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Abstract

The appearance of an object changes profoundly with
pose, camera view and interactions of the object with other
objects in the scene. This makes it challenging to learn de-
tectors based on an object-level label (e.g., “car”). We pos-
tulate that having a richer set of labelings (at different levels
of granularity) for an object, including finer-grained sub-
categories, consistent in appearance and view, and higher-
order composites – contextual groupings of objects consis-
tent in their spatial layout and appearance, can significantly
alleviate these problems. However, obtaining such a rich
set of annotations, including annotation of an exponentially
growing set of object groupings, is simply not feasible.

We propose a weakly-supervised framework for object
detection where we discover subcategories and the com-
posites automatically with only traditional object-level cat-
egory labels as input. To this end, we first propose an
exemplar-SVM-based clustering approach, with latent SVM
refinement, that discovers a variable length set of discrim-
inative subcategories for each object class. We then de-
velop a structured model for object detection that captures
interactions among object subcategories and automatically
discovers semantically meaningful and discriminatively rel-
evant visual composites. We show that this model produces
state-of-the-art performance on UIUC phrase object detec-
tion benchmark.

1. Introduction
Consider the image shown in Fig. 1, humans can provide

a rich set of semantic labelings for objects in such an image,

including the basic object-level categories, e.g., “person”,

the fine-grained object sub-categories, e.g., “rider” and the

visual contextual composite labels, e.g., “person riding bi-

cycle”. Such labelings thoroughly explain the appearance

This work was supported by NSERC.

Figure 1. Labeling an Object: Humans can describe objects with

a rich set of semantic labelings. However, in most object detec-

tion benchmarks, only the basic-level category labels are provided,

e.g., person, bicycle. This could result in large intra-class vari-

ations in object recognition. In this paper, we detect basic-level

objects from images, and simultaneously discover the unobserved

labeling space that includes the low-level fine-grained subcategory

labels and the high-level visual composite labels.

variations of an object through not only the low-level pose

and viewpoint changes, but also its high-level relations to

other objects in this particular scene.

Traditional object detectors perpetually struggle with a

question of how to label an object. First, it is not possible

to annotate (or even enumerate) every sub-category and/or

composite relationship for an object category; this makes

supervised training for such entities difficult. Further, such

annotations are also often subjective and task specific. Sec-

ond, there is a clear gap between the semantic descriptions

and the discriminability of the labels for purpose of detec-

tion and classification. For example, human subjects tend to

use the word “blue” to describe the person in Fig. 1, but this

semantic label is not informative in classifying the instance

as a “person” from other possible object categories.

To avoid burdens of annotation and issues of subjectivity,

in most of the standard object detection benchmarks, only

the basic-level object category labels are provided, such as
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Figure 2. An overview of our detection pipeline: In the training

phase (top row), we first discover the object subcategories from

each basic-level category, then we train subcategory classifiers in

the latent SVM framework. The relational model takes the outputs

of these subcategory classifiers as input, and carries out reasoning

on top of these responses from a structured perspective. In the test

phase (bottom row), we run the subcategory detectors to gener-

ate a set of bounding boxes. Then we use our learned relational

model to re-score these bounding boxes based on the object com-

positional relations and generate the final detection results. Our

model outputs both the bounding boxes of each object and the dis-

criminative object relations.

“person”, “bicycle”, “car” and “road”. However, without

more detailed labelings, basic-level object detectors usually

suffer from large intra-class variability. Object appearance

tends to change profoundly with pose, viewpoint variations

and object-object interactions. For example, persons look

quite different walking vs. sitting, from frontal view or side

view, and their appearances also change dramatically when

interacting with other objects (e.g., person riding a horse or

lying on a sofa has very different appearance from a generic

person walking). We believe the multi-level (contextual) se-

mantic labelings are key to resolving intra-class variations

within the basic-level object categories. Considering the

difficulties in obtain such labelings, we advocate a weakly

supervised setting where only the basic-level categories are

provided in training, and the fine-grained subcategories as

well as the high-level visual composites are automatically

discovered from the training data.

In this paper, we propose a novel framework for detect-

ing and labeling objects with basic object-level categories

and multiple automatically discovered semantic labelings.

The semantic labelings consist of lower-level object subcat-

egories as well as higher-level visual contextual composites,

modeling relationships that the object has with other objects

in the scene. Object subcategories are visual clusters that

capture a wide range of appearance variations of an object.

We propose an exemplar-SVM based clustering algorithm

to discover the subcategory labels. The subcategories are

then treated as mixture components in a latent SVM frame-

work, and refined during learning. Our model detects pos-

sibly multiple object instances in a single image and gen-

erates detailed fine-grained subcategory labels for each in-

stance. At the higher-level of our framework, we focus on

the reasoning about relationships between object subcate-

gories. Such reasoning generates sets of closely interact-

MULTI-COMPONENT OBJECT DETECTION

Model Clustering # of comp
Bourdev and Malik [1] SVM annotations fixed (300)
Divvala et al. [16] (part-based) LSVM appearance fixed (15)
Divvala et al. [17] (part-based) LSVM appearance fixed (25)
Felzenszwalb et al. [7] part-based LSVM aspect fixed (3)
Gu and Ren [11] part-based LSVM view fixed (4/8)
Gu et al. [10] SVM annotations 400-1000
Malisiewicz et al. [14] SVM none all exemplars

Our model part-based LSVM appearance data-driven
automatic spatial subcategory co-occurrence

Li et al. [13] automatic spatial object co-occurrence
Sadeghi et al. [15] none manual annotation

Discovery Patterns
VISUAL COMPOSITES

Table 1. Related Work: Our framework relates to both multi-

component object detection and, recently introduced, contextual

visual composite models. A notable difference is that we dis-
cover sub-categories and composite relationships automatically

from data (based on appearance and spatial layout).

ing objects that form visual composites, e.g., “person riding

horse”. Notably the structure of the composites, including

participating objects and their spatial layout, are discovered

automatically from data using a structured model formula-

tion. An overview of our approach is shown in Fig. 2.

Contributions: 1) We propose a spectrum of automatically

generated semantic labelings for object detections. These

labelings contain both lower-level subcategories and higher-

level visual composites. 2) We introduce a discriminative

clustering algorithm to discover the subcategories. 3) We

develop a structured model for object detection that cap-

tures interactions among object subcategories and automat-

ically discovers discriminative visual composites. We also

show that our discovered visual composites are semanti-

cally meaningful. 4) Our approach produces state-of-the-art

performance in an object detection benchmark that includes

a rich set of object interactions.

2. Related Work

Our work relates to a number of topics in object detec-

tion and recognition. We overview the closest literature in

Table 1 and discuss it further below.

Multi-component Object Detection: In order to deal with

significant intra-class variations that can not be tackled by

monolithic models, several influential approaches model-

ing multiple components of objects, i.e. subcategories, have

been introduced [1, 7, 10, 11, 14, 16]. Mixture compo-

nents were integrated into the deformable part models either

based on bounding box or appearance k-means clustering

in [7] and [16, 17] respectively. However, the number of

mixture components is pre-defined (fixed) and not inferred

from data. Gu and Ren [11] focus on modeling viewpoint

variations of objects and ignore other richer sources of intra-

class variations. Malisiewicz et al. [14] train an exemplar

SVM for each positive example. However, the generaliza-
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tion ability of each model is limited. In this work, we use

exemplar SVM to discover an initial pool of subcategories

which we then refine, through merging, and train part-based

models for each resulting subcategory. Gu et al. [10] is sim-

ilar to our subcategory model. However, in [10] object re-

lationships are not modeled and hand annotated keypoints

and masks are used for clusterings, making the approach

considerably less scalable. Bourdev [1] introduces poselets

for person detection, but poselets encode visual composites

of parts rather than global objects and also require keypoint

annotation.

Object Interactions: There is rich literature on model-

ing contextual interactions between objects, including [2, 4,

9, 12, 19]. The core difference between our approach and

these methods is that we model interactions among object

subcategories rather than the basic-level object categories.

This captures the subtle joint appearance changes between

objects caused by interactions. For example, when a person

partakes in an interaction with a bicycle, when riding, the

appearance of both the bicycle and the person exhibit view-

consistent appearance changes (e.g., the rider’s legs tend to

occlude specific parts of the bicycle and the bicycle creates

a highly textured background close to the rider’s legs).

Visual Composites: Recently, several works implicitly

model occlusions and interactions through entities that fall

between objects and scenes. This is often referred to as

“visual composites” – two or more closely interacting ob-

jects. Sadeghi et al. [15] manually annotate a list of vi-

sual phrases and train global phrase templates for detection.

In [13], higher-order visual composites are automatically

discovered based on the spatial/scale/aspect consistency of

objects. However, the appearance consistency of compos-

ite visual patterns are not taken into account. These global

template based approaches may require a separate template

for each combination of interacted objects, making scala-

bility problematic. In contrast, we use subcategories and

spatial relations to reason about object interactions. Desai

and Ramanan [3] propose phraselets, where human pose is

modeled together with interacting objects based on the con-

figurations of local patches. Notably, our work models in-

teractions among object subcategories.

3. Discovering Subcategories
Given a set of training images with basic-level object cat-

egory labels and bounding boxes, our goal is to discover

the fine-grained subcategories. The two key requirements

for good object subcategories are: (1) inclusivity – subcate-

gories should cover all, or most, variations in object appear-

ance and (2) discriminability – subcategories should be use-

ful for detecting the class. The standard solution is to em-

ploy some form of unsupervised clustering, such as k-means

on the object appearance feature vectors [16, 17]. However,

running k-means on objects usually does not produce good

clusters, particularly in terms of discriminability, due to the

low-level predefined (Euclidean) distance metric used by k-

means. In addition, manually defining the number of clus-

ters is often difficult. We argue that the number of subcat-

egories per object class should be driven by the appearance

variations within that class, not a fixed global parameter.

An alternative option is the unsupervised mid-level patch

discovery strategy proposed recently in [18]. The method

shows good performance in finding a set of representative

patches from unlabeled images.

Our approach is inspired by the recent success of ex-

emplar SVM [14]. We train a linear SVM for each exem-

plar. The exemplar is used as the single positive example,

while negative examples are sampled from images that do

not contain any instances of the exemplar’s class. We use

5 iterations of hard negative mining in training each classi-

fier. An exemplar is represented by a rigid HOG template,

and each classifier can be interpreted as a learned exemplar-

specific template. For each exemplar, we run the detector

on all other examples in the class. We consider detection

scores above −1 indicative of object presence. A cluster

is formed by the exemplar and its top k scoring detections.

We limit each cluster to only five members (k = 4) to keep

cluster homogeneity. Clusters with fewer than two mem-

bers are pruned. This process allows us to obtain a large

set of highly homogenous atomic clusters. We then merge

visually consistent clusters via affinity propagation [8]. We

define the (asymmetric) similarity from cluster s to cluster

r as: ds(r) = 1
N

∑
i

∑
j ws(i)

�xr(j), where xr(j) is the

HOG feature vector of the j-th example of the cluster r.

The weight term ws(i) is the learned template for the i-th
example of the cluster s. N is the normalization constant

computed as the number of examples in cluster r times the

number of examples in cluster s.

We compute similarities between every pair of the

atomic clusters. Then affinity propagation [8] is applied

where the atomic clusters are gradually merged into larger

clusters by a message-passing procedure. Unlike k-means,

affinity propagation does not require parameters that specify

a desired number of clusters, instead the number of clusters

is determined from the data. Affinity propagation also does

not require initialization of cluster centers. We run affin-

ity propagation for each basic-level category separately and

obtain the fine-grained subcategories. Figure 3 shows a vi-

sualization of several example subcategories. Note that, due

to our discriminative training strategy, objects within each

subcategory are highly consistent in appearance.

4. Learning Subcategories
Given the set of subcategories obtained from the previ-

ous section, we learn a mixture model based on DPM [7],

where the mixture components correspond to subcategories
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Figure 3. Subcategories: Subcategories are defined by object in-

stances that are tightly clustered in appearance space. The fig-

ure shows the discovered subcategories for some of the basic-level

object categories including horse, person, bicycle, car, bottle and

dog. We only show the first five examples in each subcategory.

of a basic-level object category. We first review the key

methodologies of learning the DPM detector, and then ex-

plain the details of their use in our mixture model.

DPM is trained from a set of labeled examples D =
(〈x1, y1〉 , . . . , 〈xn, yn〉), where yi ∈ {−1, 1}. The goal is

to learn model parameters w by minimizing the objective

function,

LD(w) =
1

2
||w||2 + C

n∑
i=1

max(0, 1− yifw(xi)) (1)

where fw(xi) is the score of the classifier w on example

xi. Here we write fw(x) = maxz∈Z(x) w
�Φ(x, z); z are

the latent variables and Z(x) are the set of possible latent

values for an example x. Since the optimization is non-

convex, the model parameters w and the latent variables z
are learned using an iterative approach [7].

Mixture models: It is straightforward to train DPM for

each subcategory independently [16]. However, one con-

cern is in calibrating the scores output by individual SVM

classifiers. In addition, subcategories discovered in the pre-

vious section might be noisy and should be cleaned up dur-

ing learning. In this work, we train the subcategory classi-

fiers in the latent SVM framework, where the training of the

classifiers are coupled and the subcategory labels are refined

in the latent step. The subcategory labels in our method cor-

respond to the mixture components in DPM.

In DPM, the mixture components are initialized accord-

ing to the examples’ aspect ratios and updated in the latent

step. However, the aspect ratio heuristic does not generalize

well to a large number of subcategories, and thus often fails

to provide a good initialization. Due to the non-convex na-

ture of latent SVM, initialization of subcategories is a key

step of learning a good detector. Here we naturally use the

subcategories discovered in the last section to initialize the

mixture components, and allow the subcategory labels to

refine during the latent step. To detect objects, we run the

learned classifiers independently for each component. The

output of this step is a set of candidate windows where each

window is associated with a fine-grained subcategory label.

5. Relational Model

Subcategory mixture models learned in the previous

section are good for dealing with appearance variations

present in a given object class, however, detection accuracy

for some, typically smaller and less-discriminative, object

classes may still be low. Contextual information of rela-

tionships between detections in an image can further boost

the performance of object detectors, as been shown in [13]

and [15]. Unlike these methods, however, we propose to

build contextual basic-level category models based on the

subcategory classifiers (not aggregate object detections, as

in [13], or composed templates [15]). This allows our model

to be attuned to visual and view-based correlations between

subcategories of objects.

We use a star model to represent an object, where the

object is connected to other objects in the vicinity of the de-

tection. Intuitively, this is similar to the part based model

in [7], and the objects in context are treated as parts. How-

ever, instead of treating all objects in the same image as

context, we introduce binary latent variables to discrimina-

tively select which objects have strong interactions with the

central object and should be included in our model. We call

the star graph that includes the candidate central object and

the contextual objects a visual composite. At the end of the

inference, our goal is to obtain a rich set of visual compos-

ites that are not only highly characteristic of the object class,

but also highly discriminative compared to other classes.

Representation: We begin by introducing the notations we

use in the rest of the paper. The input to our learning mod-

ule is N images accompanied with a set of 〈Xn, Yn〉 pairs,

n = 1, . . . , N . Here we write Xn = {xi : i = 1, . . . ,Mn}
as the representation of the n-th image, where Mn is the

total number of detected bounding boxes for this image

and xi is the feature vector of the i-th bounding box. Let

Yn = {yc,i : c = 1, . . . , C, and i = 1, . . . ,Mn} be the

entire label set for image Xn, where C is the total num-

ber of object categories in the dataset and yc,i ∈ {0, 1} is

a variable indicating if the i-th bounding box contains an

object of the c-th category. Let pi ∈ {1, . . . ,K} be the

indicator variable showing the subcategory detector that se-

lect the i-th bounding box, where K is the total number of

subcategories in our dataset. An object hypothesis is rep-

resented by a star graph, which specifies an object bound-

ing box and a set of bounding boxes of contextual objects.

Assuming the central object’s index is i, we use Li to rep-

resent the indices of contextual objects in an image where

Li = {j : j ∈ {1, . . . ,Mn}\i}.
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5.1. Finding Candidate Visual Composites

In training, we discover a set of discriminative visual

composites automatically. We define visual composites as

consisting of two or more objects. Objects that belong to the

same composite should co-occur frequently and conform

to certain spatial and scale relationships that are consistent

across images. Based on this definition, only a subset of

objects in an image can be part of a visual composite. Our

goal is to discover such composites that exhibit consistently

occurring object layout patterns in a set of images.

Consider a visual composite, represented by a star graph.

The key insight is that based on our definition, contex-

tual objects windows (leaves of the graph) should all have

consistent layout with the central object window; in other

words, contextual objects should be able to consistently pre-

dict a bounding box for the central object under considera-

tion. With that as an insight, at training time, we first learn

spatial layout relationships between potential contextual ob-

jects and central object. Based on these learned relations an

initial graph of a visual composite is constructed (by only

considering object detections that are consistent in predict-

ing considered central object’s bounding box).

We start by fitting a three component Gaussian mixture

(MoG) model to pairs of (bounding boxes of) objects that

co-occur in training images. The three component MoG al-

lows us to model various spatial and scale aspects of the

object-object relationship. Notably, we can easily produce

a hypothesis for a bounding box of a central object by con-

ditioning the learned mixture model on the bounding box

of a contextual object. Given an image, we can use this

model to determine the set of possible contextual objects for

each central object window. Given a central object window

we consider contextual objects to be windows that, given

a learned spatial Gaussian mixture model, can predict the

central object window to > 0.3 overlap (VOC criterion).

During training, we iterate over all true positive activa-

tions (responses of the detector that are within 0.5 overlap

to the true object annotation), and in this way obtain the vi-

sual composites (central object + contextual objects) that

have tight spatial configuration coupling.

During testing, however, the ground truth object cate-

gories are not provided, thus we do not know if a detection

window is a true positive or not. If we naively include all

spatially consistent detection windows as contextual objects

for a given candidate central object, we may include many

false positives and thus hurt the performance. Thus dur-

ing inference, we introduce a binary latent variable for each

candidate contextual window to discriminatively select if it

will be included in our composite object model. For an ob-

ject window i, we use hi to denote the binary latent vari-

ables for all contextual objects with indices in the set Li.

Note, during training we assume hi is known (see above).

5.2. Model Formulation

We construct models for each basic-level object category

separately. For modeling the c-th basic-level object cate-

gory, the score associated with a bounding box i is:

Sc(xi, yc,i,hi) = α�
pi
xi·yc,i+

∑
j∈Li

β�
pj
dij ·hij+

∑
j∈Li

γ�
pipj

xj ·hij

(2)

Root model α�
pi
xi · yc,i: We simply use the output of the

subcategory detector as the single feature. To learn biases

between different subcategories, we append a constant 1
to make xi two-dimensional. αpi

is the two-dimensional

weight that corresponds to the subcategory class of the i-th
bounding box. If the bounding box is labeled as background

(yc,i = 0), then the potential of the root model is set to zero.

Context model β�
pj
dij · hij: We write dij = [xj , gij ] to

represent the objects in context, where xj is the appearance

feature (detection score) of the j-th bounding box and gij is

the spatial feature computed based on the relative position

and scale of the j-th bounding box w.r.t. the i-th bounding

box using the Gaussian distribution described in the previ-

ous section. hij is a binary latent variable that determines

whether the contextual object is discriminative and should

be included into the context model.

Co-occurrence model γ�
pipj

xj ·hij: This term captures the

“prior” over subcategory combinations. The intuition is that

certain pairs of subcategories tend to co-occur while others

do not, for example, a bicycle with side view tends to co-

occur with a rider with the same viewpoint, and a horse

tends to co-occur with a horse rider instead of a person

walking.

5.3. Inference

We assume that the bounding box labels yc,i are inde-

pendently inferred, and our inference is exact. For an object

window i, our inference corresponds to solving the follow-

ing optimization problem:

(ŷc,i, ĥi) = arg max
yc,i,hi

Sc(xi, yc,i,hi) (3)

For the bounding box i, the inference is on a star graph

where we jointly infer the presence or absence of the c-th
category yc,i as well as the corresponding binary latent vari-

ables hi of the contextual objects. This is very simple exact

inference as yc,i and hi are all binary variables and we can

enumerate all possible values of the random variables and

find the optimal solution. Note that we constrain hi to an

all-zero vector when yc,i = 0, which means we do not con-

sider object interactions with background. We emphasize

that our inference procedure returns both object labels and

the visual composites that tells the closely related contex-

tual objects for each object window.
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Figure 4. Subcategory Templates: Examples of learned three ob-

ject categories: bicycle, horse and person (one category per row).

For each template, we show the best match from the UIUC phrase

training set. For object categories, bicycle, bottle, car, chair, dog,

horse, person and sofa, the number of discovered subcategories

(through affinity propagation) for our mixture models are: 13, 6,

15, 6, 13, 12, 59 and 13 respectively. Due to space limitation, we

only show some of the templates.

5.4. Structure Learning

Given N training images with a set of bounding boxes

X and the corresponding object category indicator labels

Y . We would like to train the model parameter θ that tends

to produce the correct object labels. Here we train mod-

els independently for each basic-level object category. The

following objective function is for learning the model pa-

rameter θc for the c-th category:

min
θc,ξ≥0

1

2
||θc||2 + C

N∑
n=1

Mn∑
i=1

ξni

Sc(x
n
i , y

n
c,i,h

n
i )− Sc(x

n
i , ŷ

n
c,i, ĥ

n
i ) ≥ Δ (ync,i, ŷ

n
c,i)− ξni ,

∀i, ∀n, (4)

where the loss function Δ is a 0-1 loss that measures the dif-

ference between the ground-truth object category indication

yc,i and the inferred variable ŷnc,i, i.e., Δ (ync,i, ŷ
n
c,i) = 1 if

ŷnc,i �= ync,i, and 0 otherwise. This form of learning problem

is known as structural SVM, and many well-tuned solvers

can be applied to solve this problem. Here we use the bun-

dle optimization solver in [5].

We note that during training the contextual binary vari-

ables hi are observable based on the ground truth visual

composites (see Section 5.1). We experimented with let-

ting hi be latent during learning, however, saw somewhat

inferior performance which we attribute to resulting non-

convexity in the objective.

6. Experiments
We present results of object detection on a standard ob-

ject benchmark dataset: UIUC phrase dataset [15]. The

UIUC phrase dataset contains 2796 images which consist

of a subset of PASCAL images and images for phrases col-

lected from the web. The images are labeled with 8 of the

20 PASCAL categories, and a list of 17 visual phrases such

as person riding bicycle, dog lying on sofa, etc. In this pa-

per, we train our object models using only the basic-level 8
category labels. We use the training-testing split avaialble

at http://vision.cs.uiuc.edu/phrasal/.

We picked UIUC phrase because it contains a rich set

of visual composites (phrases plus a few higher-order com-

posites such as person drinking bottle sitting in a chair). It

also contains a subset of PASCAL images and uses famil-

iar PASCAL object categories, PASCAL on the other hand

contains few composites. The use of UIUC phrase dataset

also allows us to compare our results to competing methods.

We compare our results to state-of-the-art performance re-

sults of [13, 15], as well as the detection performance of

our subcategory classifiers. We further apply the proposed

method to image retrieval with visual phrase queries, and

show that our method significantly outperforms baselines.

6.1. Object Detection

Table 2 compares results of our method with leading

approaches on the UIUC phrase dataset. The approaches

we compared against are: 1) Deformable part-based model

(DPM) [7]; 2) Object context: a contextual re-scoring

scheme used in [7]; 3) Phrase context: object detection out-

puts are re-scored using the phrase template trained by man-

ually defined phrases [15]; 4) Group context [13], object

detection outputs are re-scored using automatically discov-

ered groups of objects. To fairly compare with the reported

results, we use the same version of deformable part models

to train our subcategory classifiers [6].

Our method achieves state-of-the-art in terms of mean

average precision across 8 object categories on this bench-

mark. In particular, for 4 object categories: car, dog, horse

and person, our method significantly improves on state-of-

the-art [7, 13] by 5.5%, 9.4%, 11.2% and 12.1% respec-

tively. Note that our method does not use phrase annotations

as in [15], but achieves significantly better performance.

There are two main reasons for the improved performance

in our method: 1) We discover highly consistent subcate-

gories. The trained subcategory classifiers are highly dis-

criminative and address intra-class variations among basic-

level categories. This is demonstrated by the performance

gain of subcategory classifiers in Table 2. Some of the

learned subcategory templates are visualized in Figure 4. 2)

Modeling visual composites improve performance for some

hard-to-detect object categories such as bottle and chair. We

think the poor performance of classifying bottle and chair

by our subcategory classifiers is mainly due to over-fitting.

We have fewer training examples for these two classes, and

further dividing these examples into subcategories will eas-

ily over-fit the data. In this case, the context of visual com-

posites is important. For example, a person with a pose of

sitting will help detect a chair below him. The visual com-
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bike bottle car chair dog horse person sofa mAP

DPM [7] 57.0 7.0 25.8 11.1 5.6 49.3 25.7 14.1 24.5

Object context [7] 58.8 9.3 33.1 13.4 5.0 53.7 27.9 19.8 27.6

Phrase context [15] 60.0 9.3 32.6 13.6 8.0 53.5 28.8 22.5 28.5

Group context [13] 63.5 10.7 32.5 13.2 8.0 54.6 30.6 24.9 29.8

Our subcategory model 63.7 3.0 37.7 4.7 14.1 67.0 45.2 23.7 32.4

Our full model 63.9 9.4 38.1 9.8 17.4 65.8 42.7 24.4 33.9
Table 2. Detection results on UIUC phrase: Table compares average precisions (AP) for all 8 categories and the mean AP (mAP) across

categories; leading approach is in bold. Our method achieves state-of-the-art in mean AP and outperforms [13, 15] in 5 out of 8 categories.

posites will also prune some false positives that violate typ-

ical spatial configurations. A detailed discussion of visual

composites is provided in the next section.

6.2. Visual Composites

Fig. 5 visualizes our detection results along with the pre-

dicted visual composites. For example, in Fig. 5 (a), a con-

fident “person” response together with a tight spatial lay-

out helps boost the bicycle detection. Compared to phrases,

higher order composites can be more effective because mul-

tiple confident contextual object responses in tight spatial

layout with the single central object detection tend to be

more reliable and indicative. Fig. 6 (top right) shows a com-

posite of person riding bicycle with a car nearby, where the

confident responses of car and person will jointly boost the

detection of the bicycle.

Visual phrase retrieval: Since the UIUC phrase dataset

is annotated with visual phrases, we wish to evaluate how

well our method performs in applications designed for those

phrases even without phrase annotations during training.

However, our method is not directly applicable to visual

phrase detection as in [15], since the output of our method

are bounding boxes of objects instead of visual phrases.

Here we evaluate our method in image retrieval with visual

phrase queries. Instead of answering question of where is

the visual phrase, we focus on whether an image contains

the visual phrase.

UIUC phrase contains annotations of 12 visual phrases

that describe interactions between two objects (e.g., per-

son lying on sofa). We evaluate performance by using each

visual phrase as the query. We compare our method with

deformable part models [7] and our subcategory detectors.

All of the three methods are trained with the same annota-

tions – only the basic-level object categories are provided.

Since these methods cannot make a distinction between

phrases composed of the same objects (e.g., “person lying

on sofa” versus “person sitting on sofa”), while evaluating

the retrieval performance for a query (e.g., “person lying on

sofa”), we remove all images from the test set which con-

tain other queries that are composed of the same objects

(e.g., “person sitting on sofa” ).

We use the same heuristic to combine the object detector

scores for retrieval. For example, given a query of “per-

Phrase Names DPM [7] Subcat. Full Model

Person lying on sofa 1.0 2.8 2.8
Person sitting on sofa 4.6 9.0 12.4
Person riding bicycle 67.4 86.5 86.9
Person next to bicycle 45.9 59.3 68.0

Person riding horse 78.3 85.8 85.7

Horse and rider jumping 15.7 70.5 71.3
Person next to horse 27.9 28.2 27.4

Person drinking bottle 8.4 2.5 2.1

Person sitting on chair 11.0 10.3 10.7

Person next to car 18.7 36.1 35.6

Bicycle next to car 20.7 56.7 54.2

Dog lying on sofa 4.6 18.4 20.4
mAP 24.3 38.9 39.8

Table 3. Phrase query based image retrieval results: Compar-

ison of average precisions (AP) for all 12 visual phrases and the

mean AP (mAP) across categories; leading approach is shown in

bold. Our method significantly outperforms the baseline and the

full model improves over our subcategory model.

son riding bicycle”, we first apply both “person” detector

and “bicycle” detector on the testing images. Then a testing

image will be scored by the sum of the maximum person

detector score and maximum bicycle detector score on this

image. Note, detector scores across object categories have

been normalized to the same scale by logistic regression.

Summary of results is in Table 3. Our method again

achieves remarkable improvement over the baseline. Note

that our method does not require any visual phrase annota-

tions, and is trained purely on basic-level object categories,

but can still reliably retrieve a list of visual phrases: “Per-

son riding bicycle”, “Person riding horse” and “Horse and

rider jumping”. The biggest performance gap is on “Horse

and rider jumping”: our method increases the average pre-

cision from 15.7% (DPM) to 70.5%. We believe this is

because our method automatically discovers subcategories

corresponding to “horse rider” and “jumping horse” and

learns discriminative subcategory templates. Our full model

also further improves the results of subcategory classifiers,

particularly in the phrases with tight spatial configurations,

such as “Person sitting on sofa” and “Horse and rider jump-

ing”. Our method does not perform well for “person drink-

ing bottle”. We believe this is because our subcategory clas-

sifiers for bottle over-fit (see Section 6.1), and the response

of bottle detector during testing is often low; notably, it can
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Figure 5. Object and visual composite detection: The central

objects, object we want to re-score, are shown in red (only the

top 3 detection responses are visualized), and the automatically

discovered contextual objects in blue; green rectangles label the

visual composites. For each detection response, we also show the

confidence score before and after applying our relational model

denoted by s : t, where s is the output of subcategory detector

and t is the output of our full model. We use dashed line to de-

note the responses suppressed by our relational model, solid line

for boosted responses. For example, in (a), a confident “person”

response together with tight spatial layout boosts the “bicycle”

score from 0.99 to 1.31 while the false positive bicycle response

above the person is suppressed; (b) shows an example of “person-

bottle” composite. Although the true positive bottle response is

decreased, the gap between true positive and false positive bottles

is increased.

easily be dominated by the high response of person since

the confidence score of “person drinking bottle” is obtained

by summing “max” scores of person and bottle.

7. Conclusion

In this paper, we propose a multi-level framework for

detecting and labeling objects with basic object-level cate-

gories and multiple automatically discovered semantic la-

belings including the fine-grained subcategories as well as

the high-level visual composites. Our framework is weakly

supervised where only the basic-level categories are pro-

vided in training. Our experiments on the UIUC phrase

dataset show that the proposed method outperforms multi-

ple state-of-the-art methods in object detection, and the au-

tomatically discovered visual composites are semantically

meaningful. We further show that our method can be ap-

plied to retrieve images with visual phrase queries even

without visual phrase annotations during training, with sig-

nificant improvement over baselines.

Figure 6. Visual composite examples: The central objects are in

red, contextual objects are in blue. For clarity, we omit to show

relative spatial configuration. As can be seen, composites are of-

ten are semantically meaningful. Besides visual phrases, we also

discover higher-order composites such as: person-bicycle-car and

person-bicycle-person (see examples of the second row).
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