor of d = 2 to match its size to the one of the color

image.

Since the approximate error statistics for this application

and this sensor have been studied previously in [13], we

can use this information to further refine our data model.

According to [13], the standard deviation of Kinect depth

data is proportional to the square of the depth value σi ∝
(y

(i)
D )2. We utilize this in our error model by employing the

squared Mahalanobis distance for dE in (12), which yields

s�D ∈ argmin
sD∈RN

λg(c,ΩF
DsD) + dE (ADsD,yD) , (14)

where dE = (ADsD − yD)
�
Σ−1 (ADsD − yD) and

Σ ∈ R
m2×m2 being a diagonal matrix with main diagonal

elements (y
(i)
D )2.

As the Kinect sensor uses structured light to measure

depth, the signal is corrupted by missing pixels due to oc-

clusions arising from the displacement of the IR light source

and the sensor. To fill these gaps in the data, we model the

measurement matrix in such a way that it excludes these

gaps from the sampling process of the LR depth image, i.e.

removing the rows of A that correspond to zero entries in

yD. As a result, we perform inpainting of missing depth

values without any additional processing, while simultane-

ously increasing the depth map resolution. By this, we han-

dle two of the main issues of Kinect data in one step.

To our knowledge, there is no data set publicly available

that allows to numerically evaluate Kinect depth map en-

hancing methods by providing ground truth data. Therefore,

we assess the quality of the super-resolved Kinect depth

maps visually. Since small differences in the depth map

represented as a gray-scale image are almost invisible to the

naked eye, we illustrate our results in Figure 3 using ball

pivoting surface reconstruction [3] on a point cloud that we

created from the depth map computed by our algorithm. As

it can be seen, our method does not only increase the de-

tails in the 3D scene significantly, but also treats the miss-

ing pixels with great success. This is especially obvious in

the details of the tiger head in Figure 1 and the fruit bowl

in Figure 3. The 3D rendering illustrates the impact of the

bimodal support during reconstruction particularly around

depth discontinuities, but it also leads to smoother surfaces

of table and wall due to the smooth texture of the corre-

sponding intensity signal.

We would like to emphasize that we use the same JID

analysis operators as in the Middlebury experiments in Sec-

tion 4.1, even though the training data was captured using

a different sensor technology than the Kinect. This under-

pins that the prior model we learn is general enough to be

used for high quality reconstruction of both synthetic and

real world data.
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Figure 3: Depth maps (top row), 3D rendering of Kinect color and depth data depicting the entire scene (middle row) and a

detail of the fruit bowl (bottom row). Left column: original Kinect data like in the top row of Figure 1 with downsampled

color information, center column: bicubic interpolation (1280x960), right column: proposed method (1280x960). Note that

object shadows are due to the single view occlusion.

5. Conclusion and Discussion

We proposed an approach for inferring high-resolution

depth maps from low-resolution depth samples given an ad-

ditional high-resolution intensity image of the scene. We

present an extension of the co-sparse analysis model to the

bimodal case. The required pair of analysis operators is

learned jointly such that the co-sparse representation of a

pair of corresponding intensity and depth samples have a

correlated co-support. This data model is employed for

depth map super resolution and yields improved results on

the benchmark data set over state-of-the-art methods. More-

over, it greatly improves real-world depth data recorded by

a Kinect sensor. The fact that the same pre-trained oper-

ators can be used to refine both synthetic as well as real-

world depth maps, underpins the validity of the model as-

sumptions and emphasizes the capability of this method to

abstract training data appropriately.

Despite these compelling results, our method certainly

has a few limitations. We showed that missing pixels can

be recovered very successfully with our approach. How-

ever, the local assumptions fail if the missing areas in the

input signal are too large. As a results, inpainting of such

large gaps may be inaccurate if the global support in our

reconstruction model is insufficient to overcome this. For

instance, this can be observed in the frame of missing pixels

around the depth map in Figure 3, which is due to register-

ing intensity and depth inputs. Finally, in our current imple-

mentation, reconstructing a HR depth image with 500 iter-

ations takes up to three minutes on a single 3.2 GHz CPU

with unoptimized Matlab code. Since most of the process-

ing time is dedicated to parallelizable filtering operations,

we expect to improve on this with a better software imple-

mentation and processing on a GPU. Furthermore, the num-

ber of iterations in the reconstruction may be reduced sig-

nificantly. As shown in Figure 4, the last 400 iterations only

reduce the RMSE by about 0.2% and very descent recovery
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results are achieved with only 50 optimization steps.
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Figure 4: Plot of the relative RMSE over the optimization

iterations for the upscaling of the synthetic test images by a

factor of 8.
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