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Abstract

Salient object detection aims to locate objects that cap-
ture human attention within images. Previous approaches
often pose this as a problem of image contrast analysis.
In this work, we model an image as a hypergraph that uti-
lizes a set of hyperedges to capture the contextual proper-
ties of image pixels or regions. As a result, the problem of
salient object detection becomes one of finding salient ver-
tices and hyperedges in the hypergraph. The main advan-
tage of hypergraph modeling is that it takes into account
each pixel’s (or region’s) affinity with its neighborhood as
well as its separation from image background. Further-
more, we propose an alternative approach based on center-
versus-surround contextual contrast analysis, which per-
forms salient object detection by optimizing a cost-sensitive
support vector machine (SVM) objective function. Experi-
mental results on four challenging datasets demonstrate the
effectiveness of the proposed approaches against the state-
of-the-art approaches to salient object detection.

1. Introduction

Image saliency detection aims to effectively identify

important and informative regions in images. Early ap-

proaches in this area focus mainly on predicting where

humans look, and thus work only on human eye fixation

data [1–3]. Recently, a large body of work concentrates

on salient object detection [4–17], whose goal is to dis-

cover the most salient and attention-grabbing object in an

image. This has a wide range of applications such as image

retargeting [18], image classification [19], and image seg-

mentation [20, 21]. Because it is difficult to define saliency

analytically, the performance of salient object detection is

evaluated on datasets containing human-labeled bounding

boxes or foreground masks.

Salient object detection is typically accomplished by im-

age contrast computation, either on a local or a global scale.

estimates the saliency degree of an image region by com-

puting the contrast against its local neighborhood. Various

contrast measures have been proposed, including mutual in-

formation [22], incremental coding length [3], and center-
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Figure 1: Illustration of our approaches to salient object detection.

versus-surround feature discrepancy [6, 8–10, 13–15].

Global salient object detection approaches [4,5,7,11,12]

estimate the saliency of a particular image region by mea-

suring its uniqueness in the entire image. These ap-

proaches model uniqueness by exploiting the global sta-

tistical properties of the image, including frequency spec-

trum analysis [4], color-spatial distribution modeling [7],

high-dimensional Gaussian filtering [11], low-rank matrix

decomposition [12], and geodesic distance computation [5].

Therefore, the definition of object saliency depends on

the choice of context. Global saliency defines the context

as the entire image, whereas local saliency requires the def-

inition of a local context. In this work, we first show that

within a fixed context, a cost-sensitive SVM can accurately

measure saliency by capturing centre-surround contrast in-

formation. We then show that the use of a hypergraph

captures more comprehensive contextual information, and

therefore enhances the accuracy of salient object detection.

Here, we propose two approaches to salient object detec-

tion based on hypergraph modeling and imbalanced max-

margin learning. Our main contributions are as follows.

1. We introduce hypergraph modeling into the process of

image saliency detection for the first time. A hyper-

graph is a rich, structured image representation model-

ing pixels (or superpixels) by their contexts rather than

their individual values. This additional structural infor-

mation enables more accurate saliency measurement.

The problem of saliency detection is naturally cast as
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Figure 2: Illustration of cost-sensitive SVM for saliency detection. The

saliency score is computed using Equ. (3) based on the SVM classification

results.

that of detecting salient vertices and hyperedges in a

hypergraph at multiple scales.

2. We formulate the centre-surround contrast approach to

saliency as a cost-sensitive max-margin classification

problem. Consequently, the saliency degree of an im-

age region is measured by its associated normalized

SVM coding length.

Example results of our approaches to salient object detec-

tion are shown in Fig. 1. We describe each approach in the

following two sections, before evaluating them in Sec. 4.

2. Cost-sensitive SVM saliency detection
As illustrated in [9, 23], saliency detection is typically

posed as the problem of center-versus-surround contextual

contrast analysis. To address this problem, we propose

a saliency detection method based on imbalanced max-

margin learning, which is capable of effectively discover-

ing the local salient image regions that significantly differ

from their surrounding image regions. In this case, the im-

age is divided into overlapping rectangular windows which

are tested for saliency. The context for each window is the

windows that overlap it.

Before describing the method, we first introduce some

notation used hereinafter. Let x1 denote the feature vec-

tor associated with a center image patch, and {x�}�=2...N

denote the feature vectors associated with the spatial over-

lapping surrounding patches of the center image patch. Us-

ing these patches, the proposed method explores their inter-

class separability in a max-margin classification framework.

As shown in the top-right part of Fig. 2, the center im-

age patch x1 is thought of as a positive sample while the

surrounding patches {x�}�=2...N are used as the negative

samples. The saliency degree of x1 is determined by its

inter-class separability from {x�}�=2...N . In other words,

if x1 could be easily separated from {x�}�=2...N , then it is

deemed to be salient; otherwise, its saliency degree is low.

This is a binary classification problem, which is associated

with a cost-sensitive classification objective function [24]:

min
w,b,ε

J(w, b, ε) = 1
2‖w‖22 + 1

2C
∑N

�=1 ν�ε
2
� ,

s.t. y� = f(x�) + ε�,
(1)

where ‖·‖2 is the L2 norm, f(x) = w�x+b is the classifier

to learn; ε is the residual vector; C is the regularization pa-

rameter; and ν� is the corresponding weight of x� such that

ν1 � ν� for � = 2 . . . N . We set all the negative samples

to have the same weight ν�, � = 2 . . . N . According to the

KKT condition, we have the following linear system:[
0 1�N
1N Ω+ VC

] [
b
α

]
=

[
0
y

]
, (2)

where 1N ∈ RN is the all-one column vector, y =
(y1, y2, . . . , yN )

� is the label vector, Ω = (Ωij)N×N is

the kernel matrix Ωij = x�i xj , and VC is a diagonal ma-

trix such that VC = diag( 1
Cν1

, 1
Cν2

, . . . , 1
CνN

). Based on

the solution (α∗, b∗) to the linear system (2), we have the

weighted LS-SVM classifier f(x) = (w∗)�x + b∗ with

w∗ = (x1,x2, . . . ,xN )α
∗.

Using the weighted LS-SVM classifier f(x), we define

the saliency score as:

SSa(x1) =
1

N − 1

N∑
�=2

1− sgn(f(x�))

2
, (3)

where sgn(·) is a sign function and the term∑N
�=2

1−sgn(f(x�))
2 counts the number of correctly

classified surrounding samples. Loosely speaking, the

saliency score SSa(x1) can be viewed as a normalized

SVM coding length (i.e., training accuracy for the sur-

rounding samples), which characterizes the inter-class

separability between x1 and its surroundings {x�}�=2...N .

As shown in the bottom-left part of Fig. 2, the harder x1

is to separate from {x�}�=2...N , the smaller SSa(x1) will

be. In other words, the center patch looks similar to its

surroundings. Conversely, the larger SSa(x1) indicates the

lower similarity between x1 and {x�}�=2...N , and hence a

higher saliency degree. Note that, here the cost-sensitive

LS-SVM is not the only choice. We can use other classi-

fiers such as the exemplar SVM [25], where the standard

hinge-loss SVM is used. We have used LS-SVM for its

simplicity (it has a closed-form solution). Note that, this

max-margin learning framework can be easily extended to

perform saliency detection on a global scale. Namely, the

image boundary patches can be treated as negative samples

while the remaining image patches are used as positive

samples. By running the max-margin learning procedure

over such training samples, the saliency degree of each
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Figure 3: Illustration of hypergraph modeling

for saliency detection using nonparametric clus-

tering. The first column shows an input image

and its associated over-segmented image with

a set of superpixels. The middle columns dis-

play the multi-scale hyperedges (constructed by

nonparametric clustering on the superpixels) and

their corresponding results of hyperedge saliency

evaluation. The rightmost image shows the fi-

nal saliency map HSa generated by multi-scale

hyperedge saliency fusion. Note that the regions

highlighted in different colors correspond to dif-

ferent hyperedges (i.e., superpixel cliques having

some common visual properties). In theory, our

hypergraph modeling can also work on pixels in

a similar way.

Input image

Superpixels

... +
fusion

Saliency map

Hyperedge construction
at multiple scales

Saliency obtained by 
hyperedge analysis at multiple scales

...

Image Hypergraph saliency Standard graph saliency

Figure 4: Illustration of salient object detection using two different types

of graphs (i.e., hypergraph and standard pairwise graph). Clearly, our hy-

pergraph saliency measure is able to accurately capture the intrinsic struc-

tural properties of the salient object.

image patch can be measured by computing its distance to

the separating hyperplane.

Example saliency maps derived from this measure are

shown in Figs. 1 and 2. Although they accurately locate the

salient object in each case, they also suffer from “fuzziness”

or lack of precision around object boundaries and in locally

homogeneous regions. This is mainly due to the center-

surround local context that they are based on. In the next

section, we describe an alternative approach based on seg-

mentation based context that alleviates these problems.

3. Hypergraph modeling for saliency detection
To more effectively find salient object regions, we

propose a hypergraph modeling based saliency detection

method that forms contexts of superpixels to capture both

internal consistency and external separation. Fig. 3 shows

the high-level flowchart of the proposed method.

As illustrated in [26], a hypergraph is a graph comprising

a set of vertices and hyperedges. In contrast to the pairwise

edge in a standard graph, the hyperedge in a hypergraph

is a high-order edge associated with a vertex clique link-

ing more than two vertices. Effectively constructing such

hyperedges is crucial for encoding the intrinsic contextual

information on the vertices in the hypergraph.

Hypergraph modeling In our method, an image I is

modeled by a hypergraph G = (V,E), where V = {vi}

is the vertex set corresponding to the image superpixels and

E = {ej} is the hyperedge set comprising a family of sub-

sets of V such that
⋃

e∈E = V [26]. As shown in Fig. 3,

these hyperedges are constructed by multi-scale clustering,

which groups the image superpixels into a set of superpixel

cliques. Each clique corresponds to a collection of super-

pixels having some common visual properties, and works

as a hyperedge of the hypergraph G. The process of hy-

peredge construction implicitly encodes intrinsic affinity in-

formation on superpixels. Namely, if two superpixels have

a higher co-occurrence frequency in the hyperedges, they

tend to share more visual properties and have a higher vi-

sual similarity.

A hyperedge can also be viewed as a high-order context

that enforces the contextual constraints on each superpix-

els in the hyperedge. As a result, the saliency of each su-

perpixel, as measured by the hyperedges it belongs to, is

not only determined by the superpixel itself but also influ-

enced by its associated contexts. Due to such contextual

constraints on each superpixel, we simply convert the orig-

inal saliency detection problem to that of detecting salient

vertices and hyperedges in the hypergraph G. Mathemati-

cally, the hypergraph G is associated with a |V| × |E| inci-

dence matrix H = (H(vi, ej))|V|×|E|:

H(vi, ej) =

{
1, if vi ∈ ej ,
0, otherwise.

(4)

The saliency value of any vertex vi in G is defined as:

HSa(vi) =
∑
e∈E

Γ(e)H(vi, e), (5)

where Γ(e) encodes the saliency information on the hyper-

edge e. In essence, our hypergraph saliency measure (5) is

a generalization of the standard pairwise saliency measure

defined as:

PSa(vi) =
∑

vj∈Nvi

d(vi,vj) =
∑

e∈{(vi,vj)|j �=i}
IedeH(vi, e), (6)
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Figure 5: Illustration of the gradient magnitude information for hyper-

edge saliency evaluation. The left subfigure shows the original image, and

the middle subfigure displays the gradient magnitude map I∗g obtained by

binarizing Ig using the adaptive threshold T, as illustrated in the right sub-

figure.

where Nvi
stands for the neighborhood of vi, d(vi,vj) mea-

sures the saliency degree of the pairwise edge (vi, vj), and

Ie is the pairwise adjacency indicator (s.t. Ie = 1 if

vj ∈ Nvi ; otherwise, Ie = 0). Instead of using simple pair-

wise edges, our hypergraph saliency measure takes advan-

tage of the higher-order hyperedges (i.e., superpixel cliques)

to effectively capture the intrinsic structural properties of

the salient object, as shown in Fig. 4. To implement this

approach, we need to address the following two key issues:

1) how to adaptively construct the hyperedge set E; and 2)

how to accurately measure the saliency degree Γ(e) of each

hyperedge.

Adaptive hyperedge construction A hyperedge in the

hypergraph G is actually a superpixel clique whose elements

have some common visual properties. To capture the hier-

archial visual saliency information, we construct a set of

hyperedges by adaptively grouping the superpixels accord-

ing to their visual similarities at multiple scales. In theory,

this can be carried out in many ways using any number of

established segmentation and clustering techniques.

Non-parametric clustering is typically associated with a

kernel density estimator:

f̂k(p) =
Ck

Q|Σ| 12
Q∑
i=1

k(M2(p,pi,Σ)), (7)

where pi is a feature vector associated with the i-th su-

perpixel (generated from image oversegmentation), k(·) is

a kernel profile (k(x) = exp(−x/2) in our case), Σ is a

symmetric positive definite bandwidth matrix (in the exper-

iments, Σ = γ2I with γ being a scaling factor and I being

an identity matrix), M2(p,pi,Σ) = (p−pi)
�Σ−1(p−pi)

stands for the Mahalanobis distance, and Ck is a normaliza-

tion constant. Therefore, the superpixel cliques can be dis-

covered by seeking the modes of f̂k(p). Mathematically,

the mode-seeking problem can be converted to that of lo-

cating the zeros of the gradient∇f̂k(p) = 0, which leads to

the following iterative procedure:

pt+1 =

∑Q
i=1 g(M

2(pt,pi,Σ))pi∑Q
i=1 g(M

2(pt,pi,Σ))
, (8)

where g(x) = −k′(x) and the superscript t indexes the it-

eration number. To accelerate the optimization process (8),

Figure 6: Illustration of Mg and I∗g ◦ Mg for hyperedge saliency eval-

uation. The top row shows the multi-scale hyperedges; the middle row

displays the scale-specific Mg that indicates the pixels (within a narrow

band) along the boundary of the scale-specific hyperedge; and the bottom

row exhibits the filtered gradient magnitude map I∗g ◦Mg .

we adopt a fast agglomerative mean-shift clustering method

based on iterative query set compression [27].

Each mode is associated with a hyperedge, containing all

the superpixels that converge to it after running the iterative

procedure (8). The bandwidth matrix Σ = γ2I controls the

scaling properties of the hyperedge. Consequently, using

different values of γ for nonparametric clustering can gen-

erate the hyperedges at different scales, as shown in Fig. 3.

By using different configurations of γ, we obtain a set of

multi-scale hyperedges {ei} with ei being the i-th hyper-

edge.

Hyperedge saliency evaluation By construction, a hy-

peredge defines a group of pixels that is internally consis-

tent. In addition, a salient hyperedge should have the fol-

lowing two properties: 1) it should be enclosed by strong

image edges; and 2) its intersection with the image bound-

aries ought to be small [5, 13]. Therefore, we measure the

saliency degree of a scale-specific hyperedge e by sum-

ming up the corresponding gradient magnitudes of the pix-

els (within a narrow band) along the boundary of the hyper-

edge. If the hyperedge touches the image boundaries, we

decrease its saliency degree by a penalty factor.

More specifically, edge detection (using the Sobel oper-

ator in our case) is carried out for image I . Let Ix and Iy
denote the x-axis and y-axis gradient magnitude maps, re-

spectively. Thus, the final gradient magnitude map Ig has

the following entry: Ig(m,n) =
√

I2x(m,n) + I2y (m,n).

To obtain a robust gradient map, we introduce the follow-

ing criterion: I∗g (m,n) = 1 if Ig(m,n) > T; otherwise,

I∗g (m,n) = 0, as shown in Fig. 5. Here, T is a threshold

(picking out the top 10% of the Ig’s elements in our case).

As a result, the saliency value of the hyperedge e is com-

puted as:

Γ(e) = ωe

[‖I∗g ◦Mg(e)‖1 − ρ(e)
]
. (9)

Here, ωe is a scale-specific hyperedge weight (a larger scale

leads to a larger weight), ‖ · ‖1 is the 1-norm, Mg(e) is a bi-

nary mask (illustrated in Fig. 6) indicating the pixels (within

33243331
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Figure 7: PR curves based on three different configurations: 1) using the SVM saliency approach only; and 2) using the hypergraph saliency approach only;

3) combining the SVM and hypergraph saliency approaches. Clearly, the saliency detection performance of using the third configuration outperform that of

using the first and second configurations. From left to right: MSRA-1000, SOD, SED-100, and Imgsal-50.

a narrow band) along the boundary of the hyperedge e, ◦ is

the elementwise dot product operator, and ρ(e) is a penalty

factor that is equal to the number of the image boundary

pixels shared by the hyperedge e. Based on Equ. (5), we

obtain the hypergraph saliency measure HSa(vi) for any

vertex vi in the hypergraph G.

After both SVM and hypergraph saliency detection, we

obtain the corresponding saliency maps. Each element of

these saliency maps is mapped into [0, 255] by linear nor-

malization, leading to the normalized saliency maps. Fi-

nally, the final saliency map is obtained by linearly combin-

ing the SVM and hypergraph saliency detection results.

4. Experiments
4.1. Experimental setup

Datasets As a subset of the MSRA dataset [8], MSRA-

1000 [4] is a commonly used benchmark dataset for salient

object detection. SOD [28] is composed of 300 challenging

images. SED-100 is a subset of the SED dataset [29, 30],

and consists of 100 images. Each image in SED-100 con-

tains only one salient object. Imgsal-50 is a subset of the

Imgsal dataset [31], and comprises 50 images with large

salient objects for evaluation. Each image in the aforemen-

tioned datasets contains a human-labelled foreground mask

used as ground truth for salient object detection.

Evaluation criterion For a given saliency map, we

adopt four criteria to evaluate the quantitative performance

of different approaches: precision-recall (PR) curves, F-

measures, receiver operating characteristic (ROC) curves,

and VOC overlap scores. Specifically, the PR curve is ob-

tained by binarizing the saliency map using a number of

thresholds ranging from 0 to 255, as in [4, 7,12,11]. As de-

scribed in [4], F-measure is computed as F = ((β2 + 1)P ·
R)/(β2P + R). Here, P and R are the precision and re-

call rates obtained by binarizing the saliency map using an

adaptive threshold that is twice the overall mean saliency

value [4]. β2 = 0.3 is the same as that in [4]. Identical

to [30], the ROC curve is generated from true positive rates

and false positive rates obtained during the calculation of

the corresponding PR curve. The VOC Overlap score [32]

is defined as
|S∩S′|
|S∪S′| . Here, S is the ground-truth foreground

mask, and S′ is the object segmentation mask obtained by

binarizing the saliency map using the same adaptive thresh-

old during the calculation of F-measure.

Implementation details In the experiments, cost-

sensitive SVM saliency detection on an image is performed

at different scales, each of which corresponds to a scale-

specific image patch size for center-versus-surround con-

trast analysis. The final SVM saliency map is obtained by

averaging the multi-scale saliency detection results. For

computational efficiency, we first choose a fixed-sized im-

age 8 × 8 patch and then resize the image using differ-

ent downsampling rates to simulate the scale changes. In

addition, each image patch is represented as a vectorized

RGB feature vector. During the optimization process (1),

the weight ν1 for the center image patch is chosen as 0.5

while the weights νk (s.t. k > 1) for the surrounding im-

age patches are set to 0.01, as suggested in [25]. Each su-

perpixel pi (referred to Equ. (8)) is first generated from

image over-segmentation, and then represented by an 8-

dimensional feature vector, which is obtained by averaging

the corresponding color vectors of all the pixels in the super-

pixel. The color vector for each pixel contains four normal-

ized color components c = (l, a, b, h) and their associated

elementwise power transforms [33] from the LAB and HSV

color spaces. In the experiments, the final saliency detection

results are further refined by graph-based manifold propa-

gation. We did not carefully tune the aforementioned pa-

rameters in the experiments. Note that the aforementioned

parameters are fixed throughout all the experiments.

4.2. Evaluation of our individual approaches

Here, we evaluate the saliency detection performance of

the proposed approaches based on three different configu-

rations: 1) using the SVM saliency approach only; 2) us-

ing the hypergraph saliency approach only; and 3) combin-

ing the SVM and hypergraph saliency approaches. Fig. 7

shows their quantitative results of salient object detection

in the aspect of PR curves. From Fig. 7, it is clearly

seen that the saliency detection performance of only us-

ing the SVM saliency approach is significantly enhanced

after combining the hypergraph saliency approach. The

reason is that the hypergraph saliency approach captures
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Figure 8: Quantitative PR and ROC performance of all the thirteen approaches on the four datasets. The left two columns show the PR curves while the

right two columns display the ROC curves. The rows from top to bottom correspond to MSRA-1000, SOD, SED-100, and Imgsal-50, respectively. Clearly,

our approach achieve a better PR and ROC performance than the other competing approaches in most cases.
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Figure 9: Quantitative F-measure performance of all the thirteen approaches on the four datasets. The columns from left to right correspond to MSRA-1000,

SOD, SED-100, and Imgsal-50, respectively. Here, GS is a shorthand form of GS SP. It is clear that our approach achieve a good F-measure performance

on the four datasets.

both the internal consistency and strong boundary proper-

ties of salient objects. By incorporating the SVM saliency

approach, the saliency detection results of only using the

hypergraph saliency approach are further smoothed, lead-

ing to an improved saliency detection accuracy. Therefore,

we use the best configuration (i.e., combination of SVM and

hypergraph saliency) for performance evaluations in the fol-

lowing experiments.

4.3. Comparison of saliency detection approaches

In the experiments, we qualitatively and quantitatively

compare the proposed approach with twelve state-of-the-

art approaches, including GS SP [5], LR [12], SF [11],

CB [13], SVO [15], RC [7], HC [7], RA [16], FT [4],

CA [14], ICL [3], and IT [1]. These approaches are im-

plemented using their either publicly available source code
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Image GT Ours GS SP [5] LR [12] SF [11] CB [13] SVO [15] RC [7] HC [7] RA [16] FT [4] CA [14] ICL [3] IT [1]

Figure 10: Salient object detection examples of all the thirteen approaches on the four datasets: MSRA-1000 (rows 1-3), SOD (rows 4-6), SED-100 (row

7), and Imgsal-50 (row 8). It is clear that our approach obtains the visually more consistent saliency detection results than the other competing approaches.

Ours GS SP [5] LR [12] SF [11] CB [13] SVO [15] RC [7] HC [7] RA [16] FT [4] CA [14] ICL [3] IT [1]

MSRA-1000 0.77±0.20 0.75±0.22 0.63±0.25 0.67±0.24 0.72±0.24 0.29±0.24 0.52±0.31 0.59±0.29 0.37±0.33 0.50±0.27 0.40±0.19 0.33±0.19 0.17±0.12

SOD 0.40±0.22 0.38±0.20 0.29±0.19 0.27±0.20 0.31±0.25 0.11±0.19 0.24±0.23 0.22±0.20 0.14±0.17 0.19±0.17 0.27±0.19 0.22±0.17 0.14±0.11

SED-100 0.52±0.25 0.56±0.27 0.41±0.27 0.47±0.27 0.52±0.32 0.21±0.29 0.34±0.31 0.37±0.30 0.27±0.28 0.30±0.26 0.35±0.32 0.34±0.22 0.16±0.14

Imgsal-50 0.69±0.18 0.65±0.21 0.64±0.18 0.59±0.22 0.64±0.19 0.29±0.29 0.52±0.25 0.45±0.27 0.37±0.30 0.37±0.19 0.47±0.19 0.30±0.21 0.19±0.10

Table 1: Quantitative performance of all the thirteen approaches in VOC overlap scores on the four datasets. Clearly, our approach obtains the highest VOC

overlap score with a low variance in most cases.

Figure 11: Examples of salient object segmentation. From left to right:

input images, ground truth, saliency maps, segmentation results. Clearly,

our approach obtains visually consistent segmentation results with ground

truth.

or original saliency detection results from the authors.

Fig. 8 shows the quantitative saliency detection perfor-

mance of the proposed approach against the twelve com-

peting approaches in the PR and ROC curves on the four

datasets. From the left half of Fig. 8, we see that the pro-

posed approach achieves the highest precision rate in most

cases when the recall rate is fixed. Given a fixed false posi-

tive rate, the proposed approach obtains a higher true posi-

tive rate than the other approaches in most cases, as shown

in the right half of Fig. 8.

From Fig. 9, it is observed that the proposed approach

achieves the best F-measure performance on the two popu-

lar benchmark datasets, that is, MSRA-1000 and SOD. On

the SED-100 dataset, GS SP and the proposed approach

obtain the best results, and the F-measure of the proposed

approach is slightly lower than GS SP. On the Imgsal-

50 dataset, the proposed approach is one of the two best

approaches, and achieves a slightly lower F-measure than

CB. In addition, Fig. 10 shows several salient object de-

tection examples of all the thirteen approaches. It is seen

from Fig. 10 that our approach obtain visually more feasi-

ble saliency detection results than the other competing ap-

proaches.

Furthermore, Tab. 1 shows the corresponding VOC over-

lap scores of all the thirteen approaches. It is seen from

Tab. 1 that the proposed approach obtains the highest VOC

overlap score with a low variance in most cases. Be-

sides, Fig. 11 gives three intuitive examples of salient object

segmentation (i.e., binarization using the adaptive thresh-

old [4]) based on the proposed approach. From Fig. 11, we

observe that the proposed approach achieves the visually

consistent segmentation results with ground truth.

4.4. Application to image retargeting

The goal of image retargeting is to reduce image size

while preserving important content. As shown in [18],

saliency detection plays an important role in image retar-

geting. Following the work of [18], we directly replace its

saliency detection component with ours while keeping the

other components fixed. Fig. 12 shows some image retar-
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Figure 12: Qualitative image retargeting performance comparison be-

tween [18] and ours. From left to right: images, our results, results of [18].

Clearly, the performance of our approach is better than that of [18].

geting examples of the two approaches (i.e., [18] and ours)

on the image retargeting dataset from [18]. Clearly, our ap-

proach obtains more visually feasible results. This indicates

that our approach is capable of effectively preserving the in-

trinsic structural information on salient objects during im-

age retargeting.

5. Conclusion
In this work, we have proposed two salient object detec-

tion approaches based on hypergraph modeling and center-

versus-surround max-margin learning. Specifically, we

have designed a hypergraph modeling approach that cap-

tures the intrinsic contextual saliency information on image

pixels/superpixels by detecting salient vertices and hyper-

edges in a hypergraph. Furthermore, we have developed

a local salient object detection approach based on center-

versus-surround max-margin learning, which solves an im-

balanced cost-sensitive SVM optimization problem. Com-

pared with the twelve state-of-the-art approaches, we have

empirically shown that the fusion of our approaches is able

to achieve more accurate and robust results of salient object

detection.
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