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Abstract

In this paper, we tackle the problem of indoor scene un-
derstanding using RGBD data. Towards this goal, we pro-
pose a holistic approach that exploits 2D segmentation, 3D
geometry, as well as contextual relations between scenes
and objects. Specifically, we extend the CPMC [3] frame-
work to 3D in order to generate candidate cuboids, and
develop a conditional random field to integrate informa-
tion from different sources to classify the cuboids. With this
formulation, scene classification and 3D object recognition
are coupled and can be jointly solved through probabilis-
tic inference. We test the effectiveness of our approach on
the challenging NYU v2 dataset. The experimental results
demonstrate that through effective evidence integration and
holistic reasoning, our approach achieves substantial im-
provement over the state-of-the-art.

1. Introduction

One of the fundamental problems in indoor robotics is

to be able to reliably detect objects in 3D. This is impor-

tant as robots have to be able to navigate the environment

as well as interact with it, e.g., accurate 3D localization is

key for successful object grasping. Over the last decade a

variety of approaches have been developed in order to infer

3D objects from monocular imagery [12, 6, 19]. The most

successful approaches extend the popular (2D) deformable

part-based model [5] to perform category-level 3D object

detection [12, 6, 19].

While 3D detection is extremely difficult when employ-

ing still images, the use of additional information such as

video or depth sensors is key in order to solve the in-

herent ambiguities of the monocular setting. Numerous

approaches have been developed that model both appear-

ance and depth information to score object detectors in

3D [16, 10, 24, 20, 8] , showing improved performance over

the monocular setting.

Objects, however, are not randomly placed in space, but

respect certain physical and statistical properties of the 3D

world. For example, we are more likely to see a person sit-

ting on top of a camel, then than other way of around. We

Figure 1. RGBD images provide both appearance and geometric

information for indoor scene understanding. We leverage this in-

formation as well as contextual relations to detect and recognize

objects in indoor scenes. In particular, we first generate candidate

cuboids through an extension to CPMC and then use a CRF to

assign semantic labels to them.

typically see a bed resting against the wall in bedrooms, and

not hanging from the bathroom ceiling. Exploiting physical

and contextual relationships between objects and the envi-

ronment is key to achieve a high precision in semantic tasks

such as segmentation [15, 22, 29] and detection [9, 8].

In this paper we are interested in exploiting RGB-D im-

agery to perform category level 3D object detection. We

represent the objects in the world in terms of 3D cuboids

and model the physical and statistical interactions between

the objects and the environment (the scene) as well as inter-

actions between objects. Towards this goal, we develop an

approach that extends the CPMC framework [3] to generate

cuboid hypotheses in point clouds by placing them tightly

around bottom-up 3D region candidates. Our region can-

didates are ranked according to “objectness” in appearance

and are encouraged to respect occlusion boundaries in 3D.

We formulate the joint detection problem in a conditional

random field to model the contextual relationships between

objects in 3D. In particular, we encourage the object labels

to agree with the scene type, the objects to follow statistical

geometric relationships relative to the scene layout, such as

proximity to the walls in the room, and absolute size in 3D,

as well as inter-object interactions that encourage certain

types of support relationships and spatial co-occurances.

We evaluate our approach on the challenging NYUv2

RGB-D dataset [23] and show significant improvements
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over existing methods [13], demonstrating the effectiveness

of our contextual model over the task-isolated baseline.

2. Related Work
Previous approaches to object recognition in range

data [26] typically assumed that the target object is ei-

ther segmented from the background, or that a detailed 3D

model is available [4, 14]. Localizing generic object classes

in “the wild” (i.e., highly cluttered scenes) is, however,

much more difficult. We focus our review in this domain.

Contextual models incorporating strong priors about the

physical world become increasingly popular with the recent

release of RGB-D datasets [22] . These models mainly fo-

cus on segmentation by enforcing statistical physical con-

straints. Silberman et al. [23] reason about support surfaces

and structural object classes (such as “ground”, “furniture”

and “props”). [22, 28, 15] do segmentation based on a vari-

ety of carefully designed 2D appearance and 3D geometry

features. [22] reasons about spatial transitions between su-

perpixels based on RGB and depth information, while [15]

enforces statistical coocurrences of 3D spatial relations such

as near or on top of. Our approach shares similarities with

the physical relationships modeled by these methods. How-

ever, we reason at the level of full objects, represented as

cuboids, which allows us to better capture the statistical

object-object interactions in 3D.

Most 3D object detectors make use of both appearance

and depth information, but do not exploit the inter-object

relationships. Lai et al. [16, 10] extend the popular de-

formable part based model (DPM) [5] to include disparity

and 3D size features. Walk et al. [25] use depth statistics

to learn to enforce height constraints in pedestrians. Sun

et al. [24] augment the implicit shape model with depth in-

formation, by voting with patches in 3D. Scene-object ge-

ometry is exploited for indoor scenarios in [8], adopting a

sliding window approach that uses appearance as well as 3D

features such as normals, height and distance to the ground.

In [13], object candidates are found by fitting 3D cuboids in

point clouds, but do not reason about the class of the object.

Related work on contextual object detection in 3D has

been sparser. Most approaches use monocular imagery to

infer the objects [19], and use the context of the problem

to parametrize the model. In [12, 6, 17], objects in indoor

scenarios are represented as cuboids aligned with the ma-

jor axes of the room. These approaches use estimated room

layouts to rescore object detections in 3D, which softly im-

poses the constraints that the objects do not penetrate the

room, and rest on the floor. Gupta et al. [9] represent the ob-

jects in the world as cuboids and model physical constraints

among them encoding that objects need to be supported

in 3D, and cannot penetrate each other. Their model uses

monocular imagery, while in our approach we are interested

in exploiting the richer RGBD data. For video, Geiger et al.

[7] exploit the strong priors in outdoor scenarios to reason

jointly about objects and road intersections.

3. 3D detection with RGBD Imagery
We generate a set of cuboids via candidate 3D “object-

ness” regions that are encouraged to respect intensity as

well as occlusion boundaries in 3D. To generate the regions

we build on CPMC [3], which achieved state-of-the-art per-

formance on the very challenging PASCAL segmentation

challenge. We propose a simple extension to generate can-

didate class-independent object regions by exploiting both

depth as well as appearance cues.

3.1. Generating bottom-up 3D region candidates

CPMC [3] uses parametric min-cut to generate a wide

variety of foreground candidates from equally spaced seeds.

The overall objective is to minimize an energy function over

pixel labels {x1, . . . , xN}, with xi ∈ {0, 1} and N the total

number of pixels. In particular, the energy is defined as

Eλ(X) =
∑
u∈V

Cλ(xu) +
∑

(u,v)∈E
Vuv(xu, xv), (1)

with λ ∈ �, V the set of all pixels, E the edges between

neighboring pixels, and Cλ the unary potentials:

Cλ(xu) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, if xu = 1, u /∈ Vb

∞, if xu = 1, u ∈ Vb

∞, if xu = 0, u ∈ Vf

f(xu) + λ, if xu = 0, u /∈ Vf

(2)

Here λ is an offset and is used to generate different solu-

tions of the objective function. The function f is defined

as f(xu) = ln pf (xu)− ln pb(xu), where pf represents the

probability distribution of pixel i belonging to foreground.

To exploit both appearance and depth, we define

pf (i) = exp
(−γ·min

j
(α·||I(i)−I(j)||+(1−α)·||D(i)−D(j)||))

with D the depth, and I the rgb imagery. Here j indexes the

representative pixels in the seed region, selected as centers

resulting from a k-means algorithm (k = 5), as in [3], and

γ a scaling factor.

The pairwise term Vuv penalizes assignments of different

labels to similar neighboring pixels:

Vuv(xu, xv) =

{
0, if xu = xv

g(u, v), if xu �= xv

(3)

The similarity between two adjacent pixels is based on the

gPb response [18]: g(u, v) = exp
(− max(gPb(u),gPb(v))

σ2

)
.

To exploit depth information, we use both gPbrgb computed

on the original image as well as gPbdepth computed on the
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depth image, and combine them linearly: gPbrgbd = α ·
gPbrgb +(1−α) · gPbdepth, with α set to 0.3. This simple

combination has been shown to improve boundary detection

in RGBD imagery by roughly 2% [28].

3.2. Fitting the Cuboids

We generate cuboids from the candidate regions. Specif-

ically, we select top K candidate regions ranked by the ob-

jectness scores [3], after performing non-maxima suppres-

sion (we use 0.5 as max overlap), and then generate can-

didate cuboids by fitting a 3D cube around each candidate

region. A natural idea to accomplish this is to map the pix-

els in a given region into 3D coordinates, and find the mini-

mal bounding cube around them. However, this approach is

sensitive to noise, as a single outlier point may completely

change the fitted cube. To improve the robustness, we con-

sider a variant that instead of finding a minimal bounding

cube to all the points, returns the minimal cube that con-

tains 95% of the 3D points. In this way, outlier points are

allowed to be precluded from the cube. Additionally, as

most objects of interest are parallel to the floor, we enforce

this constraint, reducing the estimation problem to an opti-

mization problem with only one variable – the orientation

along the x-z plane. This can be solved using direct search.

4. Indoor Scene Model
Assigning class labels to candidate cuboids is a challeng-

ing task. Feature-based approaches usually face difficulties

caused by pose variation, object occlusion, and poor illumi-

nation. To tackle this problem, we develop a conditional

random field (CRF) model, which integrates appearance,

geometry, as well as contextual information (e.g., scene-

object relations and spatial configurations) to improve the

recognition accuracy.

4.1. Contextual model for 3D Object Detection

We employ candidate cuboids obtained by the method

described in the previous section as input to our holistic

model. We characterize each cuboid by both a 2D bounding

box and a 3D bounding cube. This representation makes it

convenient to utilize information from both 2D and 3D do-

mains. In this paper, we are interested in simultaneously

classifying the scene and assigning semantic labels to can-

didate cuboids. Formally, we denote the scene variable by

s ∈ {1, . . . , S}, and the objects with yi ∈ {0, 1, . . . , C},

where S and C are respectively the number of scene and

object classes. Note that the value of yi can be 0, which

indicates that the cuboid is a false positive.

We define a CRF in terms of these variables, which ex-

ploits appearance features, geometric properties as well as

semantic relations between objects and the scene (see Fig. 2

for an illustration). In particular, the model consists of mul-

tiple potential functions, which can be expressed generally
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Figure 2. We use a CRF model to integrate various contextual rela-

tions. Each cube is associated with unary potentials that character-

ize both the appearance and geometric properties. In addition, the

pairwise potentials between the scene and the objects, as well as

between the objects themselves encourage certain configurations.

in the following form:

p(y, s) =
1

Z(x)
exp

(
wsψs(s) +

∑
t∈U

wt

m∑
i=1

ψt(yi)

+
∑
p∈A

wp

∑
(i,i′)∼Pp

φp(yi, yi′) +
∑
m∈B

wm

∑
i

φm(s, yi)

⎞
⎠ .

There are four categories of potentials: ψs, a unary potential

associated with the scene label, {ψt}t∈U , unary potentials

defined on object labels, and {φp}p∈A, {φm}m∈B, binary

potentials that capture the contextual relations between the

scene and the objects, as well as between the objects them-

selves. Each potential is associated with a weight shared

across cliques, which we learned from training data. We

now describe the potentials in more detail.

Scene appearance: In order to incorporate global infor-

mation about the scene without making hard decisions, we

define a unary potential over the scene label s as

ψs(s = u) = σ(tu),

where tu denotes the classifier score for scene class u and

σ is the logistic function. We utilize the scene classification

approach by Xiao et al. [27] to obtain the scores tu.

Ranking potential: We employ the segment ranking

framework of Carreira et al. [2] to obtain the cuboid de-

tection scores. Since our cuboid hypotheses were generated

via bottom-up region proposals, each cuboid thus has a 3D

segment associated with it. We use these segments to train

a ranker that, given an input segment, predicts how much it

overlaps with a ground-truth cuboid. In particular, we use
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dist. to floor 

height 

short width 

long width 
wall 

dist. to wall 

radian 

Other features: 
 
horiz. aspect = long width / short width 
vert. aspect = height / long width 
area = long width * short width 
volume = area * height 
close to wall = exp(dist to wall / 0.1) 
parallel to wall = exp(radian / 0.1) 
close to ground = exp(dist to floor / 0.1) 

Figure 3. Cube geometric properties: close-to-wall, parallel-to-

wall and close-to-ground are computed based on the correspond-

ing distances (using exp), 0.1 is determined empirically.

the code released by [2] to train an SVR predictor. We use

the output score as a unary potential in our model:

φrank(yi = l) = f(l),

where f(l) represents the predicted overlap of object candi-

date yi with ground-truth. For the background class, we use

a constant threshold.

Segmentation potential: Since the number of training

examples of each class is limited, classifiers trained to rec-

ognize full objects in our experience did not work partic-

ularly well. This motivates the use of segmentation po-

tentials as unaries for our cuboid hypotheses. We employ

the approach of Ren et al. [28], which trains a classifier

on a set of (smaller) superpixels. The approach uses ker-

nel descriptors (KDES), a framework that uses different as-

pects of similarity (kernel) to derive patch descriptors. Ker-

nel descriptors are aggregated over superpixels and trans-

formed using effcient match kernels (EMK). We used six

types of RGB-D kernel descriptors: gradient, color, local
binary pattern, depth gradient, spin/surface normal, and

KPCA/self-similarity. This approach assigns a score to each

superpixel. In order to derive the potential for a cuboid, we

project the cuboid onto the image plane and obtain a convex

hull. Then, we use the weighted average of the scores as the

value of the potential, where the weights are defined to be

the intersection areas between superpixels and the projected

convex hull. Note that this kind of potential is agnostic to

the size of the object. Our model also employs geomet-

ric potentials such as absolute size and aspect ratio in 3D,

which ensure that the joint model recovers physically valid

hypotheses.

Object geometry: Geometric properties of an object are

an important source of discriminative information which is

complementary to appearance and depth features. For ex-

ample, a bed is often flat and occupies a large area, while

a refrigerator is typically taller. As illustrated in Fig. 3,

we capture the geometric properties using a vector with 10
components describing the 3D cuboid: height, longer width,

shorter width, horizontal aspect ratio, vertical aspect ratio,

area, volume, parallel-to-wall, close-to-wall, and close-to-
ground. Note that these properties capture not only the in-

trinsic attributes of an object, but also its position relative

to the scene layout. For example, one can roughly reason

about the supporting relation between an object and a wall

(or floor) from the values of the last two components. This

has been proven very useful in the indoor setting [23]. To

use geometric properties in our model, we train an SVM

with RBF kernel on the geometric features, one for each

class, and use the resultant scores rl as unary potentials for

the candidate cubes, i.e., φgeom(yi = l) = rl.

Semantic context: Context (e.g., the room that an object

resides in or other objects in the same scene) often pro-

vides useful information for object recognition. For exam-

ple, a bed is much more likely to be in a bedroom than in a

kitchen. In this framework, we consider two co-occurrence

relationships: scene-object and object-object. The potential

values are estimated from the training set by counting the

co-occurence frequencies.

Specifically, the scene-object potential is defined to be

φso(s = k, yi = l) � 1

Ntr

Ntr∑
j=1

mj∑
i=1

(sj = k, y
(j)
i = l),

where y
(j)
i is the i-th cuboid on the j-th training example,

mj is the number of objects in the j-th scene, Ntr is the

number of training images, and (·) the indicator function,

which equals 1 when the enclosed condition holds.

The object-object potential is defined as

φoo(yi = l, yk = l′) � 1

Ntr

Ntr∑
j=1

(∃i, i′ : y(j)i = l, y
(j)
i′ = l′).

It is worth noting that in the case where multiple instances

of classes l and l′ exist in a scene, the co-occurence of l and

l′ is counted as 1 for this scene. We found empirically that

this is more robust than using the number of instance pairs.

Geometric context: We introduce two potentials to ex-

ploit the spatial relations between cuboids in 3D: (1) close-
to relation (e.g., a chair is typically near a desk), and (2)

on-top-of relations. It is important to note that unlike the

close-to relation, the on-top-of relation is asymmetric. For

example, a television can be on top of a chair, while the

contrary is very unlikely. As the size and position of each

object is available, we can roughly determine spatial rela-

tions using some simple geometric rules. More specifically,

we consider two objects as being close to each other if the
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(Hausdorff) distance between them is less than 0.5 meters.

Furthermore, we say object A is on top of object B if A
is higher than B and 80% of A’s ground projection is con-

tained within the one of B. Again, the potential values are

defined to be the frequencies that specific configurations ap-

pear in the training set. Specifically, the close-to potential,

φc(l, l
′), is defined to be the normalized frequency that an

object of class l is close to that of class l′; while the on-
top-of potential, φt(l, l

′) is the normalized frequency that

an object of class l′ is on top of one of class l.

4.2. Learning and Inference

Our energy is defined in terms of a log-linear model. We

learn the weights by employing the primal dual learning

framework of [11]. This allow us to minimize both hinge

loss and log-loss within the same mathematical framework.

This framework is particularly appealing as it does not re-

quire to compute neither the partition function, not do loss

augmented inference in each step of the gradient computa-

tion. Instead, it does block coordinate descent in the approx-

imated primal, alternating between updating the messages

and the weights. As it does not require the messages to run

to convergence, it results in orders of magnitude speed-ups

over classical CRF learning approaches.

We define loss functions which decompose into unary

terms. In particular, we define a 0-1 loss over the scene

type, and a 0-1 loss over the cuboid detections.

Δdet(yi = l, ŷi) =

{
1 if (IOU ≥ 0.5 ∧ ŷi = l)

0 otherwise

with ŷi the ground truth label. For inference, we compute

the MAP estimate by computing

max
y,s

p(y, s)

This is in general NP-hard for the class of energies we ex-

ploit in this paper. We resort to the approximated algorithm

of [21], which combines LP relaxations and dual decompo-

sition to obtained a parallel algorithm which is guaranteed

to converge. This worked very well in practice, not impos-

ing any restrictions in the types and order of potentials nor

on the structure of the graph.

5. Experimental Evaluation
We tested the proposed framework on the NYUv2 [23]

RGB-D dataset, and compare it with related approaches.

The dataset contains 1449 scenes, each associated with an

RGB image and a depth map. The original segmentations

of NYUv2 assign pixels to 894 object classes with differ-

ent names, which is difficult to manipulate in practice. To

address this problem, we manually clean up the class list,

merging similar classes (e.g., table and desk) and discard-

ing those that appear sporadically. This results in 21 object
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Figure 4. Comparison of different methods in cuboid detection.

Performance measured in recall, i.e. the fraction of objects which

are covered by at least one candidate cube (with overlap > 0.5.)

classes. Note that we do not consider floor, ceiling, and

wall. These classes are “special” as they define the scene

layout. We find them through 3D Hough transform [1] in-

stead of object detection.

For each object instance that belongs to one of these 21
classes, we generate a ground-truth cuboid using the fit-

ting algorithm described in Sec. 3. We inspected all these

ground-truths and found that most of them (over 95%) fit

very well and are good for performance evaluation. We also

identified cubes that were poorly fitted due to imperfect seg-

mentation (less than 5%) and ignored them in both training

and performance evaluation. In this way, we obtained 6680
ground-truth cubes in total.

We partitioned the dataset into two disjoint subsets, re-

spectively for training and testing, using the same split as

[23]. In particular, the training set contains 795 scenes (with

3630 objects), and the testing set contains 645 scenes (with

3050 objects). In what follows, we will first compare the

performance of two major components (cuboid detection
and scene & object classification) to state-of-the-art meth-

ods, and then examine the overall performance.

Performance of cuboid detection: The primary goal of

the cuboid detection stage is to generate a reasonable

amount of candidate cuboids, such that a significant por-

tion of the true objects is contained in the candidate set.

The performance of a cuboid detector is measured in terms

of base recall, given a fixed Kc – the maximum number

of candidates for each scene. Specifically, an object is said

to be recalled if there is a candidate cube which overlaps

with it more than 0.5 IOU. The base recall is defined to be

the fraction of ground-truth objects that are recalled by the

candidate set.

We compared three approaches here: (1) CPMC (ex-

tended to use depth information), (2) CPMC with non-

maximal suppression, and (3) the mixed integer program-

ming (MILP) algorithm of [13]. Specifically, we used

CPMC to propose 150 cubes for each scene, and selected

top K ones as candidates. By varying K, we obtain curves

that show how the number of candidates per image influ-
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configuration object scene

scene appearance only - 55.20

segmentation only 54.46 -

geometry only 42.85 -

seg. + geo. 59.02 -

app. + scene-obj 55.87 57.49

app. + obj-obj 54.49 55.20

app. + obj-spa 55.61 55.20

unaries + scene-obj 60.00 57.65

unaries + obj-obj 58.92 55.20

unaries + obj-spa 59.41 55.20

unaries + scene-obj + obj-obj 60.13 58.56

unaries + scene-obj + obj-spa 60.33 58.10

unaries + obj-obj + obj-spa 59.28 55.20

all combined 60.49 58.72

Table 1. Performance of scene & object classification on ground-

truth cuboids in terms of the percentage of correct labels. Here,

“scene-obj“, “obj-obj“, and “obj-spa“ respectively refers to scene-

object co-occurances, object-object co-occurances, and spatial re-

lations between objects. In addition, “app.“ refers to appearance-

based potentials, including segmentation and scene appearance,

and “unaries“ refers to all unary potentials.

ences the base-recalls (see Fig. 4). Note that the MILP

results are directly acquired from the authors of [13], and

therefore we were not able to vary the candidate numbers

as for our approach.

On average, MILP generates about 8 candidates per

scene. To make a fair comparison, we specifically test the

setting with K = 8. Under this setting, the base recall of

MILP is 0.263, while CPMC yields 0.356 and 0.428 (us-

ing non-maximal suppression). As K increases, the base

recalls of both CPMC and CPMC+nms increase. We can

see that CPMC+nms consistently outperforms CPMC, and

attains nearly 75% when K = 50. One of the reason that

non-maximal suppression helps is that it actively removes

redundant cuboids, and consequently the detector is able to

cover more objects using fewer candidates.

Performance of classification: To examine the perfor-

mance of the CRF model in isolation, we test it on the

ground-truth cuboids. In this way, the errors introduced

in the detection stage are not considered. We measure the

performance in terms of classification accuracy, that is, the

number of the correctly classified objects over the total. We

consider various configurations of the CRF model that in-

corporate different subsets of potentials, so as to analyze

their individual effect. Particularly, we test settings using

only feature-based potentials to set up the baselines, which

are equivalent to feature-based classification. Table 1 com-

pares their performance. We observed: (1) We get accura-

cies at 54.46% and 55.20% respectively, when the appear-

ance and geometry features are used in isolation. However,

the combination of them yields considerably higher accu-

racy (59.02%). This clearly shows that these two features

are complementary. (2) The use of contextual potentials

improves performance. For example, using scene-object

co-occurances moderately raises the object labeling accu-

racy from 59.02% to 60.00% and scene classification accu-

racy from 55.20% to 57.65%. (3) The accuracy increases

as more potentials are added to the framework. We reach

the highest accuracy at 60.49% when the full CRF model is

used. This is a considerable improvement compared to the

baseline (54.46%). The scene classification performance

also increases (from 55.20% to 58.72%).

Overall Performance: To test the integrated perfor-

mance, we considered different combination of cuboid de-

tectors and CRF configurations. To put our performance

into perspective, we also tested DPM [5], a state-of-the-art

2D detector, on the same set of data1. The performance is

measured in terms of F1-score, the harmonic mean of recall

and precision. Here, an object is said to be recalled if there

is a cuboid with the same class label that overlaps with it by

more than 50%. This is different from the base recall in de-

tector evaluation, where the cuboids have not been labeled.

Table 2 summarizes the results. The poor performance of

DPM indicates that 2D object detectors that focuses on ob-

jects with regular structures encounter significant difficul-

ties in a general indoor setting. Our approach, which explic-

itly takes advantage of 3D information and contextual rela-

tions, consistently outperforms DPM (achieving over 10x
higher precision while maintaining a comparable recall).

The improvement is also reflected by the substantial gain

in F1 scores. Moreover, we can observe that the use of ge-

ometric feature, scene-object relations, and other potentials

further improves the overall performance. Table 3 depicts

the class-specific performances. In an indoor environment,

objects of some classes (e.g., cabinets, chair, and shelf) ap-

pear much more frequently than others, and thus play a

more important role in understanding the scene. To em-

phasize these classes, we show the re-weighted F1-score of

each class, which is defined as F1reweight � F1·m/mmax.

Here, m is the number of testing samples in the class of in-

terest, and mmax is that of the most frequent class. We can

see that the use of object geometry and contextual informa-

tion leads to notable improvements, especially over frequent

classes. Fig. 5 shows example detections of our model and

compares them with GT cuboids.

Computational Complexity: With all the cuboids ready,

both learning and inference are very efficient. With K =
15, the learning of the full CRF model takes about 2 min-

utes on a workstation with Intel i7 quad-core CPU (using

1We applied DPM detectors for different classes respectively, and

sorted the detected objects by their decreasing scores of all classes together.

We kept only the top K detected objects in each scene for performance

evaluation.
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dpm seg. seg.+geo. seg.+geo.+rank +scene-object all

recall prec. F1 recall prec. F1 recall prec. F1 recall prec. F1 recall prec. F1 recall prec. F1

MILP - - - 31.41 6.75 11.11 14.25 40.90 21.13 15.09 39.90 21.90 15.21 41.00 22.19 15.18 41.92 22.3
K = 8 38.22 4.47 8.01 25.76 33.13 28.98 25.53 37.02 30.22 32.14 38.82 35.17 32.79 37.96 35.18 31.67 39.68 35.23
K = 15 40.47 3.56 6.54 29.11 27.59 28.33 30.69 28.30 29.44 35.57 34.29 34.92 36.03 33.93 34.95 34.19 37.04 35.56
K = 30 44.52 2.62 4.96 32.02 20.25 24.81 33.48 20.70 25.58 38.29 28.30 32.54 39.56 27.67 32.57 30.19 36.68 33.10
K = 50 48.71 1.75 3.37 27.59 16.82 20.90 28.74 17.52 21.77 33.83 27.41 30.28 35.47 26.33 30.22 32.16 27.80 29.82

Table 2. Performances of the integrated framework. Each row corresponds to a specific detection setting, and each column corresponds

to a model configuration. In particular, the first row shows the results obtained using the MILP detector [13], while the other four rows

corresponds to the setting where a tunable detector is used to generate K = 8, 15, 30, 50 candidates per images. The first column shows

the results by DPM, and the other five columns show the results obtained by our framework with different combinations of potentials. The

performance are measured in terms of recall, precision, and F1-score. Note that these numbers are percentages.
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# samples 12 137 30 55 24 153 32 341 237 566 213 519 135 42 31 39 154 139 53 113 25 3050

seg. 0.0 6.7 1.7 2.7 0.2 10.6 0.9 14.6 12.3 27.8 11.8 27.9 4.1 0.4 0.6 0.9 8.5 7.4 1.6 4.5 0.5 28.22

seg.+geo. 0.0 7.4 1.5 2.9 0.2 11.6 1.0 14.7 13.0 30.7 12.5 29.1 4.0 0.6 0.5 0.7 8.9 8.0 1.8 4.8 0.5 29.25

seg.+geo.+rank. 0.0 11.2 2.6 3.4 0.3 16.6 1.3 19.1 18.2 44.3 18.4 39.4 7.7 1.2 0.6 2.1 14.0 11.7 2.4 8.8 0.0 34.78

+scene-obj. 0.0 9.7 2.4 3.8 0.3 15.6 1.3 19.7 17.6 41.9 17.9 37.2 8.1 1.5 0.9 1.4 13.5 11.0 2.6 8.2 0.7 34.94

all 0.0 10.9 2.6 4.0 0.3 16.7 1.3 20.8 18.7 44.5 18.6 40.3 8.0 1.4 0.9 1.8 13.9 11.5 2.8 9.0 1.0 35.04

Table 3. Class-specific performances obtained using CPMC-nms detector (with K = 15) + our CRF model (with four different configs).

This is combination yields the best overall performance. Note that the numbers of testing samples in different classes are unbalanced. We

show the reweighted F1 scores, which are defined as F1 ·m/mmax, thus emphasizing frequent classes.

4 threads), and the inference for over the entire testing set

takes about 10 seconds (15ms per scene). Empirically, the

time needed to learn the model parameters or to infer the la-

bels scales up linearly as the number of potentials increases.

6. Conclusion

We have developed an integrated framework to detect

and recognize 3D cuboids in indoor scenes, an provided

a detailed evaluation on the challenging NYU v2 dataset.

Our experiments demonstrate that our approach consis-

tently outperforms state-of-the-art detectors by effectively

combining segmentation features, geometric properties, as

well as contextual relations between objects. In particular,

the combination of CPMC-nms with the full CRF model

achieves F1-score at 36%, which is a remarkable improve-

ment over DPM. The framework developed in this work is

very flexible. We believe that it can be extended to incorpo-

rate information from other sources (e.g., video), thus fur-

ther improving the performance.
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