
Characterizing Layouts of Outdoor Scenes Using Spatial Topic Processes

Dahua Lin
TTI Chicago

dhlin@ttic.edu

Jianxiong Xiao
Princeton University
xj@princeton.edu

Abstract

In this paper, we develop a generative model to describe
the layouts of outdoor scenes – the spatial configuration of
regions. Specifically, the layout of an image is represented
as a composite of regions, each associated with a seman-
tic topic. At the heart of this model is a novel stochas-
tic process called Spatial Topic Process, which generates
a spatial map of topics from a set of coupled Gaussian pro-
cesses, thus allowing the distributions of topics to vary con-
tinuously across the image plane. A key aspect that distin-
guishes this model from previous ones consists in its capa-
bility of capturing dependencies across both locations and
topics while allowing substantial variations in the layouts.
We demonstrate the practical utility of the proposed model
by testing it on scene classification, semantic segmentation,
and layout hallucination.

1. Introduction
Spatial configurations of regions, often referred to as the

layouts, are a key to scene understanding. As illustrated

in Figure 1, layouts convey significant information for both

semantic interpretation (e.g. scene classification) and low-

level tasks (e.g. segmentation). Therefore, a good model

of layouts is of fundamental importance. Our primary goal

here is to develop a layout model that can capture the com-

mon structures of outdoor scenes while allowing flexible

variations. We believe that such a model not only advances

the frontier of traditional problems, but also creates oppor-

tunities for new applications (e.g. scene extrapolation).

With this goal in mind, we revisit previous approaches,

which roughly fall into three categories: descriptive, dis-
criminative, and generative. Descriptive methods, includ-

ing GIST [17] and Spatial Pyramid matching [10, 13] de-

scribe a scene through a holistic representation. In spite

of their simplicity, these methods work very well in scene

classification. However, they lack the capability of express-

ing fine grained variations, which are useful in other tasks

such as segmentation and annotation. Recently, nonpara-

metric methods using dense map of local descriptors, such
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Figure 1. This figure shows an image of a lake and its layout (using

different colors for different regions). In this work, we develop a

generative model of layouts, which can be used in various vision

tasks, including scene classification and semantic segmentation.

Moreover, leveraging the scene structures captured by the model,

one can extrapolate the scenes beyond the visible scope.

as SIFT-Flow [15] and SuperParsing [24], has gained a lot

of interest. While they are generally more expressive, the

reliance on large set of examples leads to limited generaliz-

ability and substantially increased computational cost.

Discriminative models [9,11,25,28] are often formulated

as Conditional Random Fields (CRFs). Instead of model-

ing layouts explicitly, these models typically utilize spatial

relations via potentials that couple semantic labels at differ-

ent sites. Another popular approach is to consider a scene

as composed of deformable parts [18, 19], and uses Latent

SVM [7] to train the model. Discriminative methods are

devised for a specific task (usually classification or label-

ing), and do not provide a generic characterization of lay-

outs, which is our major goal.

Generative models, unlike discriminative ones, often re-

sort to hierarchical Bayesian models to describe a scene [1,

5, 14, 23]. Taking advantage of the flexibility of graphi-
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cal models, they are able to express various relations in a

complex scene, such as the ones between a scene and its

parts [1, 23] and those between concurrent objects [5, 14].

Since the introduction of Latent Dirichlet Allocation [3]

to scene categorization [6], topic models have also been

widely used in scene understanding [4, 16, 19, 26, 29].

Whereas some of them take into account spatial relations,

their treatment is often simplified – focusing only on pair-

wise relations between objects or making assumptions that

ignore important spatial dependencies. Hence, the resultant

models are generally not the most appropriate choices for

characterizing the layouts of outdoor scenes.

Towards the goal of providing an effective layout model,

we develop the Spatial topic process, a new formulation that

builds upon topic models and goes beyond by allowing dis-

tributions of topics to vary continuously across the image

plane. Specifically, to capture the statistical dependencies

across both spatial locations and visual categories, we intro-

duce a set of Gaussian processes (GPs) to generate a map

of topic distributions. These GPs are coupled via a latent

representation that encodes the global scene structure. This

model provides a rich representation that can express layout

variations through pixel-dependent topic distributions, and

on the other hand ensures both local coherence and global

structural consistency via the use of coupled GPs.

This new layout model is useful for a variety of vision

problems. We demonstrate its practical utility on three ap-

plications: (1) scene classification using the layout rep-

resentation, (2) semantic segmentation based on spatially

varying topic distributions, and (3) layout hallucination, a

task trying to extrapolate beyond the visible part of a scene.

2. Related Work
This work is related to several models developed in re-

cent years that try to incorporate spatial relations into topic

models. Wang and Grimson proposed Spatial LDA [26],

where each pixel is assigned a topic chosen from a local

document. This model enables spatial variation of topics,

but ignores the dependencies between topic assignments by

assuming that they are independently chosen. The Topic
Random Field proposed by Zhao et al. [29] goes one step

further by introducing an MRF to encourage coherent topic

assignment. However, such local regularization techniques

do not capture long range correlation, which is crucial to

modeling global layouts. Recently, Parizi et al. [19] pro-

posed a reconfigurable model for scene recognition, which

treats a scene as a composite of a fixed number of rectangu-

lar regions, each governed by a topic. While allowing flex-

ible topic-region association, it does not take into account

the dependencies between topic assignments either.

There has been other work that combines latent GPs for

spatially coherent segmentation [8, 21, 22]. Sudderth and

Jordan [22] proposed a formulation of dependent Pitman-

Yor processes (DPY), where spatial dependencies are in-

duced via thresholded GPs. It is, however, important to

note that there is a fundamental aspect that distinguishes our

work from this paper: we aim to learn a generative model

that is able to capture the prior structure of outdoor scenes,

such that one can sample new scenes from it or infers miss-

ing parts of a scene. Their work focuses on producing accu-

rate segmentation instead of learning the underlying struc-

tures of scenes.

To sum up, two key aspects distinguish our work: (1) the

aim to a learn a prior model of layouts that captures com-

mon structures; (2) a novel design coupling GPs across lay-

ers, which leads to not only the capability of capturing long
range spatial dependencies and cross-topic relations, but

also a vector representation that expresses the global struc-

ture in a compact yet flexible way.

3. Generative Model of Layouts

Following the paradigm of topic models, we characterize

an image by a set of visual worlds: S = {(xi, yi, wi)}ni=1.

Here, xi and yi are the pixel coordinates of the i-th visual

word, and wi is the quantized label. We aim to develop

a generative model to explain the spatial configuration of

S. As shown in Figure 2, This model considers a scene

as a composition of several regions, each associated with a

topic, i.e. a distribution of visual words. Each pixel location

(xi, yi) is attached an indicator zi that assigns it to a partic-

ular region. Given zi, one can draw the visual word wi from

the corresponding topic.

Generally, the distribution of zi, which we denote by θi,
is location-dependent. More importantly, the values of θi
at different locations are strongly correlated. For example,

a pixel is very likely in an ocean if so are the surround-

ing pixels. Therefore, it is desirable to jointly model the

distributions of zi over the entire image so as to capture

the correlations between them. In particular, we develop

a probabilistic model called Spatial Topic Process that can

generate a continuous map of topic distributions based on a

set of coupled Gaussian processes.

Given λ, the parameters of the Spatial Topic Process,

and β = (β1, . . . , βK), a set of word distributions, each

corresponding to a topic, the overall procedure to generate

S is summarized below. (1) Generate a continuous map of

topic distributions as θ ∼ θ|λ. Here, θ(x, y) is the predicted

distribution of topics at (x, y). (2) Randomly sample a set

of locations {(xi, yi)}ni=1. While one can use all pixels of

an image, we will show empirically that this is unnecessary,

and a much smaller subset usually suffices. (3) Draw the

topic indicator zi at each location from θi � Θ(xi, yi). (4)
Draw the visual word wi from the corresponding topic βzi .
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Figure 2. This model generates a set of visual words (with coordinates) for each image. First, K real-valued smooth maps η are generated

from a set of coupled Gaussian processes (with parameter λ), where each map corresponds to a topic. Then a continuous map of probability

vectors θ is derived by applying the softmax function at each point. Finally, at each sample point (xi, yi), a topic is chosen according to

θi, and then a visual word wi is drawn from the word distribution of the corresponding topic, i.e. βzi .

3.1. Spatial Topic Process

We derive the Spatial Topic Process, a stochastic process

that can generate spatially continuous maps of discrete dis-

tributions, based on GPs. To begin with, we first consider a

simpler problem – devising a joint distribution to incorpo-

rate correlations between a finite set of discrete distributions

θ1, . . . , θn. This can be accomplished by mapping them to

real vectors that are jointly Gaussian distributed, as

(η
(k)
1 , . . . , η(k)n ) ∼ N (μ(k),Σ(k)), k = 1, . . . , L; (1)

θ
(k)
i = exp(η

(k)
i )/

K∑
l=1

exp(η
(l)
i ). (2)

Here, Eq.(2) convertsK real values into a probability vector

by softmax. The Gaussian distribution at Eq.(1) captures the

correlation between the underlying real values, thus implic-

itly introducing statistical dependency between the proba-

bility vectors. As we shall see, the use of softmax here

makes it a convex optimization problem to estimate η.

By further extending the finite dimensional Gaussian

distributions in Eq.(1) to Gaussian processes, we obtain a

stochastic process as follows, which can generate continu-

ous maps of discrete distributions.

η(k) ∼ GP(μ(k),Σ(k)); (3)

θ(k)(x, y) = exp(η(k)(x, y))/
k∑

l=1

exp(η(l)(x, y)). (4)

Here, η(k) : Ω → R is a real-valued function defined on

the image plane Ω. μ(k) andΣ(k) are respectively extended

to a mean function and a covariance function. In particular,

μ(k)(x) is the mean of η(k)(x, y), and Σ(k)((x, y), (x′, y′))
is the covariance between η(k)(x, y) and η(k)(x′, y′).

����
������

�	
���

Figure 3. This figure illustrates part of the Gaussian MRF for cou-

pling GPs. Within each topic are links between values at neigh-

boring grid points. There are also links (depicted in orange color)

between values for different topics at corresponding grid points.

3.2. Coupling Grid-based Gaussian Processes

Gaussian processes are often formulated in a translation

invariant form in practical use. For example, the radial basis

function is a popular choice to define the covariance. How-

ever, this is not an appropriate design in the context of scene

layout modeling, where both the mean and the variance are

location dependent. Here, we propose a more flexible way

to define the mean and covariance functions.

We first define a Gaussian distribution over a finite grid

and then extend it to a Gaussian process via smooth in-

terpolation. Let s1, . . . , sm be a set of grid points, and

(g1, . . . , gm) ∼ N (μg,Σg) be jointly Gaussian distributed

variables, each for a grid point. Then we can extend this

finite vector to a continuous map η over the image domain

Ω as follows. Let v = (x, y) ∈ Ω, then

η(v) =

m∑
j=1

cj(v)gj , cj(v) = wj(v)/
m∑

j′=1

wj′(v). (5)
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Here, wj(v) = exp(−d(v, sj)2/σ2
g) is a weight value that

reflects the influence of the j-th seed to v. It is not dif-

ficult to show that η as defined above is a Gaussian pro-

cess. In particular, the mean function is μ(v) = cTv μg

and the covariance function is Σ(u, v) = cTuΣgcv . Here,

cv = (c1(v), . . . , cm(v)).
Eq.(3) and (4) introduce K Gaussian processes – each

can be characterized by a finite dimensional Gaussian dis-

tributions using the grid-based parametrization as above. In

this design, the smooth interpolation as in Eq.(5) ensures

local coherence, while Gaussian distributions over the grid

capture long range spatial relations. Also, it is important

to note that spatial configurations of different visual cate-

gories (i.e. topics) are also related. For example, a river

often comes with hills along its side. To capture such rela-

tions, it is desirable to further couple all GPs – this can be

achieved through a joint distributions over the grid values

for all topics. Let m be the number of grid points, then the

joint dimension is dg = mK. Empirical testings showed

that a 6-by-6 grid suffices to express most variations in the

layout of natural scenes, and regions roughly fall into 20
to 30 categories (e.g. skys, trees, and sea). Thus the joint

dimension dg is about 1000.

Reliable estimation of such a Gaussian distribution re-

quires a very large number of samples if a full covariance

matrix is used. To address this difficulty, we consider a

Gaussian Markov random field (GMRF) as below:

p(g|λ) ∝ exp (Eint + Eext) ; (6)

Eint =
∑
i,k

λ
(k)
i (g

(k)
i )2 +

∑
i,j,k : i∼j

λ
(k)
i,j g

(k)
i g

(k)
j ; (7)

Eext =
∑
i,k,l

λ(k,l)g
(k)
i g

(l)
i . (8)

Here, g is an mK-dimensional vector that contains all val-

ues at grid points, which we call the latent layout represen-
tation, and g

(k)
i is the value for the k-th topic at the i-th grid

point. λ is the parameter vector. As shown in Figure 3, this

GMRF comprises two types of links: the ones between val-

ues for the same topic at neighboring sites (i ∼ j indicates i
and j are neighbors), and those between values for different

topics at the same site. In this way, the parameter dimension

is substantially reduced.

3.3. Joint Formulation

Combining all components, we derive the joint formula-

tion as follows. Suppose there are n visual words from an

image. Given β (the word distributions) and λ (the param-

eter of the Spatial Topic Process), the joint probability of

these visual words and their associated topic indicators is

p(g|λ)
n∏

j=1

p(zj |xj , yj ,g)p(wj |zj ;β). (9)

Here, p(g|λ), which is defined in Eq.(6), is the prior of

the latent layout representation. p(zj |xj , yj ,g) is the topic

probability at (xj , yj), which is defined by Eq.(4) as

p(zj = k|xj , yj) = θ(k)(xj , yj) ∝ exp(η(k)(x, y)). (10)

Here η(k) is determined by g as in Eq.(5). p(wj |zj ;β) is the

probability of choosing visual word wj from the topic βzj .

4. Inference and Learning Algorithms
This section presents algorithms to infer layouts of im-

ages and to learn model parameters.

4.1. Inferring Layouts

Given the model parameters, including λ and β, we can

derive the latent layout representation g of a new image as

follows. Specifically, we first extract a set of local features,

and quantize them into visual words. Each word is rep-

resented by a triple (xj , yj , wj), and is associated with a

hidden variable zj that assigns it to a topic. Then the MAP

estimator, which we denote by ĝ, is given by

ĝ = argmax
g

p(g|λ)
n∏

j=1

p(wj |xj , yj ,g). (11)

Here, p(wj |xj , yj ,g) =
∑K

z=1 p(wj |z)p(z|xj , yj ,g). This

problem can be readily solved using an EM procedure that

alternates between two updating steps as below.

q
(t)
j (k) ∝ exp(η

(t−1)
j (k)) · βk(wj), (12)

g(t) ← argmax
g

n∑
j=1

Lj(q
(t)
j ;g)− 1

2
gTΛg. (13)

Here, η
(t−1)
j depends on g(t−1) as in Eq.(5). Lj(q;g) is the

expectation of log p(zj |xj , yj ;g) w.r.t. q, which is given by∑K
k=1 q(k) log p(k|xj , yj ;g). In addition, Eq.(13) is a con-

vex optimization problem. To bootstrap the EM procedure,

one can initialize g(0) to a zero vector.

4.2. Learning Model Parameters

The goal of learning is to estimate the word distribution

βk of each topic, and the GP parameter λ that governs the

spatially varying topic distribution. We first consider a su-

pervised learning algorithm and then extend it to a semi-

supervised setting. As a preceding step, we extract local de-

scriptors densely from each image and quantized them (us-

ing K-means) into visual words. Suppose pixel-wise topic

labeling is provided for each training image. Then, each

word is represented by a 4-tuple as (xj , yj , wj , zj). Here,

(xj , yj) is the coordinate, wj is the word label, and zj is the

topic label. Then, the MAP estimator of βk is

βk(w) =
α+#occurrences of w in k-th topic

αV +#pixels belong to k-th topic
. (14)
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Here, V is the vocabulary size. We use a prior count α to

regulate the estimated distributions. This is equivalent to

placing a Dirichlet prior with parameter α+ 1.

The parameter λ can be estimated by maximizing the

following objective function w.r.t. both the model parameter

λ and the latent layout representations g1, . . . ,gN .

N∑
i=1

⎛
⎝log p(gi|λ) +

n∑
j=1

log p(zij |xij , yij ,gi)
⎞
⎠ . (15)

This problem can be solved using an coordinate ascent pro-

cedure that alternately updates λ and (gi)
N
i=1, as

g
(t)
i ← argmax

g

⎛
⎝

n∑
j=1

log p(zij |xij , yij ,g)− 1

2
gTΛ(t−1)g

⎞
⎠ ;

λ(t) ← argmax
λ

N∑
i=1

log p(g
(t)
i |λ). (16)

Here, Λ(t−1) is the precision matrix determined by λ(t−1).

Note that the probability defined in Eq.(4) is log-concave

w.r.t. η (and thus g). Hence, both steps in Eq.(16) are con-

vex optimization problems that can be readily solved. In

practice, one can improve the numerical stability using L2

regularization of λ (i.e. add a term −r‖λ‖22 to Eq.(15)).

It is straightforward to extend the learning algorithm to

leverage unsegmented images as part of the training data.

The basic idea is to treat the topic indicators for such images

as hidden variables, and use E-steps to infer the expected

probabilities of their values, as in Eq.(12) and Eq.(13).

5. Applications and Experiments
We conducted experiments on three applications – scene

classification, semantic segmentation, and layout hallucina-
tion – to test the practical utility of the proposed model.

We used two datasets: (1) MSRC (v2) [20], which con-

tains 591 images in 20 scene categories and 23 object

classes. Pixel-wise labeling are provided for each image.

(2) SUN [27], a large database with 908 scene classes. How-

ever, many classes have too few annotated images for reli-

able training. Therefore, we selected a subset of 18 classes

according to two criteria: (a) natural outdoor scenes, and

(b) containing over 50 annotated images. This subset con-

tains 8, 952 images, which, we believe, is large enough to

obtain statistically significant results. Annotations in the

SUN dataset were noisy – regions (or objects) of the same

types are often tagged with different names. Merging tags

of the same meanings results in 28 distinct region (object)

classes. Each dataset was randomly partitioned into two

disjoint halves: training and testing.

Feature extraction and quantization were performed as a

preprocessing step to obtain a set of visual words for each
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(b) Results on SUN

Figure 4. Classification results obtained on two datasets. In the

legend, SPM-Lk refers to spatial pyramid matching with k-levels,

STP-k refers to spatial topic process on a k × k grid.

image. First, a bank of 25 filters (24 Gabor filters of 3 scales

and 8 orientations plus a Gaussian smooth filter) is applied

to three color channels (RGB) respectively. Combining the

filter responses results in a 75-dimensional feature vector

at each pixel. We found empirically that this feature tends

to achieve better performance than dense SIFT in outdoor

scenes, as significant parts of such scenes are textured re-

gions instead of objects. Extracted features were whitened

and then quantized using K-means (K = 1000).

We learned the layout models from the training set fol-

lowing the procedure described in section 4. In specific, we

set the prior count α to 10−4 in estimating the word distribu-

tions of each topic. We learned the spatial topic processes
on three grid sizes 3×3, 4×4 and 6×6 over a standard image

size 256×256, and set σg to 80, 60, and 40 respectively. We

used supervised learning for MSRC, which provides pixel-

wise labeling for all images and semi-supervised learning

for SUN, where labeling is partially available.

5.1. Scene Classification

Given an image I , one can infer the latent layout rep-
resentation g using the optimization algorithm presented in

section 4.1. Here, g is a finite-dimensional vector and thus

can be used as a holistic descriptor of the scene. We trained

a set of linear SVMs based on these vectors, each for a scene

category. Each testing image was classified to the class that

yields highest prediction score. For comparison, we also

implemented Spatial Pyramid Matching (SPM) [13], a pop-

ular discriminative method for scene recognition. We varied

the number of visual words extracted from each image and

studied how it influences performance.

Figure 4 compares the classification correct rates on both

datasets. We observe: (1) For the proposed method (STP),
the classification accuracy increases when using finer grids,

which suggests that local scale variations in the layouts con-

vey useful information for classification. (2) STP outper-

forms SPM when using a 4 × 4 or 6 × 6 grid, which indi-

cates that discriminative information is effectively captured

by the layout representation. (3) It is a general trend for both

methods that performance increases as more visual words
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(a) (b)
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(e) (f)

(g) (h)

Figure 6. Eight groups of semantic segmentation results on the SUN dataset. Each group has four images. From left to right are the input

image, the inferred layout (using a 4×4 grid), the result by our method (based on the inferred layout), and the result by SLDA. Particularly,

the image to visualize the inferred layout is generated by mixing the colors of different topics using the probabilities θ(x, y) as weights.

10
2

10
3

10
4

10
5

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

repr. dimension

co
rr

ec
t r

at
e

 

 

STP
SPM

Figure 5. Correct rates vs representation dimensions, based on the

results obtained on SUN (using 5000 visual words/image).

are used. However, it is interesting to notice that such in-

crease is much faster for STP than for others – a small subset

of visual words is sufficient to estimate the layout reliably.

Generally, one may get better performance with higher

representation dimension (e.g. increasing spatial resolu-

tion). A good method should be able to achieve high accu-

racy with low dimension. Figure 5 compares both methods

using a dimension-accuracy diagram. Clearly, STP yields

superior performance with much lower representation di-

mension as opposed to the other two, manifesting its effec-

tiveness in capturing statistical dependencies in the layouts.

5.2. Semantic Segmentation

Semantic segmentation is to assign each pixel a seman-

tic label (i.e. a topic in our model). The pixel-wise label-

ing divides an image into several regions with well-defined

meanings (e.g. sky, hills). Given an image I , we first over-

segment it into super-pixels using SLIC [2], and then obtain

a semantic segmentation by assigning a label to each super

0.65

0.7

0.75

0.8

SLDA SLDA+MRF STP

0.75

0.8

0.85

0.9

SLDA SLDA+MRF STP

On MSRC On SUN

Figure 7. Quantitative comparison of segmentation performances.

pixel. The use of super-pixels not only reduces the compu-

tational cost but also improves the coherence of labeling.

Note that one can derive a continuous map θ of topic

distributions from the layout representation g using Eq.(5)

and (4), which provides a prior over the topics. We can then

combine this prior with the visual words within a super pixel

to infer its topic label. Specifically, let zs denote the label

of a super pixel s, then its posterior distribution is given by

p(zs|s; θ) ∝
∏
i∈s

p(zs|θ(xi, yi))p(wi|zs;β). (17)

Here, we use i ∈ s to indicate the i-th visual word is within

the super-pixel s. Then, the optimal value for zs is

ẑs = argmax
k

∑
i∈s

η(k)(xi, yi) + log βk(wi). (18)

Here, we use the relation: θ(k)(xi, yi) ∝ exp(η(k)(xi, yi)).
For comparison, we also implemented a variant of spatial

LDA [26, 29], which incorporates an MRF to enforce co-

herence between topics allocated to neighboring pixels.
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Figure 8. The first row are the inputs, and the second row are the inferred layouts. Columns (a) - (d) show the case where only middle rows

are visible, (e) - (h) show the case where only middle columns are visible, and (i) shows the original image and the layout inferred thereon.

Figure 9. More results of layout hallucination. The algorithm infers the layout over the image plane based on a visible block at the center.

Figure 6 shows part of the segmentation results obtained

on the SUN dataset, which accurately reflect the scene

structures and have very good spatial coherence. Whereas

SLDA was able to recover the major structures, the results

are noisy especially in ambiguous regions. The improve-

ment achieved by our method is, to a large extent, ascribed

to the strong prior provided by the layouts. As we can see,

the inferred layouts capture the spatial structures very well,

thus substantially reducing the ambiguities of labeling. Em-

pirically, the entropy of θ(x, y) is below 0.5 on average, im-

plying that most labels have already been filtered out, leav-

ing only one or two labels for each pixel to choose from.

We also perform quantitative comparison, where the per-

formance is measured by the correct rate of labeling. Fig-

ure 7 reports the average performance over the testing sets.

The results clearly show that our method consistently out-

performs spatial LDA (+MRF) on both MSRC and SUN.

5.3. Layout Hallucination

It is an interesting phenomenon in human vision system

that people often remember seeing a surrounding region of

a scene that was not visible in the view. This is referred to

as boundary extension [12] in cognitive science. The false

memory here actually reflects the person’s prior knowledge

about visual scenes, and is a good prediction of the world

that did exist beyond the original scope. These findings lead

us to the belief that a model that effectively captures the vi-
sual structures of a scene category should be able to extrap-
olate beyond the input images. We devised experiments to

verify this. In this experiment, only part of an image was

visible, and we used the proposed method to infer the invis-

ible parts. Specifically, we solve the optimal layout repre-

sentation g based on a subset of visual words extracted from

the visible part, and use it to generate the entire layout.

We first consider cases where the algorithm only sees

the middle rows or columns. Figure 8 shows the results.

Initially, seeing only a very small part of the image, the al-

gorithm is able to produce a reasonable layout, which, how-

ever, does not necessary conform to the “ground-truth”. As

more regions are revealed, the true layout is gradually re-

covered. Generally, the predictions made based on the mid-

dle columns are more accurate than those based on the mid-

dle rows, since columns tend to contain more structural in-

formation than rows. Figure 9 shows more results obtained
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on cases where only a block at the center is visible to the al-

gorithm. These results demonstrates our model’s capability

of extrapolating layouts beyond the visible part.

6. Conclusions

We presented a novel approach to layout modeling. At

the heart of this model is a spatial topic process which uses

a set of coupled Gaussian processes to generate topic dis-

tributions that vary continuously across the image plane.

Using the grid-based parameterization, we further derived

a finite dimensional representation of layouts that captures

the correlations across both locations and topics. The exper-

iments on both scene classification and semantic segmenta-

tion showed that the proposed methods achieve consider-

able improvement over state-of-the-art, which is owning to

the strong structural prior provided by the layout model. We

also performed experiments on layout hallucination, which

demonstrates that our model is able to extrapolate scene lay-

outs beyond the visible part.
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