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Abstract

Estimating a dense correspondence field between suc-
cessive video frames, under large displacement, is impor-
tant in many visual learning and recognition tasks. We pro-
pose a novel sparse-to-dense matching method for motion
field estimation and occlusion detection. As an alterna-
tive to the current coarse-to-fine approaches from the op-
tical flow literature, we start from the higher level of sparse
matching with rich appearance and geometric constraints
collected over extended neighborhoods, using an occlusion
aware, locally affine model. Then, we move towards the
simpler, but denser classic flow field model, with an inter-
polation procedure that offers a natural transition between
the sparse and the dense correspondence fields. We experi-
mentally demonstrate that our appearance features and our
complex geometric constraints permit the correct motion es-
timation even in difficult cases of large displacements and
significant appearance changes. We also propose a novel
classification method for occlusion detection that works in
conjunction with the sparse-to-dense matching model. We
validate our approach on the newly released Sintel dataset
and obtain state-of-the-art results.

1. Introduction

Estimating a dense correspondence field between video
frames is essential for many higher-level visual tasks,
such as tracking, grouping, image segmentation and ob-
ject recognition. This problem, known as optical flow es-
timation, consists of inferring the displacements in the im-
age caused by camera motion or the moving objects in the
scene, and has been initially formulated for small, differen-
tial apparent motions.1 The task is difficult for many rea-
sons: 1) finding a dense correspondence field is computa-

∗The first two authors contributed equally.
1The is part of the general problem of motion field estimation, although

optical cues do not always fully constrain the field, as it is well known.

tionally expensive and requires sophisticated optimization
methods; 2) the presence of multiple differently moving ob-
jects in the scene yields abrupt discontinuities in the motion
field and produces occlusion regions that are hard to model;
3) when displacements are larger than the object structure,
the use of efficient local image approximations is no longer
valid, and matching becomes significantly more difficult; 4)
ambiguities could arise from blur and illumination changes.

Optical flow estimation is one of the first problems stud-
ied in computer vision [24, 10], and was initially formulated
for Lambertian surfaces under the assumption of full visi-
bility. Most current methods are closely related to the first
mathematical models of the 1980s where brightness con-
stancy assumptions and smooth local flow constraints were
used. Such energy models are appropriate for small dis-
placements, where Taylor image approximations hold, but
have difficulties when motions are larger than the local im-
age structure [6]. Today’s methods are superior to the first
approaches, but the task is far from solved, mainly in the
difficult case of large displacements. Recently, there has
been growing interest in integrating sparse feature match-
ing into models that process large motions [30, 6, 32, 22],
with significant improvements over traditional approaches.
However, the sophistication of the sparse matching compo-
nent used is still limited: in [6] authors use nearest neigh-
bor schemes, whereas others [32, 22] rely on energy models
rooted in the classic Total Variation (TV) formulation.

We make the following contributions: 1) we propose
the first affine-invariant and occlusion-aware matching al-
gorithm to estimate a dense correspondence field between
images, under potentially large displacements. We rely on
a new sparse-to-dense approach starting from a complex
sparse matching cost, then making the transition towards a
dense motion field using a novel interpolation method. The
final motion field is obtained using local refinement based
on continuous optimization. 2) We introduce a new occlu-
sion classifier that operates in conjunction with the sparse-
to-dense interpolation method, with the two modules pro-
viding mutually informative cues, to improve performance.
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Overview of our approach: We propose a hierarchi-
cal sparse-to-dense matching method that generalizes ideas
both from the traditional coarse-to-fine variational approach
and from recent methods based on sparse feature match-
ing [4, 16, 19, 8, 6, 32, 22]. Our method consists of three
main phases (Figure 1). It starts from optimizing a sparse
matching energy with rich appearance unary terms and lo-
cally affine, occlusion sensitive, geometric constraints. This
phase is meant to recover most of the correct motions, even
in the case of large displacements. Next, using the same
high-order geometric constraints, a second stage of sparse-
to-dense interpolation follows, making the transition from a
set of sparse matches on a grid to a dense correspondence
field. Once we are in the neighborhood of the correct solu-
tion, the final output is obtained by a continuation method
that uses the total variation (TV) model. After every match-
ing stage, a classifier based on intermediate motion cues
produces an occlusion probability map that is then passed to
the next matching level. At the end, all cues obtained from
the different stages of correspondence field estimation are
fed into the occlusion classifier that produces the final oc-
clusion map. Through this synergy between matching and
occlusion estimation we obtain both improved optical flow
and occlusion maps. The stages of our approach are:

1. Sparse Matching: Initialize a discrete set of candidate
matches for each point on a sparse grid (in the first im-
age) using dense kNN matching (in the second image)
based on local feature descriptors. Use the output of
a boundary detector and cues from the initial sparse
matching model to infer a first occlusion probability
map. Then discretely optimize a sparse matching cost
function using both unary, data terms (from local fea-
tures), and geometric relationships based on a locally
affine model with occlusion constraints. Use the im-
proved matches to refine the occlusion map.

2. Sparse-to-Dense Interpolation: Fix the sparse
matches from previous step. Then apply the same oc-
clusion sensitive geometric model to obtain an accu-
rate sparse-to-dense interpolation of matches.

3. Dense matching refinement: use a TV model with
continuous flow optimization to obtain the final dense
correspondence field. Use matching cues computed
from all stages to obtain the final occlusion map.

Discussion: Phase 1 of our approach is related to both graph
matching algorithms [4, 16, 19, 8] that use sparse local fea-
tures and second or higher order geometric relationships,
and recent optical flow methods that used descriptor match-
ing [6, 32, 22]. This stage aims to minimize the relative mo-
tion error even when the displacements are generally large,
so to bring the solution in the neighborhood of the correct
one. The next sparse-to-dense interpolation phase ensures a
natural transition towards a dense motion field. At the last
stage we perform continuous optimization of a variational

Figure 1. Left: motion fields estimated at different stages of our
method. Right: flowchart of our approach. Sparse matching re-
sults are resized to original image size for display.

model for accurate localization. The different phases com-
plement each other: phase 1 is not sensitive to small dis-
placements, since it uses sparse matches and descriptors ex-
tracted over relatively large neighborhoods; phase 3 uses a
TV model and is most appropriate for small motions; phase
2 provides a transition between 1 and 3. Our approach is
different from large displacement optical flow methods that
append an energy term based on sparse matching to the vari-
ational framework [6]. It is also different from methods that
use descriptor matching only to find candidate flows, but
then optimize an energy model with local smoothness con-
straints [32]. The SIFT-flow energy model [22] uses rich
descriptors [23], but a local flow spatial regularization term.
Our method is closer to the approach of [4] that first ap-
plies sparse graph matching formulated as IQP, then uses
thin plate splines for dense interpolation. Differently from
that work, we efficiently match thousands of features and
preserve boundaries, as discussed shortly.

2. Mathematical Formulation

Before we detail our main sparse-to-dense algorithm, we
first define the sparse matching task. Given two images I1
and I2 of the same scene, the sparse matching problem con-
sists of finding the correspondences in I2 for N points lo-
cated on a uniform grid in I1. Finding the correct matches
is equivalent to solving for the sparse displacement field–a
2N × 1 vector w, such that the displacement of feature i is
[wix, wiy]. Sparse matching is then formulated as the opti-
mization of a cost function that is a linear combination of a
data term and a spatial energy term:
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E(w) = ED(w) + λES(w). (1)

Here λ weighs differently the spatial term ES(w) vs. the
data termED(w). We want to find w that minimizesE(w).

Data term: For the unary data term we use descriptors
computed over relatively large regions (51 × 51 patches in
436 × 1024 images) in order to better cope with large dis-
placements, motion and defocus blur, and illumination vari-
ations. Our data term ED(w) =

∑
i ψDi(wi) is the sum

of appearance errors, where wi = [wix, wiy] is the dis-
placement of feature i and ψDi

(wi) is a linear combina-
tion of Euclidean distances computed for color and bound-
ary descriptors: ψDi(wi) = ‖d(1)

c (pi)−d
(2)
c (pi +wi)‖+

β‖d(1)
b (pi) − d

(2)
b (pi + wi)‖. Here, pi denotes the x, y

location of feature i, and d
(k)
c (p) and d

(k)
b (p) are the color

and boundary descriptors from image Ik at location p. Us-
ing edge information is not uncommon to optical flow es-
timation methods [6, 32]. However, in our case, instead of
using local, pixel-wise gradients, we compute boundary de-
scriptors over larger regions with a more accurate boundary
detector [18]. Note that our formulation is general enough
to work with different appearance descriptors.

Spatial term: Points that are likely to be on the same
object surface and are close to each other are also likely to
have a similar displacement. The motions of such points
within a certain neighborhood are expected to closely fol-
low an affine transformation. To model this, we first de-
fine a geometric neighborhood system over the grid loca-
tions (see Figure 2), and link neighboring points (i, j) using
an edge strength function eij–meant to measure the prob-
ability that two points lie on the same object surface and
obey a similar affine transformation from I1 to I2. We
model eij ∈ [0, 1] by an exponential that considers the
pairwise distance dij between the points (i, j), the average
occlusion probability oij on the straight segment between
i and j and the intervening maximum boundary response
bij along the same segment: eij = exp (−a>gij), where
gij = [dij , oij , bij ] and a is a vector of positive weights; oij
and bij are closely related to the intervening contours used
for computing soft Ncuts segmentations in natural boundary
detection [2]. Thus, eij represent segmentation cues, softly
separating points from different objects.

In our model, each feature i has a neighborhood Ni,
with Ni neighbors (minimum 21 in our implementation),
to which it connects with strength eij , for j ∈ Ni. We
use the locations of i’s neighbors, p(1)

Ni
in I1, their current

estimated destinations in I2, p
(2)
Ni

, and their membership
weights, to estimate a motion model that predicts the desti-
nation p

(2)
i of the current point i in I2: p̃(2)

i = TNi
(p

(1)
i );

TNi
is potentially different for each i - the transformation

is not rigid and varies, if necessary, over the grid; as we

Figure 2. A feature i is connected to its neighbor q in Ni with
strength eiq - a function of distance, and intervening boundary and
occlusion information. The current motions of neighbors in Ni

are used to predict the motion w̃j at point i, through an affine
mapping Si. Our novel quadratic affine error model effectively
produces an extended neighborhood system N (E)

i where pairs of
connected points (i, j) contribute to the total error as w>i Qijwj .

show next, it is also discontinuity preserving through the
pairwise weights eij . The prediction error between the cur-
rent p(2)

i (wi) = p
(1)
i +wi and the estimated p̃

(2)
i forms the

basis of our spatial energy term:

ES(w) =
∑
i

‖p(2)
i (wi)− TNi(p

(1)
i )‖2. (2)

The use of the squared error, corresponding to Gaussian
noise, preserves, in our case, flow discontinuities near oc-
clusions and image boundaries, as the neighbors used to es-
timate TNi

participate with weights eij , which are functions
of relative occlusion and boundary cues. Note that the gen-
eral form of our spatial energy term from Eq. 2 is of order
Ni. To estimate TNi , for each point i, we would gener-
ally need the displacements of all its Ni neighbors. Every
point connects to all its neighbors and will be involved in
Ni transformation estimates. This makes the problem in-
tractable, in general. However, when TNi

is a local affine
transformation, Eq. 2 reduces to a second order energy that
can be efficiently optimized (see next).

2.1. Locally Affine Spatial Model

For each point i, we estimate its affine transformation
TNi

= (Ai, ti) from neighboring motions by weighted
least squares, with weights eij , ∀j ∈ Ni. Let 2Ni × 1

pNi
= p

(2)
Ni

be the estimated positions of its neighbors in
I2 and M the Moore-Penrose pseudoinverse of the least
squares problem. Note that M is fixed for each i and can be
pre-computed before optimization. It depends only on the
locations of the neighbors in I1, p(1)

Ni
, and their weights. The

least squares solution MpNi
gives the estimated (Ai, ti):

Ai =

[
m>1 pNi

m>2 pNi

m>3 pNi
m>4 pNi

]
ti =

[
m>5 pNi

m>6 pNi

]
.
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Here m>k denotes the k-th row of M. Using p
(1)
i = [xi, yi],

the predicted end position p̃
(2)
i of i in image I2 is:

p̃
(2)
i = TNi

(p
(1)
i ) = Aip

(1)
i + ti (3)

=

[
xim

>
1 + yim

>
2 +m>5

xim
>
3 + yim

>
4 +m>6

]
pNi

=

Si︷ ︸︸ ︷[
0

xim
>
1 + yim

>
2 +m>5

xim
>
3 + yim

>
4 +m>6

0

]
p(2).

Here p(2) are the estimated final destinations of all points
in I2 and Si is a 2 × N matrix with padded zero columns
corresponding to elements in p(2) not belonging to points
in Ni. Note that Si does not depend on the unknown dis-
placements (or final positions p(2)) which we want to solve
for. This fact, together with the next property, are essential
for efficient optimization (§3).
Property 1: a) Sip

(1) = p
(1)
i , where p(1) are the initial

grid locations of all points. b) Siw = w̃i, where w̃i is the
estimated motion of point i.
Proof: a). Note that Sip

(1) is the estimated p̃i at location
i if the final positions of all points in image I2 are the same
as the initial positions p(2) = p(1). Since the points do not
move, the affine model will be the identity transformation,
so p̃i = p

(1)
i . b). We use the previous result from 1.a) to

show that: p̃i = Sip
(2) = Si(p

(1) + w) = p
(1)
i + Siw.

Then w̃i = p̃i − p
(1)
i = Siw + p

(1)
i − p

(1)
i = Siw. �

Using Property 1, Eq. 2 can now be written as:

ES(w) =
∑
i

‖p(2)
i − Sip

(2)‖2 =
∑
i

‖wi − Siw‖2

=
∑
i

(wi − Siw)>(wi − Siw)

= w>(I− 2S1...n +
∑
i

S>i Si)w

= w>Sw, (4)

where S1...n =
[
S>1 · · · S>n

]>
. To simplify calcula-

tions we make matrix S symmetric S← 1
2 (S
>+S) without

changing the energy.
Discussion: S implicitly induces a different, extended
neighborhood system in the spatial energy, as follows: for
any two points (i, j) with a common neighbor in the origi-
nal neighborhood system, that is ∃k s.t. k ∈ Ni ∧ k ∈ Nj ,
it is relatively easy to show that their corresponding 2 × 2
sub-matrix Qij ← S(ix,iy);(jx,jy) in Eq. 4 has, in gen-
eral, nonzero elements, thus the two points (i, j) will in-
fluence each other and contribute to the total energy with
w>i Qijwj . Let N (E)

i be the extended neighborhood of
i, including such points j that influence i (Figure 2). The

neighbors in N (E)
i are used in our efficient optimization

with sequential updates (§3).
As mentioned previously our geometric constraints are
affine invariant - stated in the next property:
Property 2: Let wA be the motion field corresponding to
some global affine transformation A over all points in I1.
Then ES(wA) = 0 regardless of the geometric neighbor-
hood system chosen and the weights on edges.
Proof: Follows immediately from the fact that each indi-
vidual motion will perfectly agree with the estimated affine
transformation. Regardless of the neighbors chosen and
their soft memberships, the estimated affine model will al-
ways be the same as the global model.�
This property has interesting implications. The spatial er-
ror term will be zero for transformations such as rotation
or scaling, regardless of the scaling factor or the rotation
angle, as our model is affine invariant. This is radically
different and more powerful than both variational optical
flow, as well as graph matching approaches based on sec-
ond or third-order constraints, which are not affine invari-
ant. Moreover, the use of boundary and occlusion informa-
tion could extend the class of zero spatial error displacement
fields to piecewise affine transformations, since it could de-
couple the graph. Soft boundary information has a gradual
effect in allowing a degree of abrupt motion discontinuity.

Other formulations related to our sparse matching model
include [20, 13, 14], with [20] being the only affine invari-
ant model, but without occlusion. Inspired by non-linear
embedding techniques [20] propose an LP formulation for
locally affine invariant matching, which cannot handle a
very large number of features efficiently, however (see §3
for numerical details). Our sparse matching approach offers
a locally affine formulation based on only pairwise, second-
order relationships, allowing efficient optimization (§3).

3. Sparse-to-Dense Matching Algorithm

Since the error cannot be negative, S is semi-positive
definite, giving a convex spatial term. However, due to the
data term that could a priori have almost any shape, the
overall cost ES(w) is generally non-convex. Therefore we
can only hope for efficient local optimization. As shown
next, it turns out that the quadratic form of the spatial term
in Eq. 4 allows us to perform an efficient optimization of
the sparse matching, by sequential updates. Our approach
is similar to Iterated Conditional Modes [5] and the L2QP
method [17] for MAP labeling problems in MRFs - this
matching task could be seen as a labeling problem since
each node i has a finite list of candidate assignments.

Let us consider the individual update of the displacement
wi at node i. Let w0 be a 2N × 1 vector with 0’s at the
two x, y positions in w corresponding to i, and equal to w
everywhere else. Let li = 2

∑
j∈N (E)

i
Qijwj , with Qij , the
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sub-matrix of S defined earlier. Then the total energy is:

E(w) =
∑
j 6=i

ψDj (wj) + ψDi(wi)

+λw>0 Sw0 + l>i wi +w>i Qiiwi

= K0 + ψDi
(wi) + l>i wi +w>i Qiiwi︸ ︷︷ ︸

Ki

. (5)

The energy is the sum of a constant term K0, independent
of wi and Ki, which is a function of wi. For each i, Ki

can be computed with minimal memory and computational
cost, as both li and Qi use only information from neighbors
in N (E)

i . This leads to our Algorithm 1 based on sequen-
tial updates. Lists Li contain the initial matches. During
each iteration, sites i are traversed in a certain order. At
step S1 the optimum w

(S)
i of the local quadratic geometric

term is found in closed-form. At step S2 the list of candi-
date matches for the current site is temporarily augmented
with its current match (if not already included) and the con-
tinuous solution w

(S)
i . From the augmented list the mini-

mizer w∗i of Ki is found (S3) and the current wi is updated
(S4). Eq. 5 guarantees that energy is lowered after every
iteration. In practice this sequential optimization procedure
brings about 30% improvement over the kNN initialization.
Since the total cost is non-negative, bounded below, and
the energy is monotonically decreasing, the sparse matching
method is guaranteed to converge. Then, the sparse matches
become input to an interpolation procedure that produces a
dense field w(d).
Sparse-to-Dense Interpolation: we fix the sparse dis-
placements w as anchors, and, for each point i at dense
locations, we define a similar neighborhood system, with
neighbors taken from the set of sparse anchors. Having
fixed the sparse matches, we can afford to drop the data term
and use only the spatial constraints to predict the dense mo-
tions based on the same locally affine model with occlusion
and boundary constraints. It is straightforward to show that
the spatial, dense energy model, can be globally optimized
by simply setting the value of the dense field w(d) to the
predicted field w̃(d), for each site i: w(d)

i ← TNi
(pi)− pi.

As presented at the beginning, the dense output of this in-
terpolation step becomes input to a TV-based continuation
method, for dense refinement.
Numerical Considerations: The computational complex-
ity of each sequential update is O(N

(E)
i ), for a total cost,

for all sites, per iteration, of O(NN
(E)
i ). This has low, lin-

ear complexity in the number of features for a fixed number
of neighbors N (E)

i per feature. The number of iterations in
practice is between 5 to 10, which makes our sparse match-
ing algorithm very efficient (30 sec). The low computa-
tional cost is possible only due to the use of sequential, lo-
cal updates, which, in turn, are made possible by our novel

Algorithm 1 Sparse-to-Dense Matching
Initialize lists Li of candidate assignments for each point
i using kNN.
Use 1-NN to initialize w← argminw ED(w)
Sparse Matching:
repeat

for all sites i do
S1: w(S)

i ← argminu∈R2 li
>u+ u>Qiiu

S2: L← Li ∪ {w(S)
i ,wi}

S3: w∗i ← argminu∈L ψDi
(u) + l>i u+ u>Qiiu

S4: Update wi ← w∗i
end for

until convergence
Sparse-to-Dense Interpolation:
For each dense point i set w(d)

i ← TNi(p
(1)
i )− p

(1)
i

Dense matching refinement:
TV optimization: w

(d)
opt ← argminw ETV(w), starting

from w(d)

return w
(d)
opt

quadratic spatial term (Eq. 4), with pairwise constraints.
In contrast, the L1 norm formulations of [20] results in an
LP relaxation with N2 variables and N2 constraints. In
our case (N ≈ 1500) variables would be in the order of
millions, which would make that approach computation-
ally prohibitive. Different from the discrete optimization
of [20], we use a mixed continuous-discrete scheme, with
new continuous candidates w(S)

i proposed as optima of the
local spatial quadratic term, for each sequential update.

4. Occlusion Detection

As objects move in the scene, background regions near
their boundaries become occluded (or unoccluded) from
one frame to the next. The size and shapes of these re-
gions of occlusion depend mainly on the magnitude and
velocity of the relative motion and 3D geometric scene lay-
out. Occlusion detection is a notoriously difficult problem
[26, 29, 9, 25, 11, 3], important in computer vision for 3D
scene understanding, segmentation and recognition. The
true motion field inside occlusion regions is hard to predict
and current motion models are not yet powerful enough to
accomplish this task, even though there are many promis-
ing recent approaches. Many occlusion estimation meth-
ods, including ours, take advantage of the fact that these
optical flow energy models often fail in the areas of occlu-
sion [27, 1, 11, 12]. In our work, we consider model fitting
errors as well as conflicting matching outputs, where several
points from one image land on the same point in the other
image. Also, occlusion regions are often around discontinu-
ities in the image or in the matching field, which turns out
to be an important cue for occlusion region detection.
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Figure 4. Relative and absolute average motion field errors on
the 996 image pairs of Sintel-TrainTest set, that we used for test-
ing, between our method and three other optical flow algorithms:
MDP [32], LDOF [6] and Classic-NL-full [28]. Note the superior
performance of our method in cases of large displacement.

We treat the occlusion estimation task as a binary clas-
sification problem [21, 15]. We compute cues based on the
ideas mentioned above and train a different Random For-
est classifier for each matching phase, depending on the
cues available at that stage. We use the MATLAB function
treebagger. It is worth mentioning here the most impor-
tant features (out of 20) from the final occlusion estimation
stage, automatically ranked by treebagger. We divide the
most important cues in four categories, depending on the
type of information they use. 1) Cues from matching ini-
tialization stage: the most relevant feature in this category
was the confidence of initial nearest neighbor matching–the
number of neighbors close enough (within a fixed thresh-
old) to the first nearest neighbor. Regions that are occluded
cannot be found in the second image, so the size of this list
is expected to be very small in their case. 2) Cues from the
sparse matching stage: we considered the different devia-
tions of the output from the sparse matching model–errors
in the data and spatial terms as well as errors in the affine
model least squares fitting. The deviation from the affinity
model assumption was the most relevant, in this category,
for estimating occlusion regions. 3) Dense matching cues:
the most powerful feature computed from the final motion
field is the number of points from I1 matched to the same
point in I2. Those points in I1 are very likely to be in fact
occluded in I2, since they cannot land on the same point in
I2. 4) Motion boundary features: once we have the fi-
nal motion field we computed features from the continuous
output of Gb [18] using the x, y motions as input layers.

5. Experiments

We performed experiments on the new MPI Sintel
dataset and benchmark [7], consisting of a test set with 552
image pairs (12 folders) and 1040 training image pairs (23
folders). The ground truth used in the evaluation is the ac-
tual motion field in both visible and occluded (unmatched)
areas. The dataset contains long photo-realistic video se-
quences from the animated movie Sintel with extremely dif-

Table 1. Average end point motion errors (EPE) over all dense
locations for the 996 image pairs from Sintel-TrainTest.

Alg. S2D (Ours) MDP [32] LDOF [6] NL-full [28]
EPE 5.45 5.96 6.20 6.30

Table 2. Final results on Sintel optical flow benchmark; epe stands
for end point errors, epem are errors for visible points, and epeo
are errors for occluded points. The last three columns show aver-
age errors for different motion magnitudes (in pixels).

Alg. epe epem epeo 0-10 10-40 40+
S2D 7.87 3.92 40.1 1.17 4.69 48.78
[32] 8.45 4.15 43.43 1.42 5.45 50.51
[6] 9.12 5.04 42.34 1.49 4.84 57.30
[28]-full 9.16 4.81 44.51 1.11 4.50 60.29
[10] 9.61 5.42 43.73 1.88 5.34 58.27
[28]++ 9.96 5.41 47.00 1.40 5.10 64.14
[28]-fast 10.09 5.66 46.15 1.09 4.67 67.80
[31] 11.93 7.32 49.37 1.16 7.97 74.80

ficult cases of very large displacements (often around 40
pixels or more), motion and defocus blur, specular reflec-
tions and strong atmospheric effects. We divided the official
Sintel training set in two sets. The first one, Sintel-Train46,
consists of 46 image pairs, with two pairs selected from the
middle of each training folder. We used it for training and
parameter validation. The second set, Sintel-TrainTest, con-
tains the rest of the 994 training pairs, which we used for
testing, along the official benchmark Sintel Test set. In Ta-
ble 1 we present comparative results on Sintel-TrainTest.
The end point errors (EPE) are averages over all pixels (oc-
cluded or not) for all 994 Sintel-TrainTest image pairs. In
Figure 4 we plot the EPE of different methods vs. the dis-
placement magnitude. Note our superior performance, es-
pecially for large displacements.

We also tested our method on the official Sintel bench-
mark and obtained state-of-the-art results (see Table 2), out-
performing the other published methods especially on large
displacements (larger than 40 pixels). The experiments
show that our method is generally superior to [32, 6] for
displacements both large and small, while having a larger
small-motion error than TV-based methods [28].

Without continuous refinement, our method has an aver-
age EPE error of 9.4 on Sintel benchmark, superior to [10],
[28]-fast and [28]++. This proves the usefulness of the first
two phases in our hierarchical approach. We also obtained
competitive results on the Middlebury dataset, on which
S2D-Matching ranked better than [6, 10, 31] and [28]++.
Experiments on occlusion detection: In Table 3 we
present quantitative comparisons of our occlusion classifier
versus two state-of-the-art optical flow methods with occlu-
sion estimation. We also present representative results in
Figure 3. Our occlusion maps are raw, pixel-wise classifi-
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Figure 3. Occlusion estimation representative results. Our method is better suited to find large occluded regions.

cations, without any post-processing or (MRF) smoothing.
Most methods published for occlusion detection produce
contours, not large occluded regions.

Implementation aspects: For sparse matching, we sample
points on a grid every 18 pixels for a total of 1425 features
per Sintel image pair. They are patches on 3 Lab color
channels and 1 channel for Gb’s soft-boundary map[18].
During sparse matching initialization, we use 51 × 51 pix-
els patches, and 19 × 19 patches during optimization. The
number of neighbors Ni per point i in its geometric neigh-
borhood systemNi is minimum 21 (neighborhood radius of
45 pixels). The neighborhood size is adaptively increased,
if necessary, until at least half of the neighbors considered
are visible according to our occlusion map (maximum 60

neighbors allowed). The extended neighborhood N
(E)
i has

twice the radius and four times the number of neighbors.
This is very large compared to other current models. For
the last step of continuous TV optimization we used the
publicly available code for Classic-NL-fast [28]. Note that,
by itself, Classic-NL-fast is ranked 7-th on the Sintel fi-
nal benchmark, with an error that is on average 25% larger
than when used, as a refinement step, in our sparse-to-dense
method.

Computation time: Our method’s total runtime on a Sintel
image pair, in Matlab (3.2 GHz) is 38 mins. Runtimes per
module: sparse initialization (4 mins), sparse optimization
(0.5 mins), sparse-to-dense interpolation (13 mins), occlu-
sion detection (12 mins), continuous refinement (8 mins).

Table 3. Occlusion detection results on 996 Sintel-TrainTest image
pairs. For each method we present the maximum F-measure evalu-
ated w.r.t. the ground truth occlusion regions available. We trained
our classifier on a different set of 46 image pairs (Sintel-Train46).

Alg. S2D (Ours) [32] [28]
F-measure 0.57 0.48 0.18

6. Conclusions
We proposed an efficient sparse-to-dense matching

method for motion and occlusion estimation, using locally
affine and occlusion aware constraints. Differently from
the coarse-to-fine continuation approaches, we start from
a sparse matching stage based on complex geometric rela-
tionships, and move towards a dense correspondence field
based on a TV optical flow energy model. This natural de-
composition of the dense matching problem produces state
of the art results on the most extensive motion field bench-
mark to date. We also propose a novel occlusion classifier,
with competitive performance, which works in good syn-
ergy with matching. Future work will investigate improved
models with tightly integrated matching and occlusion rea-
soning components.
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