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Abstract

Human gait modeling (e.g., for person identification)
largely relies on image-based representations that muddle
gait with body shape. Silhouettes, for instance, inherently
entangle body shape and gait. For gait analysis and recog-
nition, decoupling these two factors is desirable. Most im-
portant, once decoupled, they can be combined for the task
at hand, but not if left entangled in the first place. In this
paper, we introduce Two-Point Gait, a gait representation
that encodes the limb motions regardless of the body shape.
Two-Point Gait is directly computed on the image sequence
based on the two point statistics of optical flow fields. We
demonstrate its use for exploring the space of human gait
and gait recognition under large clothing variation. The
results show that we can achieve state-of-the-art person
recognition accuracy on a challenging dataset.

1. Introduction
The study of gait has enjoyed a rich history since its in-

ception with Eadweard Muybridge’s study [26] of equine

locomotion in 1878, and for good reason. A large body of

research has shown that human gait patterns contain a great

deal of information. For example, it can give information

about a person’s emotional state [29], health [24], age [11],

gender [45], or even distinguish the person themselves [9].

But what is gait, exactly? Gait is defined as the pattern of

movement of the limbs of animals during locomotion over

a solid substrate [41]. This definition highlights the fact

that gait is about motion rather than body shape. Work by

Gunnar Johansson has visualized this in his study of pure

gait with point light displays [16], which eliminate all body

shape information. Stevenage et al. later demonstrated the

possibility of pure gait person identification with these same

displays [34]. On the other hand, many past approaches to

modeling gait rely heavily on body shape information for

recognition and other computer vision tasks.

Extracting gait from images and video has remained a

challenging problem. Gait representations can be roughly

categorized into model-based and image-based (model-
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Figure 1: Example Two-Point Gait. Each row corresponds to a

different temporal position in the gait cycle. Column (a) shows the

original video while columns (b), (c), (d), and (e) show various

orientation pairs of the Two-Point Gait. Column (b) is orientation

pair (right, right), column (c) is (left, left), column (d) is (right,

left), column (e) is (left, down). The Two-Point Gait encodes the

body parts that move together in a particular pair of directions as

a pseudo-histogram of displacement vectors. It provides an easy-

to-compute gait representation that is robust to body shape. Please

see text for more details.

free) representations. Model-based gait representations fit

limbs or other parts of the body in a gait pattern to a pre-

defined 2D or 3D model. Yam et al. examine the periodical
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and pendulum-like motion of the legs to model gait [43].

Urtasun and Fua fit an articulated 3D skeleton to motion

sequences for tracking and recognition [37]. Sigal et al. in-

troduce a benchmark for measuring performance on articu-

lated human motion estimation [32] and develop a graphical

model for a 3D articulated skeleton [33]. As model-based

gait representations typically estimate the 3D motion of the

limbs, they are naturally body shape-invariant. The major

drawback of these methods is that fitting a latent 3D model

to 2D images is inherently ill-posed due to the depth infor-

mation lost through projection.

Image-based representations, on the other hand, draw

features directly from 2D images. A major advantage of

image-based approaches is that they obviate the estima-

tion of a latent model. Many previous approaches are

based on examining the silhouette of a person over time

[14, 17, 22, 25, 40]. The primary problem with silhouette-

based approaches is that they fundamentally entangle body

shape and gait. Another serious drawback is the difficulty

of obtaining silhouettes from a real-world video. Although

background modeling and subtraction can be used, it leads

to noisy silhouettes that usually require manual interven-

tion. Other image-based approaches are based on optical

flow or feature trajectory points [5, 18, 20, 21, 46, 47]. Al-

though they provide a better avenue for a body-shape invari-

ant gait descriptor, they have not been able to capture the

nuances of human gait as finely as silhouette-based meth-

ods.

Separating body shape from gait is related to the classic

problem of “style vs. content,” explored by Tenenbaum and

Freeman [36]. Elgammal and Lee study the automatic de-

composition of style and content specifically for human gait

[10]. In our case, body shape is style—it can be modified by

clothing or occlusions—but it is the “content” (i.e., the pure

gait) that we want to capture. There have been several works

that specifically study the entanglement of body shape and

gait for person recognition [8, 38, 39]. They all conclude

that recognition becomes strong only when both body shape

and gait are used together. However, these findings were

performed on relatively small databases (USF [28], CMU

MoBo [13], UMD [7], U. Southampton [27]) where there is

little difference in silhouette shapes across instances of the

same person. In such data, body shape is indeed the most

discriminative feature.

But can we always assume that the same person will have

the same shape? Clothing, for example, can make a per-

son appear to have a different shape despite identical limb

movements. Mood can also heavily influence pose and body

shape. Weight gain or loss will also have a significant effect

on body shape. The advantage of a pure gait representation

is that it is optimal for applications where body shape is

orthogonal to the things we would like to measure. For ex-

ample, determining the general emotional state of a person

based on their gait should function the same despite their

body shape. In a medical setting, automatically determin-

ing rehabilitative progress from a gait sequence would also

need to ignore body shape. Silhouettes are fundamentally

limited because they entangle shape and gait. On the other

hand, accurately recovering 3D posture is difficult unless

we rely on a statistical model that heavily regulates poten-

tial poses, which would wash out the subtle differences in

gait that we are interested in.

Our goal is to devise an image-based gait representation

that factors out the body shape. We achieve this with a novel

gait representation based on a statistical distribution of the

optical flow: the Two-Point Gait. We focus on optical flow

rather than silhouette as it primarily encodes the motion of a

person rather than shape and can also be directly computed

from the image without any manual intervention. Using

the optical flow directly, however, would be just as shape-

dependent as using the silhouette. Our key idea is to extract

the statistical characteristics of these optical flow fields that

encode the gait of the person.

We make use of the two-point statistics, which has been

used in a wide variety of scientific fields [12, 15, 19, 23, 31,

44]. We introduce the two-point statistics of optical flow.

For two optical flow vectors, a and b, the two-point statistics

is defined as the spatial distribution of pairs of pixels in the

image whose optical flow vectors are a and b, respectively.

The central property of Two-Point Gait is that it encodes

the changing spatial distribution of limbs moving in direc-

tions a and b. Figure 1 shows an example Two-Point Gait

sequence. Many of these pairs of directions have an intu-

itive meaning. For example, if a points left and b right, the

two-point statistics will encode information about the arm

movement versus the leg movement because they move in

opposition during much of the gait cycle. We expect this

representation to be very robust to body shape difference

because it is principally encoding the changing spatial dis-

tribution of limbs rather than their size.

We reveal the properties of the Two-Point Gait repre-

sentation with a thorough analysis on a synthetic data set.

We introduce a synthetic data set that contains gait mo-

tion from the Carnegie Mellon University Motion Capture

Database [2] realized with a set of synthetic body shapes

created with MakeHuman [3]. By examining the distance

matrix of these synthetic data sets, we show that the Two-

Point Gait is robust to body shape and appearance varia-

tions.

We also demonstrate the use of Two-Point Gait in several

important computer vision problems. First, we demonstrate

how the Two-Point Gait representation naturally encodes

gait motion into an intuitive gait space in which the distance

between Two-Point Gaits tells us how similar two people

walk regardless of their body shapes. Next, we demonstrate

the use of Two-Point Gait for person recognition using the
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OU-ISIR clothing variation gait database [4] which is the

largest and arguably the most challenging of its kind, com-

prised of 68 subjects each with at most 32 combinations of

clothing for a total of 2,746 gait sequences. We show that,

when combined with a body shape representation, the Two-

Point Gait achieves the state-of-the-art accuracy for gait

recognition with clothing variation. These results clearly

demonstrate the power and advantage of having a pure gait

representation that can be computed from 2D images.

2. Two-Point Gait
Our goal is to develop an image-based gait representa-

tion as insensitive as possible to body shape. We want to

only encode properties of the motion, such as the amount

of arm swing, without encoding body shape or size. To do

this we need to decouple the body shape from the represen-

tation. By deriving the two-point statistics of optical flow,

we achieve a highly discriminative, body-shape robust rep-

resentation of human gait: the Two-Point Gait.

2.1. Two-point statistics

Two-point statistics, also known as the two-point co-

occurrence (correlation) function, is a spatial distribution

of two quantities. It has seen use in areas as diverse as

statistical mechanics [12, 23] and astrophysics [31, 44]. In

computer vision, it has been used to model the spatial dis-

tribution of pixels with two given pixel intensities, a and

b [15, 19]. Our key idea is to use the two-point statistics

to encode the gait observed in optical flow fields (i.e., 2D

vector fields).

2.2. Two-point statistics of optical flow

The most straightforward application of two-point statis-

tics to optical flow would be to define a probability function,

P (d|a,b) ∝
∣∣∣{o(x1) = a,o(x2) = b

∣∣∣x1 + d = x2

}∣∣∣ ,
where a and b are the two optical flow vectors, d =

(
dx

dy

)
is the spatial displacement, and o(x) is the optical flow at

pixel x. The problem with this naive approach is that it re-

quires the two optical flow vectors to be equal not only in

orientation but also in magnitude. Even if we quantize the

optical flow vectors, we would end up with an extremely

large collection of probability distribution functions to de-

scribe gait. To simplify things, we can consider only optical

flow vectors whose directions are equal,

P (d|a,b) ∝
∣∣∣{oθ(x1) = aθ, oθ(x2) = bθ

∣∣∣x1 + d = x2

}∣∣∣ .
Ignoring magnitudes completely, however, causes near-zero

noisy optical flow vectors to outweigh relevant ones. To

avoid this problem, we can generalize the equation and pre-

serve the optical flow magnitudes by dropping the notion of

a probability distribution and writing the two-point statistics

as,

ta,b(d) =
∑{

‖o(x1)‖‖o(x2)‖
∣∣∣

oθ(x1) = aθ, oθ(x2) = bθ,

x1 + d = x2

}
.

(1)

This formulation has the advantage of accounting for optical

flow magnitude simply without requiring that we store the

two-point statistics for a large amount of optical flow vector

pairs (a,b). Discarding the probabilistic interpretation also

allows the “intensity” variation of the two-point statistics to

vary with time which is an important feature for recognition.

Figure 1 visualizes an example gait sequence alongside

its corresponding Two-Point Gait. Each Two-Point Gait im-

age is an unnormalized spatial distribution of displacement

vectors. The center of each Two-Point Gait image corre-

sponds to (0, 0) displacement. These spatial distributions

tell us what the spatial relationship of limbs moving in two

particular directions are. We show several pairs of orienta-

tions: (right, right), (left, left), (right, left), and (up, down).

Identical pairs like (right, right) and (left, left) show the spa-

tial distribution of movement in their respective directions.

For example, the (right, left) orientation pair of the Two-

Point Gait tells us the spatial arrangement of body parts

moving right versus left. Because the arms and legs have

a strong horizontal motion and typically move in opposite

directions, the (right, left) orientation pair encodes how the

arms and legs are spatially arranged. The representation is

robust to body shape variation because it is the spatial dis-
tribution of limbs that is encoded rather than the size of the

limbs.

3. Computation of Two-Point Gait

Before we can compute the Two-Point Gait, we must

compute the optical flow. In our experiments, we used

the OpenCV implementation [6] of the Simple Flow algo-

rithm [35]. After the optical flow is computed, we quantize

the orientation vectors into directional bins by projecting

them onto each orientation bin direction

hv(x) = o(x)Tv, (2)

where hv is the optical flow “histogram” value for bin ori-

entation v, x is the pixel location, and o is the optical flow

vector. This serves two purposes: it provides a more infor-

mative discretization and preserves magnitude information.

In this sense, the optical flow histogram is not truly a his-

togram (we leave it unnormalized).

After the optical flow has been quantized, we can com-

pute the two-point statistics of optical flow for two orienta-
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tions a and b,

ta,b(d) =
∑
x

ha(x)hb(x+ d). (3)

The raw two-point statistics are too high-resolution to

use directly. We therefore downsample it by quantizing it

into spatial bins. The width and height of the bins are set

proportional to the height of the subject so that the repre-

sentation becomes robust to the height of the subject and

the distance from the camera. Because the bounding box

of each subject will vary slightly, so too will the size of the

Two-Point Gait. To handle this and ensure that each Two-

Point Gait can be compared with one another, we discard

all Two-Point Gait data outside of a rectangle of displace-

ments. In practice, we make this window large enough that

we don’t lose any information.

We also normalize for the length of the gait cycle by

quantizing into temporal bins. Rather than putting one

frame into one bin, we deposit each frame into the two clos-

est bins with linear weighting. This helps to reduce quan-

tization errors. In our experiments, we used a total of 16
temporal bins. We also divide each Two-Point Gait by it’s

cycle length so that the temporal quantization does not favor

longer-length gait cycles.

3.1. Efficient computation

The complexity of the Two-Point Gait computation is

O(N2) where N is the number of pixels. While we can’t

reduce the complexity, we can reduce the number of pixels

in the computation while keeping the resulting Two-Point

Gait very similar.

We do this by downsampling the optical flow histogram

computed on the full size images and then computing the

two-point statistics on the downsampled optical flow. We

downsample the optical flow histogram by collecting it into

spatial “blocks” of size BW×BH . If the original image was

W × H pixels, the running time goes from W 2H2 with-

out optical flow downsampling to W 2H2

B2
WB2

H
with optical flow

downsampling. Even with a modest amount of downsam-

pling, say using 4×4 blocks, a 16× speed-up is achievable.

3.2. Comparing Two-Point Gaits

We need a distance metric to compare the Two-Point

Gait of different people. A simple distance metric can be

defined by unrolling the Two-Point Gait each into a long

vector and using the Euclidean distance. This does work

well, but we can take a step further and learn a distance

metric for the application at hand. For instance, for recog-

nizing the person based on their Two-Point Gait, we may

learn a distance metric from a training data set such that the

discriminative power of the overall representation is maxi-

mized. For this, we use a supervised learning method that

attempts to find the most discriminative Two-Point Gait ori-

entation pairs.

We define the distance metric to be a linear combination

of the distances between the component orientation pairs

dw(t(i), t(j)) =

√∑
a,b

wa,b‖t(i)a,b − t
(j)
a,b‖2, (4)

where t(i) and t(j) are Two-Point Gaits, w is the set of

weights for all orientation pairs, and wa,b is the weight of

orientation pair (a,b). These weights can then be learned

from a training data set for the application at hand. For gait-

based person recognition, we formulate this as supervised

learning in which the weights are learned to keep the dis-

tance of instances of the same person small, while ensuring

that large distances between instances of different people

are preserved.

We can formulate this distance metric learning as a con-

vex optimization problem [42]. If we call S the set of

all pairs of Two-Point Gait from the same person (i.e.

(t(i), t(j)) ∈ S if and only if t(i) and t(j) were computed

from gait sequences of a single person) and D the set of

all pairs of Two-Point Gait not from the same person (i.e.

(t(i), t(j)) ∈ D if and only if t(i) and t(j) were computed

from gait sequences of different people) then we set up an

optimization problem,

argmin
w

∑

(t(i),t(j))∈S
dw(t(j), t(i))

s.t.
∑

(t(i),t(j))∈D
dw(t(i), t(j)) ≥ 1,

w ≥ 0.

(5)

Details on optimizing this objective function are given by

Xing et al. [42].

4. What Two-Point Gait encodes
Let us now examine the properties of the Two-Point Gait

representation. We will show that many of the orientation

pairs have an intuitive meaning and correspond to parts of

the gait cycle. Following that, we will demonstrate with a

synthetic data set the Two-Point Gait’s invariance to body

shape and appearance.

4.1. Orientation pairs

Figure 2 shows an example video frame, its optical flow,

and the Two-Point Gait for that frame. Specific orientation

pairs (e.g., left and right) encode particular gait cycle prop-

erties. For example, by examining the Two-Point Gait of

optical flow vectors pointing left and right, we can observe

the changing spatial relationship of the arms versus the legs.

Note also how background noise from the optical flow is in-

cluded in the Two-Point Gait. This shows how we don’t
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Figure 2: Two-Point Gait and optical flow relationship. The left

column shows a frame of video, the middle column shows the opti-

cal flow for that frame, and the right column shows the Two-Point

Gait for orientation pair (right, left). The red and blue dots in the

left column indicate pairs of pixels that contribute to the circled

displacement of the Two-Point Gait in the right column. That is,

the blue dots have optical flow vectors pointing right, and the red

dots have optical flow vectors pointing left. This frame of Two-

Point Gait is capturing the spatial distribution between the left arm

and left leg because they are moving in opposite directions. Note

that it includes some background noise from the optical flow.
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(b) Silhouette-based

Figure 3: Robustness to Body Shape Variation. Here we show

two distance matrices from our synthetic data set to compare the

robustness to body shape variation between the Two-Point Gait

and a silhouette-based method [4]. The distance matrices have

10 rows and columns, each corresponding to a combination of a

motion-captured gait pattern retargeted to a synthetic body shape.

The block structure of the matrix in column (a) shows the Two-

Point Gait’s robustness to body shape variation.

need an accurate binary mask of the subject, unlike most

silhouette-based methods. Despite this inclusion of noise,

Two-Point Gait remains discriminative, as we show later.

4.2. Robustness to body shape and appearance

One goal of our representation is to be as insensitive as

possible to changes in body shape. We expect that this is

the case because the two-point statistics primarily encodes

the distribution of moving body parts rather than their sizes.

In this section, we demonstrate the robustness of Two-

Point Gait to body shape variation. We created several syn-

thetic human models using MakeHuman [3]. We created

human models that vary in body shape and clothing tex-
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(b) Silhouette-based

Figure 4: Robustness to appearance variation. Here we show

two distance matrices from our synthetic data set to compare the

robustness to changes in body appearance (texture) between the

Two-Point Gait and a silhouette-based method [4]. The distance

matrices have 10 rows and columns, each corresponding to a com-

bination of a motion-captured gait pattern retargeted to a syn-

thetic body shape. The block structure of the matrix in column

(a) demonstrates the Two-Point Gait’s robustness to appearance

variation. The silhouette-based method has this property as well

because it ignores all image texture and color by only dealing with

the silhouette.

ture. We then selected several motion-captured gait pat-

terns from the Carnegie Mellon University Motion Capture

Database [2]. Using Blender [1], we retargeted the motion

capture animations to our synthetic human skeletons to cre-

ate a synthetic gait database.

Figure 3 shows a 10× 10 distance matrix of a portion of

the synthetic data set. The elements being compared are all

possible pairs of 5 synthetic body shapes with two unique

gait patterns. The block structure of the distance matrix

shows that the representation is extremely robust to body

shape variation and discriminates instead against the actual

gait. We also compare our distance matrix against a modern

silhouette-based method [4]. The silhouette-based method

does not have the block structure showing its inability to

decouple gait from body shape.

Another important quality for the representation is ro-

bustness to changes in body appearance (texture) which also

affects optical flow accuracy. Similar to the previous exam-

ple, we demonstrate this in 4 by showing a 10×10 distance

matrix. Here, the elements of the distance matrix consists

of all combinations of a synthetic human model with five

clothing variations with two unique gait patterns. Again,

the strong block structure demonstrates the robustness.

5. Using Two-Point Gait

We now demonstrate the use of Two-Point Gait in impor-

tant computer vision tasks. We first show how it enables us

to map out the gait space, the space of gait patterns of dif-

ferent people. In this space, we can analyze the difference

and similarities of how people walk without regard to their
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appearance and shapes. We then show that the Two-Point

Gait provides us with powerful means to identify people

with large clothing variation. We show that Two-Point Gait,

without any training, achieve competitive recognition accu-

racy which is further boosted to achieve the state-of-the-art

accuracy when combined with a body shape representation.

5.1. The space of gait patterns

We can use the Two-Point Gait as a representation for

an individual’s walk and use the distance between differ-

ent people’s Two-Point Gait to explore the space of gait

patterns—that is, the entire space of how people walk.

This space is high-dimensional as each person will be rep-

resented by a Two-Point Gait. We may, however, use

manifold learning to extract a lower-dimensional manifold

on which these gait patterns of different people lie. We

use locally linear embedding [30] to visualize this low-

dimensional gait space. Figure 5 shows the gait space to-

gether with several individuals who lie close to each other

in this space.

The low-dimensional embedding shows that people ly-

ing close to each other in this space have a characteristic

similarity in the way that they walk. Please see the supple-

mental video for details. The Two-Point Gait faithfully en-

codes the subtle similarities and dissimilarities of how these

people walk, regardless of body shape. The extraction of

such a space cannot be done with silhouette-based repre-

sentations as the body shape is not decoupled from the gait.

This gait space can facilitate the study of human locomo-

tion as a function of other attributes such as gender and age,

which is only possible with a representation that decouples

gait and body shape.

5.2. Gait recognition

The Two-Point Gait, as a pure gait representation, can

be used for gait recognition. Conventional “gait recogni-

tion,” however, does not necessarily mean recognition of

people purely by their gait. Current methods heavily rely

on silhouette-based representations, which strongly indi-

cate that the recognition is done based on a mixture of gait

and body shape. In fact, when there is no apparent body

shape variation (i.e., the person is walking with almost the

same clothes and viewing conditions in both the gallery and

probe), it is obvious that representations that primarily en-

code the body shape would suffice.

Obtaining a pure gait representation, however, is still

crucial to tackle gait-based person identification. Without

disentangling gait and body shape, we cannot understand

which contributes more to the recognition and hope to com-

bine them in an optimal manner. This becomes even more

important when there is, in fact, change in the body shape

between the gallery and probe. Clothing variation is a typi-

cal example that causes such shape changes.

To this end, we evaluate the use of Two-Point Gait for

person identification on the OU-ISIR clothing variation data

set which is arguably the largest and most challenging gait

recognition data [4]. The data set consists of 68 subjects

each with at most 32 combinations of very different cloth-

ing for a total of 2,746 gait sequences divided into three

subsets: training, gallery, and probe. To demonstrate how

the performance can vary, we evaluate the representation

in several ways. First, we evaluate our results on the gallery

and probe subsets using a simple Euclidean distance to com-

pare two Two-Point Gaits. Next, we evaluate our results us-

ing the learned distance metric described above using the

training set. Finally, we combine our representation, with

a simple silhouette-based representation, Gait Energy Im-

age (GEI) [14], that encodes the average of the silhouette

sequence (i.e., it essentially encodes the body shape as the

mean silhouette of the gait cycle). The GEI is computed for

each person and the recognition is done using Linear Dis-

criminant Analysis using the training set. We combine Two-

Point gait with GEI by first computing the distance matrices

for all gallery and probe pairs separately for each represen-

tation, and then by taking a linear combination to form a

new combined distance matrix (in our experiments we used

45% GEI + 55% TPG) after proper scaling.

Figure 6 shows the receiver operator characteristic

curves of the Two-Point Gait with Euclidean distance, Two-

Point Gait with learned weighting, GEI, and combination

of Two-Point Gait with GEI without and with LDA on the

OU-ISIR clothing variation data set. We also compare with

the results of Hossain et al. [4] with their part-based model,

whole-based model, and LDA model. This shows that we

achieve state-of-the-art results using a combination of Two-

Point Gait and GEI.

These results are noteworthy for multiple reasons. What

we notice from the ROC curves is that the Two-Point Gait,

without any training, already does fairly well on the chal-

lenging clothing variation data set (EER=0.232). This is

expected because the Two-Point Gait recognizes gait and

ignores body shape. These results also show the limita-

tion of “gait recognition.” This is the accuracy one can

hope to achieve for person identification solely based on

pure gait observation. The small increase in accuracy from

learning the set of orientation pair weights (EER=0.216)

also supports that the Two-Point Gait is largely shape ro-

bust already. The GEI is the average silhouette over the

gait period and therefore is essentially encoding the body

shape. When trained on the clothing variation training data,

the GEI learns to discriminate body shapes in the space of

intra-class variation of specific clothing types. It performs

well on the testing data, but what it’s truly doing is learn-

ing to classify specific types of shapes as being the same.

This can be seen from the fact that GEI gains a significant

performance boost with LDA (from EER=0.165 to 0.091),
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Figure 5: The gait space computed from Two-Point Gait. The left subfigure shows a non-linear embedding of the Two-Point Gait of 370

individuals from the OU-ISIR treadmill data set (without any cloth variation) [4]. Highlighted are three pairs of individuals located in three

different parts of the space. On the right, we show three frames of video each from the corresponding people. The frames are at time 0,

0.25, and 0.5, respectively, in the gait cycle. We can see that the pairs of people have similar styles of walking. In particular, notice the

similarity of the arm and leg positions for a given gait cycle position. Please see supplementary video for details.

Figure 6: Receiver operator characteristic curves for person recog-

nition with clothing variation using the OU-ISIR database [4].

The ROC curves show that we achieve state-of-the-art results with

Two-Point Gait combined with GEI and clearly show the advan-

tage of disentangling gait and body shape. See text for details.

which is in large contrast to the small increase of accuracy

of TPG with the metric learning. In other words, GEI with

LDA is not learning gait motion but rather learning a bet-

ter and more subtle shape classifier. When combined with

GEI, the Two-Point Gait gives state-of-the-art performance

(EER=0.071), which shows the strength of modeling gait

separately from body shape. Although the improvement

seems small, it is important to note that it becomes signif-

icantly more difficult to improve the ROC curve each time

(i.e., the improvements are not linear).

We can also see from the figure that the combination of

Two-Point Gait and GEI greatly outperform the approach

from Hossain et al. Outperforming the LDA and whole-

based model from Hossain et al. shows that disentangling

shape from gait is extremely important: the only way to

get such greatly improved performance is by starting with

a pure gait and combining it with a pure shape representa-

tion. These results clearly show that simply trying to learn

invariance to shape from an already shape-entangled rep-

resentation is limited. We even outperform the part-based

method from the same paper. This part-based method re-

lies on adhoc partitioning and would be difficult to apply

in general. These results demonstrate the effectiveness of

Two-Point Gait as a discriminative gait representation for

person identification.

6. Conclusion

In this paper, we introduced a novel gait representation:

Two-Point Gait. Two-Point Gait is unique in that it can be

directly computed from 2D images yet it encodes purely

the gait without regard to the body shape. The experimental

results using synthetic gait patterns demonstrate the invari-

ance of the representation to body shape and appearance.

We demonstrated the use of Two-Point Gait for exploring

the space of people based on their gait and also showed that

it allows us to achieve state-of-the-art recognition perfor-

mance on a challenging gait recognition dataset with cloth-

ing variation. We believe this representation has strong im-

plications in a wide range of areas, ranging from human

behavior understanding including mood and emotion recog-

nition to medical diagnosis such as assessing the effective-

ness of certain rehabilitation regimen. Our code for com-
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puting and visualizing Two-Point Gait can be downloaded

from http://www.cs.drexel.edu/~kon/tpg
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