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Abstract

The problem of determining the absolute position and orien-
tation of a camera from a set of 2D-to-3D point correspon-
dences is one of the most important problems in computer
vision with a broad range of applications. In this paper
we present a new solution to the absolute pose problem for
camera with unknown radial distortion and unknown focal
length from five 2D-to-3D point correspondences. Our new
solver is numerically more stable, more accurate, and sig-
nificantly faster than the existing state-of-the-art minimal
four point absolute pose solvers for this problem. Moreover,
our solver results in less solutions and can handle larger
radial distortions. The new solver is straightforward and
uses only simple concepts from linear algebra. Therefore it
is simpler than the state-of-the-art Gröbner basis solvers.
We compare our new solver with the existing state-of-the-
art solvers and show its usefulness on synthetic and real
datasets. 1

1. Introduction

Solving absolute camera pose, which means determining
the position, orientation and possibly intrinsic camera pa-
rameters from n 2D-to-3D point correspondences, is known
as the Perspective-n-Point (PnP) problem. The PnP problem
is one of the oldest problems in computer vision [10] which
creates a very basic element of many computer vision appli-
cations [22, 16, 15, 18]. Camera localization, structure from
motion, scene reconstruction, object localization, tracking

1This work has been supported by PRoViDE FP7-SPACE-2012-
312377 and by De-Montes FP7-SME-2011-285839.

Figure 1. 3D reconstruction obtained using the new solver for the
absolute pose problem for camera with unknown radial distortion
and unknown focal length without further bundle adjustment.

and recognition are just a few examples of such applica-
tions.

The absolute pose problem for a fully calibrated camera
was intensively studied in the past and many solutions were
already developed. The problem itself can be formulated
as a simple system of polynomial equations and solved in a
closed form. Researchers in the past focused on how to for-
mulate this problem, searched for different solutions, com-
pared numerical stability, speed, or studied how to calculate
the camera pose from more than three 2D-to-3D point cor-
respondences [8, 19, 20, 21, 3, 24, 25].

Recently, a number of solutions to the absolute pose
problems for cameras without complete internal calibra-
tion [2, 23, 4, 12, 5] and for cameras where some addi-
tional information about the scene is known [14] has been
published. The reason for this is that in many applications
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we do not have calibrated cameras, however, we can make
some assumptions about these cameras or about the scene.
For example, for modern cameras, we can usually assume
square pixels and the principal point in the center of the
image. On the other hand, consumer cameras have some
non-negligible radial distortion and variable focal length.

The problem of estimating absolute pose of a camera to-
gether with its focal length for image points without radial
distortion was first solved in [2], but only for planar scenes.
The first solution to this focal length problem, which works
for non-planar scenes, was presented by Triggs in [23]. The
solution is based on multivariate resultants and works for
non-planar scenes but fails for the planar ones.

An efficient solution to the absolute pose problem for
camera with unknown focal length working for both planar
and non-planar scenes was proposed recently in [4]. This
solution is based on Euclidean rigidity constraint and for
four 2D-to-3D point correspondences results in a system
of four polynomial equations in four unknowns, which are
solved using the Gröbner basis method [7]. The final solver
is efficient and useful, however it may produce unsatisfac-
tory results for cameras with radial distortion.

In [12] authors included the radial distortion to the prob-
lem with unknown focal length and proposed a method for
solving absolute pose problem for a camera with radial dis-
tortion and unknown focal length from four 2D-to-3D point
correspondences based on Gröbner bases. In experiments,
authors show that in many real applications the considera-
tion of radial distortion brings a significant improvement.
The solution [12] uses one parameter division model for
the radial distortion [9] and quaternions to parametrize ro-
tations, and it results in five equations in five unknowns.
These equations are quite complex and the Gröbner basis
method [7] results in a large solver (a 1134 x 720 matrix)
with 24 solutions. The final solver runs about 70ms. There-
fore, this solver is not practical in real-time applications.

A more practical solution to the absolute pose problem
for a camera with unknown radial distortion and unknown
focal length from four 2D-to-3D point correspondences was
proposed in [5]. By decomposing the problem into a non-
planar and planar case a much simpler and efficient solvers
than in [12] were obtained. Both planar and non-planar
solvers are again based on the Gröbner basis method for
solving systems of polynomial equations [7]. The solution
to the non-planar case requires to perform Gauss-Jordan (G-
J) elimination of a 136 × 152 matrix and the eigenvalue
computation of a 16 × 16 matrix. The planar solver re-
quires G-J elimination of a 12 × 18 matrix. The proposed
non-planar solver returns 16 and the planar solver 6 solu-
tions. These two solvers can be joined to a single general
solver. The joined solver gives comparable or better results
than the general solver [12] for most scenes, including the
near-planar ones. Its running time is about 700μs for orig-

inal Matlab implementation available on [1] and 260μs for
our fast C++ implementation based on methods from [6].
This solver is much faster than the solver [12], however it
is still much more complicated than the solvers to the cal-
ibrated absolute pose problem [8] or the problem with un-
known focal length [4]. Moreover, the solver [5] is quite
complicated to implement without the special Gröbner ba-
sis software [13].

In this paper we propose a new solutions to the impor-
tant absolute pose problem for camera with unknown radial
distortion and unknown focal length. In this solution we
extend the solution proposed in [5]. Thanks to having five
2D-to-3D point correspondences we obtain simpler and sig-
nificantly faster solver that results in less solutions and can
handle larger radial distortions than the solvers presented
in [5, 12]. The new solver can work with up to three param-
eter division model for radial distortion [9] and provides up
to four real solutions. It is a minimal solver for three pa-
rameter division model, i.e. it uses the minimal number of
correspondences needed to solve this problem.

By evaluating our new solver on synthetic and real data,
we show that it is numerically more stable and more accu-
rate than the state-of-the-art solvers [12, 5]. The running
time of the new solver is 2μs. Therefore this solver is very
useful in real applications where consideration of radial dis-
tortion may bring a significant improvement over the abso-
lute pose problems without distortion [8, 4].

2. Problem Formulation

Let us assume the standard pinhole camera model [11].
In this model the image projection ui of a 3D point Xi can
be written as

αi ui = PXi, (1)

where P is a 3 × 4 projection matrix, αi is an unknown
scalar value and points ui = [ui, vi, 1]

� and Xi =

[Xi, Yi, Zi, 1]
� are represented by their homogeneous co-

ordinates.
The projection matrix P can be written as

P = K [R | t], (2)

where R = [rij ]
3
i,j=1 is a 3 × 3 rotation matrix, t =

[tx, ty, tz ]
� is the camera position vector and K is the 3× 3

calibration matrix of the camera.
We assume that the only unknown parameter from the

calibration matrix K is the focal length. Therefore, the cali-
bration matrix K has the form diag [f, f, 1]. Since the pro-
jection matrix is given only up to scale we can equivalently
write K = diag [1, 1, w] for w = 1

f and the projection ma-
trix (2) has the form

P =

⎡
⎣

r11 r12 r13 tx
r21 r22 r23 ty
wr31 wr32 wr33 wtz

⎤
⎦ . (3)
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The projection equation (1) holds for the pinhole camera
model with no radial distortion. However, in real situations
we measure image points ûi affected by some radial distor-
tion. To use measured distorted image points ûi in (1) we
need to “undistort” them. Therefore, we obtain

αi fu(ûi) = PXi, (4)

where fu is a function that undistort an image point and
αi ∈ R is an unknown scalar value.

The previous solvers [12, 5] to the absolute pose prob-
lem for camera with unknown radial distortion used equa-
tion (4) and the one-parameter division model for distor-

tion [9]. In this model fu(ûi) =
[
ûi, v̂i, 1 + k(û2

i + v̂2i )
]�

,

where ûi = [ûi, v̂i, 1]
� are the homogeneous coordinates of

the distorted image point ûi and k is a distortion parameter.
In [17], it was shown that the two-parameter division

model may give in some applications better results than the
one-parameter division model.

In our new five point absolute pose solver we can handle
up to three parameters for radial distortion without increas-
ing the complexity of the solver. We will consider up to
three parameter division model of the form

fu(ûi) =
[
ûi, v̂i, 1 + k1r̂

2
i + k2r̂

4
i + k3r̂

6
i

]�
(5)

where r̂2i = û2
i + v̂2i and k1, k2, k3 ∈ R are distortion pa-

rameters.
Now we describe our new solver for the problem of esti-

mating absolute pose of a camera with unknown radial dis-
tortion and unknown focal length from five 2D-to-3D point
correspondences.

3. Absolute pose for a camera with radial dis-
tortion and unknown focal length

Our new solver follows the formulation used in [5], but the
new solver, unlike the solver from [5], works for non-planar
as well as for planar scenes. The difference is in the solv-
ing method. While the non-planar P4Pfr solver from [5]
assumes regularity of some matrices and therefore fails for
planar scenes, our new P5Pfr solver does not make such as-
sumptions and works for both planar and non-planar scenes.

For planar scenes, a slightly simpler solver can be cre-
ated but this is not necessary, since the new P5Pfr solver is
already very simple, fast and efficient.

In our new solver we start by eliminating the scalar val-
ues αi from the projection equation (4). We do this by mul-
tiplying (4) by the skew symmetric matrix [fu(ûi)]×. Since
[fu(ûi)]× fu(ûi) = 0 we obtain the matrix equation

⎡
⎣

0 −ŵi v̂i
ŵi 0 −ûi

−v̂i ûi 0

⎤
⎦
⎡
⎣

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

⎤
⎦

⎡
⎢⎢⎣

Xi

Yi

Zi

1

⎤
⎥⎥⎦ = 0,

(6)

where ŵi = 1+ k1r̂
2
i + k2r̂

4
i + k3r̂

6
i , Xi = [Xi, Yi, Zi, 1]

�

and pij is the element from the ith row and jth column of
the projection matrix P.

This matrix equation gives three polynomial equations
from which only two are linearly independent. This is
caused by the fact that the skew symmetric matrix [fu(ûi)]×
has rank two.

Let’s now consider the equation corresponding to the
third row of the matrix equation (6). This equation can be
written as

− v̂i (p11 Xi + p12 Yi + p13 Zi + p14) + (7)

+ûi (p21 Xi + p22 Yi + p23 Zi + p24) = 0.

This is a homogeneous linear equation in eight unknowns
p11, p12, p13, p14, p21, p22, p23 and p24. Since we have five
2D-to-3D point correspondences, we have five equations of
the form (7). These five equations can be rewritten in the
matrix form

Mv = 0, (8)

where M is a 5 × 8 coefficient matrix and v =
[p11, p12, p13, p14, p21, p22, p23, p24]

� is a 8 × 1 vector of
unknowns. Therefore we can write our eight unknowns in
v as a linear combination of the three null space basis vec-
tors ni of the matrix M

v =
3∑

i=1

γi ni, (9)

where γi are new unknowns from which one, e.g. γ3, can
be set to one.

In this way we obtain a parametrization of the first two
rows of the projection matrix P with two unknowns γ1 and
γ2.

To find the solutions for γ1 and γ2 we use constraints
that the first two rows of the 3 × 3 submatrix of the projec-
tion matrix P are mutually perpendicular and have the same
norm, i.e. the constraints

p11p21 + p12p22 + p13p23 = 0, (10)

p211 + p212 + p213 − p221 − p222 − p223 = 0. (11)

These constraints follow from the fact that the 3×3 sub-
matrix of the projection matrix P has the form K R, where
R is a rotation matrix. In this way we obtain two quadratic
equations in two unknowns γ1 and γ2. These two equa-
tions can be written as quadratic equations in only one un-
known γ1 and with polynomial coefficients in γ2. Then, the
Sylvester resultant matrix [7] of these two polynomials can
be used to efficiently solve them. The determinant of this
4 × 4 Sylvester matrix [7] results in a fourth degree poly-
nomial in γ2 which can be solved in a closed form. In this
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way we obtain up to four real solutions to the first two rows
of the projection matrix P.

Next we use the constraints that the third row of the 3×3
submatrix of the projection matrix P is perpendicular to the
first two rows of this submatrix, i.e. the constraints

p31p11 + p32p12 + p33p13 = 0, (12)

p31p21 + p32p22 + p33p23 = 0. (13)

Using these two linear homogeneous equations we can
parametrize p31, p32 and p33 with only one unknown. Let’s
denote it by δ.

To find the solutions to the unknown radial distortion pa-
rameters and to the third row of the projection matrix P, i.e.
solutions to δ and p34, we use one of the two unused equa-
tions from the projection equation (6). To guarantee numer-
ical stability, we use the equation corresponding to the first
row of (6) when |ûi| < ε, for some small ε, and the equation
corresponding to the second row when |v̂i| < ε. In all the
remaining situations, which are the most common, we se-
lect arbitrarily from these two equations, e.g., the equation
corresponding to the second row. Then we get

(1 + k1r̂
2
i + k2r̂

4
i + k3r̂

6
i )(p11Xi + p12Yi + p13Zi + p14)− (14)

−ûi (p31 Xi + p32 Yi + p33 Zi + p34) = 0.

Since p11, p12, p13 and p14 are already known and
p31, p32 and p33 are parameterized with δ, equation (14)
is a (non-homogeneous) linear equation in five unknowns
δ, p34, k1, k2 and k3. We again have five linear equations of
the form (14) from which we can easily obtain solutions to
these five unknowns.

In many applications, it is better to use only one or two
parameter division model not to overfit data. In such a case
we obtain an overconstrained system of five linear equations
in three or four unknowns, which we can solve using the
SVD decomposition.

Finally, we use the constraint that the squared norm of
the first row of the left 3 × 3 submatrix of the projection
matrix P multiplied by w2 is equal to the squared norm of
the third row of this submatrix

w2 p211 + w2 p212 + w2 p213 − p231 − p232 − p233 = 0, (15)

from which we extract solutions to the unknown focal
length f = 1

w .

4. Experiments

We have tested our new P5Pfr solver on synthetic data (with
various radial distortions, focal lengths, outliers and levels
of noise) and on real datasets, evaluated its speed, stability
and precision and compared it with the state-of-the-art four
point P4Pfr solvers to the absolute pose problem for camera
with unknown focal length and radial distortion [12, 5], the
P3P algorithm for calibrated camera presented in [8] and the
P4Pf algorithm for camera with unknown focal length [4]
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Figure 2. Log10 of the relative error of the focal length f and log10
of the relative error of the radial distortion parameter k1 obtained
by selecting the real root closest to the ground truth value for non-
planar scenes (Top) and planar scenes (Bottom).

4.1. Synthetic data

First we studied the new solver on synthetically generated
ground-truth 3D scenes. These scenes were generated ran-
domly using 3D points randomly distributed in a cube or
on a plane depending on the testing configuration. Each 3D
point was projected by a camera with random or fixed focal
length. The camera orientation and position were selected
randomly but looking on the scene. Then the radial distor-
tion using one or two-parameter division model was added
to all image points to generate noiseless distorted points. Fi-
nally, Gaussian noise with standard deviation σ was added
to the distorted image points assuming a 1000× 1000 pixel
image.

4.1.1 Numerical stability

In the first experiment we have studied the behavior of the
new solver on noise free data to check its numerical stability
and compared the results with the numerical stability of the
state-of-the art P4Pfr solvers [12, 5].

In this experiment we have generated 10000 scenes with
3D points randomly distributed in a cube or on a plane and
cameras with random feasible position and orientation. To
be able to compare our new solver with the state-of-the-
art solvers [12, 5] we have used the one-parameter division
model for radial distortion in our solver (k2 = 0 and k3 = 0
in (5)). The radial distortion parameter k1 was randomly
drawn from the interval k1 ∈ [−0.45, 0] and the focal length
from the interval f ∈ [0.5, 2.5] in this experiment.

Figure 2 shows the results of our new P5Pfr solver on
non-planar (Top) and on planar scenes (Bottom). In both
cases we compare our new solver (Red) with the gen-
eral solver from [12] (Blue) and the non-planar and planar
solvers from [5] (Green).
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Figure 3. Error of rotation (Top left), error of translation (Top
right), focal length estimates (Bottom left) and radial distortion es-
timates (Bottom right) in the presence of noise for the new P5Pfr
solver (Red) and the P4Pfr non-planar solver [5] (Green).

Left plots in Figure 2 show the log10 of the relative er-
ror of the focal length f obtained by selecting the real root
closest to the ground truth value. Right plots in Figure 2
show the log10 of the relative error of the radial distortion
parameter k1.

The new P5Pfr solver is slightly numerically more stable
than the state-of-th-art P4Pfr solvers [12, 5] for both planar
and non-planar scenes. The important fact is that the new
solver gives fewer large errors than [12, 5]. Our new solver
did not return error greater than 10−5 in this noise free ex-
periment. The general P4Pfr solver [12] “failed”, i.e. re-
turned error greater than 10−5, in about 3.5% for non-planar
scenes and in about 1.3% for planar scenes. The non-planar
P4Pfr solver [5] “failed” in about 1.6% and the planar P4Pfr
solver in about 0.13%.

The similar numerical stability of our new solver is ob-
tained also for the two and three parameter division model.

4.1.2 Noise test

In the next experiment we have studied the accuracy of our
new solver in the presence of noise added to image points.
Figure 3 shows the results for non-planar 3D scene and dif-
ferent levels of noise added to image projections. In this
case the ground truth focal length was fgt = 1.5 and the
radial distortion k1gt = −0.2. Results for planar scenes
were similar and are not shown here. Since both P4Pfr
solvers [12, 5] return very similar results, we compared in
this experiment our new solver only with the more efficient
non-planar solver from [5].

For each noise level, from 0 to 2 pixels, 5000 estimates
for random non-planar scenes and random feasible camera
positions were made. Results in Figure 3 are represented
by the Matlab boxplot function which shows values 25% to
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Figure 4. Error of rotation (Top left), error of translation (Top
right), focal length estimates (Bottom left) and radial distortion
estimates (Bottom right) in the presence of 1px noise and differ-
ent radial distortions for the new P5Pfr solver (Red) and the P4Pfr
non-planar solver [5] (Green).

75% quantile as a box with horizontal line at median. The
crosses show data beyond 1.5 times the interquartile range.

In this case the rotation error (Top left) was measured as
the rotation angle in the angle-axis representation of the rel-
ative rotation RR−1

gt and the translation error (Top right) as
the angle between the ground-truth and the estimated trans-
lation vector. Plots in Figure 3 (Bottom) show directly the
estimates of the focal length (Left) and the radial distortion
parameter k1 (Right).

It can be seen that the new solver gives more accurate
estimates than the state-of-the-art solver [5] for all rota-
tion, translation, focal length and radial distortion. The new
solver is performing very well even at two pixel noise level.

4.1.3 Different radial distortions

In this experiment we have tested the behavior of the new
P5Pfr solver for increasing radial distortion. Figure 4 shows
the results for general non-planar 3D scene, camera with fo-
cal length fgt = 1.5, image noise 1px and increasing radial
distortion parameter k1. We compare our new solver (Red)
with the non-planar P4Pfr solver [5] (Green).

For each radial distortion, from k1gt = 0 (no radial dis-
tortion) to k1gt = −0.5 (large radial distortion), 5000 es-
timates for random non-planar scenes and random feasi-
ble camera positions were made. Results in Figure 4 are
represented by the Matlab boxplot function and shows the
rotation error (Top left), translation error (Top right), fo-
cal length estimates (Bottom left) and radial distortion esti-
mates (Bottom right).

We can see that the accuracy of the new solver does not
depend on the radial distortion. The new solver gives ac-
curate and stable results for all radial distortions including
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scenes without radial distortion and it slightly outperforms
the non-planar P4Pfr solver [5].

4.2. Computational effort

The most significant improvement of our new solver over
the state-of-the-art solvers [12, 5] is in the speedup. The
C++ implementation of the new P5Pfr solver runs about
2μs and is thus about 130× faster than the C++ implemen-
tation of the non-planar P4Pfr solver [5] which runs about
260μs. The speed-up over the general P4Pfr solver [12] is
even much bigger.

The new solver requires to compute a null space of a
5×8 matrix, to find solutions to a fourth degree polynomial
and to compute inverse of a 3 × 3, 4 × 4 or 5 × 5 matrix,
depending on how many radial distortion parameters (one,
two, or three) are considered.

For comparison, the general P4Pfr solver [12] requires
to perform LU decomposition of a 1134× 720 matrix, QR
decomposition of a 56 × 56 matrix and eigenvalue compu-
tations of a 24×24 matrix. The non-planar P4Pfr solver [5]
requires to perform G-J elimination of a 136 × 152 matrix
and eigenvalue computations of a 16× 16 matrix.

The mean number of feasible real solutions returned by
the new solver for non-planar scenes is 1.7. For planar
scenes our new solver returns one solution with multiplic-
ity two. The mean number of real solutions returned by the
non-planar P4Pfr solver [5] is 3.7 and by the planar P4Pfr
solver [5] 4.6.

Our new solver uses one more point than the previous
minimal four point solutions to the absolute pose problem
with radial distortion [12, 5]. Therefore, theoretically, the
new solver requires more samples in RANSAC-based algo-
rithms [8] for reaching the same probability of finding an
uncontaminated sample. However, the new solver is about
130× faster than the fastest four point radial distortion abso-
lute pose solver [5] and it returns also less solutions than [5],
which need to be evaluated. Therefore, the running time of
a RANSAC-based algorithm [8] for the new P5Pfr solver is
significantly smaller than the running time of a RANSAC-
based algorithm for the P4Pfr solver [5] for all reasonable
outlier contaminations and scenes.

In fact, even for a very simple implementation of the
“vanilla” RANSAC algorithm [8] with 1000 RANSAC cy-
cles and 2000 correspondences between 2D and 3D space, it
takes only 50ms to estimate the camera pose, radial distor-
tion and focal length using the new P5Pfr solver. The major
fraction of this time is used for pose verification. Therefore,
the new algorithm can be very efficiently used in real-time
applications.

The same RANSAC algorithm [8] with our fast C++ im-
plementation of the P4Pfr solver [5] runs around 300ms on
the same data. Major fraction of this time is used for pose
calculation.

Figure 5. Camera registered using the P3P algorithm [8] and focal
length extracted from EXIF (Left) and camera estimated using
the new P5Pfr solver (Right). The black point cloud was calcu-
lated using gray cameras only. The red point cloud was created by
triangulating 2D matches between red and gray cameras. Notice
a strong misalignment in the P3P result (Left) caused by a small
radial distortion present in the red camera.

The comparison of the total times of model computa-
tion and 2000 tentative matches verification in RANSAC [8]
loop and different outlier contaminations is shown in Ta-
ble 1. The total times of solvers computation together with
the verification, 0.3ms/sample for the P4Pfr solver [5] and
0.05ms/sample for the new P5Pfr solver, were obtained by
measuring the mean time of 1000 samples in real experi-
ments.

From Table 1 it can be seen that the new P5Pfr solver
does 460515 samples while the P4Pfr solver [5] does 46049
at 90% outlier contamination. However, 0.921s of the new
P5Pfr solver spent in the model computation is 13× less
than 11.973s of the P4Pfr [5]. The total time, including
the verification of 2000 tentative matches, of the new P5Pfr
solver is shorter than the P4Pfr solver: 5× at 10%, 3× at
50%, and 1.2× at 80% outlier contamination.

4.3. Real data experiment

To evaluate our new solver on a real data, we created a sim-
ple structure from motion pipeline. The pipeline detects
image features and match them like in [22]. We manually
picked an image pair (initial seed) with a visually low radial
distortion and calculated the relative pose of its cameras us-
ing [6]. We used a fixed number of iterations and a simple
RANSAC [8] algorithm. To calibrate the camera pair, we
used the focal lengths extracted from image EXIF s. Then,
we triangulated image feature correspondences which were
accepted as inliers in the relative pose RANSAC. This way
we obtained a 3D point cloud. Using the correspondences
between images we created a set of 2D-3D correspondences
for images which were not registered yet. Next, we used our
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Outliers 10% 30% 50% 70% 80% 90%

P4Pfr #samples 5 17 72 566 2876 46049
P5Pfr #samples 6 26 146 1893 14389 460515

P4Pfr solver time [s] 0.00130 0.00442 0.0187 0.1472 0.7478 11.973
P5Pfr solver time [s] 0.00001 0.00005 0.0003 0.0038 0.0288 0.921
P4Pfr total time [s] 0.00150 0.00510 0.0216 0.1698 0.8628 13.814
P5Pfr total time [s] 0.00030 0.00130 0.0073 0.0947 0.7195 23.026

P5Pfr total time / P4Pfr total time 0.200 0.255 0.338 0.557 0.834 1.667

Table 1. The comparison of the total times of model computation and 2000 tentative matches verification in RANSAC [8] loop and different
outlier contaminations for the P4Pfr solver [5] and the new P5Pfr solver.

new P5Pfr absolute pose solver to register these images one
by one. To achieve that, we were executing our new solver
1000 times inside the RANSAC [8] loop and this way we
obtained the pose, focal length and distortion coefficients
of each camera. Next we undistorted its measurements and
triangulated new 3D points using 2D matches between al-
ready registered images. Then we created a new set of 2D-
3D correspondences to register remaining images. This way
we incrementally registered all images. The result of recon-
struction is shown in Figure 1.

In fact, disregarding some implementation details, this
is a traditional incremental structure from motion pipeline.
Typically the calibrated P3P algorithm [8] with focal length
extracted from EXIF or the DLT algorithm [11] is used
in such a pipeline. However, this can produce very inac-
curate results even if camera lens distortion is almost in-
visible. This happens not only for wide field of view cam-
eras but also for widely used standard consumer cameras
or smart phones and even at 27mm focal length. Figure 5
(Left) shows such a failure for Nikon D90 camera with 18-
105mm lens. The left plot shows the result, using the above
pipeline with the standard P3P algorithm, which assumes
no radial distortion. The right plot of Figure 5 shows the re-
sult for the new P5Pfr algorithm where it is visible that the
seed and newly triangulated point clouds smoothly overlap.
In both cases, initial seed camera pair (the middle and the
right camera) were captured at 35mm focal length with re-
spect to 35mm film size. The distorted image (left camera)
was captured using the same Nikon camera at 27mm.

To avoid registration failures, typically, bundle adjust-
ment [11] initialized with an absolute pose estimated in
RANSAC is used. Radial distortion and focal length are op-
timized inside the bundle adjustment as well. However, cal-
culating radial distortion and focal length inside RANSAC
allows finding much more accurate initialization and also
finding more inlier correspondences which are crucial for
successful optimization too. The speed at which RANSAC
gains inliers is shown in Figure 6. This results were ob-
tained on the real data from the previous experiment, i.e.
the statue from Figure 1. There was approximately 20% of
outliers since every 2d-3d point correspondence was at least
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Figure 6. The mean number of inliers (y-axis) obtained inside of
the RANSAC as a function of the number of iterations (x-axis).
Results for 500 calls of RANSAC for an image with low distortion
(Left) and for an image with higher distortion (Right).

Figure 7. A scene reconstructed using a mixture of images with
small and significant radial distortion (Left and Middle). An image
undistorted using parameters calculated by the new P5Pfr solver
(Right).

three-view consistent. From Figure 6 it can be seen that the
speed is very slow for solvers which does not calculate ra-
dial distortion. Also such solvers did not gain even half of
inliers.

Looser thresholds can be used to gain more correspon-
dences faster but then we need a better tentative correspon-
dences, otherwise we easily include outliers into the inlier
set. On the other hand, calculating a stronger model in-
side the RANSAC allows using tighter thresholds for outlier
classification and hence reducing possible contamination.

For reconstructing scene in Figure 1 we did neither use
bundle adjustment nor any other local optimization method.

In our last experiment we tested the new P5Pfr cam-
era pose solver on images with significant radial distortion.
First, we created an initial reconstruction using a camera
with a small radial distortion. The camera captured images
in a single loop around an testing object. We used the same
reconstruction method as in the previous real experiment.
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We optimized the computed camera poses using bundle ad-
justment. Next, we captured another set of images around
the object using a camera with significant radial distortion -
GoPro camera with 170 degree fish eye lens. We registered
these images to the scene using the new P5Pfr solver and we
triangulated new 3D points. We did not further optimized
the estimated camera poses and calibrations. The results are
displayed in Figure 7.

5. Conclusion

In this paper we have proposed a new efficient solution to
the absolute pose problem for camera with unknown radial
distortion and unknown focal length from five 2D-to-3D
point correspondences. Thanks to having five correspon-
dences, we have obtained a simpler and significantly faster
solver that gives less solutions to test and can handle larger
radial distortions than the state-of-the-art solvers presented
in [5, 12]. The new solver is about 130× faster than the
fastest absolute pose solver for camera with radial distor-
tion [5]. By evaluating our new solver on synthetic and real
data we have shown that it is numerically more stable and
more accurate than the state-of-the-art solvers [12, 5].

The new solver is straightforward and uses only simple
concepts from linear algebra. Therefore, it is simpler
to implement than the Gröbner basis solvers [12, 5].
The running time of the new solver is 2μs. This
solver is very useful in real applications where con-
sideration of radial distortion may bring a significant
improvement over the absolute pose problems without
distortion [8, 4] as we have shown in real experiments.
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