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Abstract

In this paper, we propose a novel approach for bird part
localization, targeting fine-grained categories with wide
variations in appearance due to different poses (including
aspect and orientation) and subcategories. As it is chal-
lenging to represent such variations across a large set of di-
verse samples with tractable parametric models, we turn to
individual exemplars. Specifically, we extend the exemplar-
based models in [4] by enforcing pose and subcategory
consistency at the parts. During training, we build pose-
specific detectors scoring part poses across subcategories,
and subcategory-specific detectors scoring part appearance
across poses. At the testing stage, likely exemplars are
matched to the image, suggesting part locations whose pose
and subcategory consistency are well-supported by the im-
age cues. From these hypotheses, part configuration can
be predicted with very high accuracy. Experimental results
demonstrate significant performance gains from our method
on an extensive dataset: CUB-200-2011 [30], for both lo-
calization and classification tasks.

1. Introduction
Recent history has shown the growing importance of

parts in object detection and classification. Especially for

fine-grained categories (e.g., birds [29, 17, 34], dogs [24,

20], butterflies [31], etc.), parts capture useful information

to differentiate subcategories, and generally the accuracy of

part localization has a significant impact on the effective-

ness of localized features representing the object. There-

fore, localizing the parts automatically and accurately is

very important to a working system of fine-grained classifi-

cation. In this paper, we focus on birds as the test case with

the goal of localizing the parts across different bird species.

What makes detecting birds and bird parts difficult are

the extreme variations in pose (e.g., walking, perching, fly-
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Figure 1. Part localization results from four methods. 1st row:

Poselets [6], 2nd row: Mixture of Trees [36], 3rd row: Consensus

of Exemplars [4], 4th row: Our method. Please refer to Fig. 3

for the color codes. Our method generates the most accurate part

configurations for all the examples.

ing, swimming, etc.) coupled with possibly greater varia-

tions in appearance across species. A well-known detec-

tion method which had success on pedestrian [12] could

not perform well on birds, as shown in [21]. Even more

recent methods fail to detect birds with satisfactory accu-

racy [18, 6, 3]. In the domain of human pose estimation,

there are well-constructed methods [32, 26, 27] that lever-

age the spatial relations of parts and predict the configura-

tion pretty well, but they are still likely to struggle in the

bird domain [8] due to the following limitations: to con-

trol the model complexity, they use tree structure and limit

the spatial relations to two connected parts, which does not

capture higher-order constraints on a group of parts; for the

same reason, they use a limited number of pose types to

decompose the visual complexity, which is not sufficient

for birds with both articulated deformation and wide shape

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.313

2520

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.313

2520



variations; finally, they ignore the subcategory consistency

which is an important cue to detect a real bird.

As it is challenging to model the appearance variations of

birds accurately with tractable parametric models, we turn

to individual exemplars as in [4]. The hope is that when

a sufficiently large number of training samples are avail-

able, we can always find a configuration similar to the test-

ing sample. In contrast to [4] where exemplars only dictate

the layout of parts, we propose to enforce pose and sub-

category consistency at the parts. To do this, we design

pose-specific detectors to score the pose types for each part,

similar to [32]. Our novelty lies in that instead of parameter-

izing the pose types in an objective function, we associate

them with non-parametric exemplars, by which we strictly

constrain the co-occurrence of part poses of a bird.

Subcategory consistency means that the appearance at

the detected parts should agree on the class membership. To

enforce such consistency, we make use of the species labels

to build species-specific part detectors. Such detectors are

forced to focus on features invariant to poses, such as pat-

terns in the interior of parts. At the testing stage, we predict

the part locations by matching likely exemplars to the image

so that the estimated parts not only form a globally plausi-

ble configuration, but also satisfy the pose and subcategory

consistency well. In this way, we achieve significantly more

accurate part localization than previous methods, as shown

in Fig. 1 and Tab. 2.

Our paper makes the following contributions:

1. We propose the idea of enforcing subcategory consis-

tency for part localization.

2. We show how to impose strong constraints on the parts

by using pose and subcategory consistency and associ-

ating them with exemplars.

3. We produce state-of-the-art performance on an exten-

sive bird dataset: CUB-200-2011 [30], for both part

localization and species classification.

2. Related Work
Parts have a remarkable effect on object detection and

classification, as demonstrated by Deformable Part Mod-

els (DPMs) [18, 35, 3] and fine-grained classification meth-

ods [17, 29, 34, 20, 5]. In DPMs, the parts are defined by

local regions with relatively fixed spatial layout. Parts can

be labeled as keypoints, and Poselets [7, 6] are proposed for

object detection where consistent poselet activations make

similar prediction of the keypoints. For fine-grained classi-

fication, detecting the object is not enough, as the support

region and part locations of the object can vary a lot given

the same object bounding box. [2] combines top-down scan-

ning part detectors and bottom-up region hypotheses to gen-

erate region-based features for semantic segmentation of

objects; while we combine pose-specific and subcategory-

specific part detectors to predict part locations.

Accurate part localization requires prior knowledge

about the global shape. Statistical shape models like Ac-

tive Shape Models [23] and Active Appearance Models [11]

model the shape with multivariate Gaussian distribution.

Though subsequent works improve the model fitting algo-

rithm [22, 25], such models still have difficulty handling a

wide range of deformations. Another family of models is

tree-based structure, including pictorial structure [19] and

its variant [16, 32, 27, 36]. These models encode the spatial

relations between parts with tree structure. Mixture of com-

ponents, either locally [32] or globally [36], is proposed to

decompose pose complexity. However, as previously men-

tioned, such models have the limitations that impair their

efficacy in the bird domain.

Non-parametric models can also serve as shape prior. [1,

4] both fit annotated shape models to the image on top

of local landmark detection. [1] uses a generic 3D face

model, limiting its applicability to relatively rigid shapes;

whereas [4] combines the output of local detectors with a

set of exemplars, which potentially capture all possible con-

figurations. We also use exemplars, but we impose much

stronger constraints on the parts by enforcing pose and sub-

category consistency. In addition, we predict part visibili-

ties which are not considered in [4].

Another thread of research is shape regression, which

has been successfully applied to facial feature localiza-

tion [13, 9]. However, these methods are not applicable to

our problem because they require rough bounding box of

object as input, which is hard to obtain automatically for

birds. Moreover, the complex image patterns on birds make

it hard to learn features that are correlated to the shape in-

cremental, which limits their efficacy.

Poselets [6] can also predict the part locations given a

cluster of poselet activations. However, by design, Pose-

lets do not target part localization, and the rough prediction

of part locations from each poselet activation may deviate

greatly from the correct positions. Also, its heuristic way

of rescoring and grouping activations usually cannot gen-

erate the optimal group of activations, in which case part

localization will be hurt much more than object detection.

3. Pose and Subcategory Detectors
As the building block of our method, we build part detec-

tors that score pose-specific and subcategory-specific fea-

tures. To do this, we group the samples of each part based

on their poses and species memberships.

3.1. Pose Grouping

We obtain the pose grouping by using part annotations,

as the keypoint configuration around a part roughly cap-

tures its pose, including aspect and orientation. Let Xk

denote the k-th exemplar, which contains a binary vector
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Figure 2. Examples of the pose clusters and subcategory clusters for the part “Back”, which is marked with a red dot in each image. In (a),

the set of visible neighboring parts are marked with green dots, and note how the keypoint configurations are related to the poses.

of part visibilities and locations for visible parts. Taking

part i of Xk as an example, we represent its pose with a

local shape vector �i
k = [�xi,j1

k , vj1k , . . . ,�x
i,jmi

k , v
jmi

k ]
where {j1, . . . , jmi

} are the indices of mi (mi = 6 in our

experiment) predefined neighboring parts for all the exem-

plars. vjk ∈ {0, 1} is the visibility flag. if vjk = 0, i.e.,
j is not visible, then �xi,j

k = (0, 0); otherwise, �xi,j
k is

computed as xj
k − xi

k where xi
k is the location of part i. To

deal with birds of different sizes, �i
k is normalized such

that
∑

j ‖�xi,j
k ‖2 =

∑
j v

j
k. The set of all local shape vec-

tors of part i form a pose space, whose subdivisions define

the pose types, and we use k-means to generate N i types.

Fig. 2 (a) shows several examples of pose clusters for the

part “Back” where N i = 200.

For each pose cluster of each part, a detector is built us-

ing the samples in that cluster as positive samples, where

a much larger set of negative samples are randomly drawn

from image regions not containing that part of any type. So,

by design, the detectors are trained to score the local pose

across subcategories.

3.2. Subcategory Grouping

The underlying assumption of subcategory grouping is

that samples from the same subcategory have similar ap-

pearance at the parts like colors, textures, etc., which holds

in our problem because the species labels are already very

fine-grained. Given these labels, it is straightforward to ob-

tain the subcategory grouping for each part. The number of

clusters is fixed because we have a fixed number (which is

200) of bird species. Fig. 2 (b) shows several examples of

subcategory clusters.

Similar to pose detectors, a subcategory detector is built

for each cluster of each part. To make the subcategory de-

tectors learn species-specific features in an effective way,

we do two things during training: we first normalize the

orientation of parts to reduce the noise in the features. The

normalization is done by aligning each part sample to a ref-

erence part sample using Procrustes analysis with “reflec-

tion” enabled based on their local shape vectors defined in

Sec. 3.1. Secondly, we run the pose detectors exhaustively

on the training images, and collect false activations (which

are off the correct part locations) to form the negative train-

ing samples. Therefore, the subcategory detectors are able

to learn subcategory-specific features across poses.

3.3. Implementation Details

We use linear SVMs implemented in LIBSVM [10] to

build pose and subcategory detectors. The features are

HOG descriptors extracted using VLFeat toolbox [28]. The

scale of part is normalized based on its local shape vector.

For each normalized part, HOG descriptors are extracted

from a window centered at that part, which contains 5 × 5
cells with bin size 8. To scan the image over scales, we use

a scaling factor of 1.2 to build the image pyramid.

Because pose and subcategory detectors play different

roles in our method (see Sec. 4), there are some differences

in their features. For pose detectors, we extract two addi-

tional HOG descriptors at a coarser scale and a finer scale,

which are two levels above and below the normalized scale

respectively in the image pyramid. For subcategory detec-

tors, we extract three additional color histograms using 64
color bins, which are obtained through k-means in the RGB
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color space of training images. The histograms are com-

puted over three regions: an inner circle and two outer rings.

4. Part Localization Approach
We cast the problem of part localization as fitting likely

exemplars to an image, with the assumption that we can al-

ways find a similar configuration to the testing sample from

a sufficiently large training set. Recall that Xk is the k-th

exemplar, which contains the locations of visible parts. By

using a similarity transformation t, we map Xk to the test-

ing image, obtaining an exemplar-based model Xk,t. Our

goal is to estimate its conditional probability P (Xk,t|I),
which measures how likely it is that the shape Xk exists

in the image at a certain location, scale, and orientation.

In [4] where all the information of the image comes in

the form of response maps D, P (Xk,t|I) is computed as

P (Xk,t|I) = P (Xk,t|D) =

n∏
i=1

P (xi
k,t|di), (1)

where n denotes the number of parts, xi
k,t is the image lo-

cation of part i, and di is the corresponding response map.

However, this formulation cannot be directly applied to our

problem: first, it assumes there is a single detector applied

at a fixed scale for each part, while we have an ensemble

of detectors applied over scales; second, it does not address

part visibilities, while there are 736 different combinations

of visible parts in the dataset CUB-200-2011 [30].

Besides addressing the above issues, our major contribu-

tion is enforcing pose and subcategory consistency on Xk,t

to obtain a more accurate estimation of P (Xk,t|I).
4.1. Pose Consistency

To evaluate P (Xk,t|I) based on pose consistency, we

generate a collection of response maps for all the parts ×
all the pose types, denoted as Dp. The key point is that for

each exemplar Xk, we know the visibility of each part; if a

part is visible, we also know its pose type. So in evaluating

P (Xk,t|Dp), we choose the response maps corresponding

to the particular pose types of Xk. With these in hand, we

compute P (Xk,t|Dp) as

P (Xk,t|Dp) =

⎛
⎝ n∏

i,vi
k=1

P (xi
k,t|dip[cik, sik,t])

⎞
⎠

1
∑

i vi
k

, (2)

where vik denotes the visibility flag, dip[c
i
k, s

i
k,t] denotes the

response map for pose type cik at scale sik,t. s
i
k,t can be ob-

tained based on the scaling factor in transformation t and

the original size of part i. To obtain probability from Eq. 2,

each response map is converted to a probability map using

the detector calibration method described in [14]. Because

the exemplars usually cannot fit the configuration of a test-

ing sample perfectly, the probability maps are smoothed be-

fore evaluating P (Xk,t|Dp). For efficiency, we use a max

filter implemented by [15]. The filter radius is estimated by

measuring the deviation between two corresponding parts

from different exemplars after global alignment.

Because of the way P (Xk,t|Dp) is computed, it is not

plagued by false detections in other irrelevant response

maps. Also, because of the reduced visual complexity in

each pose cluster, each response map can give fairly accu-

rate estimation of the part locations. For these reasons, the

estimation of P (Xk,t|Dp) is more reliable than P (Xk,t|D)
in [4]. From Eq. 2, we can see that given the response maps,

the cost of subsequent computations (i.e., evaluating a fixed

number of Xk,t’s) is independent of the number of pose

types, as opposed to [32, 36]. Therefore, we can increase

the number of pose types a lot.

4.2. Subcategory Consistency

Subcategory Consistency means that the appearance at

all the parts should agree with each other on the subcate-

gory membership. Here, we assume that the image cues

are contained in Ds, a collection of response maps for all

the parts × all the subcategories. Given a subcategory l,
we evaluate the likelihood of the image region occupied by

Xk,t matching a sample from that subcategory as

P (Xk,t|l,Ds) =

⎛
⎝ n∏

i,vi
k=1

P (xi
k,t|dis[l, sik,t, θik,t])

⎞
⎠

1
∑

i vi
k

,

(3)

where dis[l, s
i
k,t, θ

i
k,t] denotes the response map for part i of

subcategory l, at scale sik,t and in orientation θik,t. θ
i
k,t can

be computed based on the rotation angle in transformation

t and the original orientation of part i. We use the same

method as pose detector calibration to convert the response

maps to probability maps. After computing P (Xk,t|l,Ds)
for all possible l’s, P (Xk,t|I) based on subcategory consis-

tency is defined as

P (Xk,t|Ds) = max
l

P (Xk,t|l,Ds). (4)

4.3. Generating Hypotheses

After evaluating Xk,t’s pose and subcategory consis-

tency, we evaluate P (Xk,t|I) as

P (Xk,t|I) = P (Xk,t|Dp)
αP (Xk,t|Ds)

(1−α), (5)

where parameter α ∈ [0, 1] controls the weights of

P (Xk,t|Dp) and P (Xk,t|Ds), and α is determined through

cross-validation, which is 0.8 in our experiment.
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Because applying subcategory detectors in a sliding-

window paradigm is very expensive (they need to search

over scales and orientations) and not necessary (they are

built on top of activations from pose detectors), we only

generate the response maps for pose detectors, and con-

struct a random transformation t for Xk as follows:

1. Randomly choose two parts and a scaling factor.

2. Select the two response maps for the chosen parts at

the corresponding scales.

3. Randomly choose a local maxima from each map.

4. Compute similarity transformation t that maps the two

parts of Xk to the two local maximas.

5. If the scaling factor or rotation angle in t is beyond a

predefined range, t is declared as invalid.

By repeating the above procedure multiple times for each

exemplar, we generate a large set of models {Xk,t}, whose

conditional probabilities are computed using Eq. 5 and the

top ranked models constitute the set of likely hypotheses.

Although subcategories detectors are now applied only

to the generated {Xk,t}, it is still very expensive to ex-

tract the features due to the large number of models (about

380, 000 in our experiment). Instead, we approximate the

procedure by computing P (Xk,t|Dp) for all the models

first (which is relatively much faster), and keeping the top

ranked models (e.g., 400 in our experiment) which will

be re-ranked by incorporating P (Xk,t|Ds). We observe

that the performance is not hurt by this approximation as

P (Xk,t|Dp) already gives a fairly accurate estimation of

the correctness of models matching the testing image.

As the models usually cannot match the testing sam-

ple perfectly, we also need to address the issue here when

evaluating P (Xk,t|Ds). Because we extract the features

at the part locations dictated by the models, the errors in

the part locations lead to underestimation of P (Xk,t|Ds),
in which case incorrect models may rank higher than cor-

rect ones. Therefore, we adopt a group-based re-ranking

strategy. Given the ranked list of 400 models based on

P (Xk,t|Dp), we group their part configurations. More

specifically, we successively take the model with the high-

est P (Xk,t|Dp) out of the list, find and take out other

models in the list with configurations close enough to it

based on sum of the squared distances (SSD) between cor-

responding parts, thus forming a group. After that, the

term P (xi
k,t|dis[l, sik,t, θik,t]) in Eq. 3 will be replaced by the

highest value in the group Xk,t belongs to. We can do so be-

cause the subsequent consensus operation in Sec. 4.4 does

not expect the top ranked models (hypotheses) to suggest

exactly the correct part locations.

4.4. Predicting Part Configuration

Given a set of M = 40 hypotheses with exemplar indices

{km}m=1,...,M , we first predict the visibility flag vi for each

part i through voting:

vi =

{
1 :

∑
m vikm

> τM
0 : Otherwise

, (6)

where threshold τ is determined through cross-validation,

such that the False Invisibility Rate defined in Sec. 5.1 is

on par with that of human annotators (about 6%). If a part

is predicted as visible, we use the same method as [4] to

estimate its location by combining the hypotheses and the

probability maps corresponding to the relevant pose types.

As can be seen here, pose detectors mainly play the role

in finding the parts while subcategory detectors focus on

verifying the hypotheses suggested by pose detectors.

5. Experiments
5.1. Dataset and Evaluation Metrics

We test our method on CUB-200-2011 [30] dataset,

which contains 11,788 uncropped images of 200 bird

species (about 60 images per species). We use the train/test

split provided in the dataset for all the experiments. There

are roughly 30 images per species to train, and we do left-

right flipping to increase the size of training data. A total of

15 parts were annotated by pixel location and visibility flag

in each image through Mechanical Turk.

To gain a thorough view of the performance, we use

four metrics to evaluate the localization performance: Per-

centage of Correctly estimated Parts (PCP), Average Er-

ror (AE), False Visibility Rate (FVR) and False Invisibility

Rate (FIR). “Correct estimation” means the detected part

is within 1.5 standard deviation of a MTurk user’s click if

visible or both estimated part and ground truth are invisi-

ble. “Average error” is computed by averaging the distance

between predicted part locations and ground truth (if both

are visible), normalized on a per-part basis by the standard

deviation and bounded at 5. “False Visibility Rate” is the

percentage of parts that are incorrectly estimated as visible;

“False Invisibility Rate” is the percentage of parts that are

incorrectly estimated as invisible. Note that AE best de-

scribes the accuracy of predicted part locations.

5.2. How The Number of Pose Types Matters

To examine the effect of the number of pose types, we

only consider pose consistency here (i.e., α = 1 in Eq. 5).

As shown in Tab. 1, we change the number of types for each

part from 1 to 2, 000. Due to the huge visual complexity, we

use RBF-SVM to build the detectors when the number of

types is 1, which is the case of [4]. From the comparisons,

we can see that with roughly fixed FIR (due to the way pa-

rameter τ is chosen in Sec. 4.4), the performance measures

of PCP, AE and FVR are consistently improved as the num-

ber of types increases up to 500. To explain this, on the

one hand, the larger the number of pose types, the more the

visual complexity can be reduced. On the other hand, finer
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Type Num. PCP AE FVR FIR

1 [4] 48.70% 2.13 43.90% 6.72%
1 (Relaxed) 47.08% 2.30 39.36% 7.12%

10 (Pose) 45.79% 2.37 44.21% 4.14%

50 (Pose) 53.07% 2.08 34.02% 4.40%

100 (Pose) 54.66% 2.00 31.21% 4.87%

200 (Pose) 56.88% 1.92 30.16% 4.32%

500 (Pose) 57.03% 1.91 30.21% 4.34%

1000 (Pose) 56.63% 1.94 31.26% 3.91%
2000 (Pose) 56.50% 1.97 32.35% 4.08%

10 (App.) 43.30% 2.55 42.10% 4.48%
50 (App.) 48.86% 2.29 32.55% 6.43%

100 (App.) 51.05% 2.20 32.01% 5.97%

200 (App.) 52.10% 2.15 31.30% 5.65%

500 (App.) 52.00% 2.17 31.57% 5.71%

1000 (App.) 51.32% 2.21 32.27% 5.46%

2000 (App.) 51.07% 2.26 32.31% 5.58%

Table 1. Part localization results using different numbers of pose

types. The best performance is achieved with 500 pose types for

each part. Appearance-based clustering [14] can also be used to

generate pose types, which is inferior to ours in terms of the per-

formance. Please refer to Sec. 5.1 for the meaning of each metric.

granularity of pose types makes the constraints on pose con-

sistency stronger. As the number of pose types goes beyond

1, 000, the performance becomes slightly worse, possibly

due to the fact that there are much fewer positive training

samples. Given more than 50 pose types, our method sig-

nificantly outperforms [4] where a single non-linear detec-

tor is used. We choose 200 types in subsequent experiments

as it is a good trade-off between accuracy and speed (1.5×
faster than 500 types and 2.6× faster than 1, 000 types). We

also relax the pose constraint by collapsing the probability

maps of all 200 pose types for each part to a single probabil-

ity map by taking pixel-wise maximum, thus reducing the

number of types to 1. But the accuracy drops a lot, demon-

strating the effect of enforcing pose consistency.

We also try an alternative method [14] to define the pose

types. [14] uses Latent-SVM learning to optimize the en-

semble of detectors, leading to appearance-based clustering.

As the visual appearance is coupled with pose, [14] actually

groups samples similar in pose but with more noise than our

pose clustering. Please see Tab. 1 for the comparisons.

5.3. Part Localization

We compare our work with three state-of-the-art tech-

niques: Poselets [6], Mixture of Trees [36] and Consensus

of Exemplars [4]. For Poselets-based part localization, we

obtain the poselet activations from the authors of [34], and

follow [6] to predict the location of each part as the aver-

age prediction from its corresponding poselet activations.

For Mixture of Trees, we obtain the detected part locations

Method PCP AE FVR FIR

Poselets [6] 27.47% 2.89 47.90% 17.15%

Mix. of Trees [36] 40.99% 2.65 32.62% 6.18%

Consensus [4] 48.70% 2.13 43.90% 6.72%

Ours 59.74% 1.80 28.48% 4.52%
Human 84.72% 1.00 20.72% 6.03%

Table 2. Part localization results from different methods. Our

method significantly outperforms state-of-the-art techniques on all

the four metrics.

from the authors of [8], which is a special case of [32] and

the counterpart of [36] with 12 global components in the

bird domain. Note that [8] only detects 13 parts, omitting

the two legs. We modified Consensus of Exemplars [4] to

deal with part visibilities. Generally, larger FVR comes

with larger AE, so [4]’s performance measure of AE ben-

efits from our modification.

As shown in Tab. 2, our part localization outperforms

state-of-the-art techniques on all the metrics. The large er-

ror rate of Poselets agrees with the fact that by design, they

do not target localizing the parts with high accuracy. Com-

pared with the results in Tab. 1, our full model incorporating

the subcategory consistency achieves remarkable improve-

ment on AE. In a separate experiment, we set α = 0 in

Eq. 5, and obtain 58.28% for PCP, 1.86 for AE, 28.88%
for FVR, and 5.32% for FIR. It indicates that pose con-

sistency and subcategory consistency are complementary to

each other. Without predicting visibilities (i.e., τ = 0 in

Eq. 6), our full model obtains 54.36% for PCP, 1.85 for

AE, 60.03% for FVR, and 0.28% for FIR, which are not

much worse except FVR. Some examples of our bird part

localization are shown in Fig. 3. Although birds have very

wide variations in appearance and pose, and birds reside in

very different environments, our method is still able to de-

tect most of the parts correctly.

5.4. Part-Based Species Classification

To demonstrate how the accuracy of part localization af-

fects the species classification, we feed the estimated part

locations to our part-based classification method [20]. We

train one vs. all SVMs with RBF kernel for each species,

and extract grayscale SIFT and color histograms as features.

Specifically, we center 12 SIFT windows at the 15 parts (for

symmetrical parts like left/right eyes, we randomly choose

one if both are visible), and the features for invisible parts

are zeroed out. From the parts on the head and body, we

construct two convex hulls respectively, and extract a color

histogram from each convex hull with 64 bins obtained us-

ing k-means in the RGB color space.

In Fig. 4, we plot the Cumulative Match Characteristic

(CMC) curves showing the classification accuracy against

ranked guesses. From the CMC curves, we can see that the
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Figure 3. Examples of Bird Part Localization. (a) compares the four methods (From top to bottom: Poselets [6], Mix. of Trees [36],

Consensus of Exemplars [4], Our method) on three testing samples. (b) gives more examples of part localization using our method. Red

frames denote failure cases. (c) shows the color codes for the 15 parts.

Figure 4. Cumulative Match Characteristic (CMC) curves for bird

species classification.

classification performance is consistently improved along

with the increased accuracy of part localization. As the

classification method is very sensitive to the localization ac-

curacy, we do not include Poselets in the curve comparison

(the Rank 1 accuracy for Poselets is below 15%). The upper

bound of the classification accuracy can be obtained with

the ground-truth part locations. The comparison between

our full model and our partial model with only pose consis-

tency shows that adding the subcategory consistency leads

to about 3% increase in the Rank 1 accuracy.

We also compare our method with other classification

methods on the whole dataset as well as on a subset of

14 species in Tab. 3. Though the other methods may be

more sophisticated in extracting the features or designing

the classifiers, our method has much better results, which

we believe is attributed to the accurate part localization.

Moreover, we achieve state-of-the-art performance on the

dataset in a fully automatic setting (without using ground-

truth bounding boxes or ground-truth part locations from

the testing data). Based on the experiment, we do feel ac-

curate part localization goes a long way towards building a

working system for fine-grained classification.

6. Conclusion

In this paper, we propose a simple and novel approach

for bird part localization, as the test case of fine-grained

categories. We introduce the idea of enforcing subcategory

consistency at the parts, and show how to generate likely hy-

potheses of part configurations using exemplar-based mod-

els with enforced pose and subcategory consistency. The

improved hypotheses over [4] enable us to better estimate
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Method 200 species 14 species

Birdlets [17] - 40.25%

Template bagging [33] - 44.73%

Pose pooling kernel [34] 28.18% 57.44%

Ours 44.13% 62.42%

Table 3. Mean average precision (mAP) on the full 200 categories

as well as 14 categories from [17] for different classification meth-

ods. [17] and [33] are not directly comparable to ours as they use

an earlier version of the dataset.

the part locations using consensus. Experimental results

demonstrate that our method achieves state-of-the-art per-

formance for both part localization and species classifica-

tion on the challenging dataset CUB-200-2011 [30].
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