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Abstract

We propose a new Deep Decompositional Network
(DDN) for parsing pedestrian images into semantic regions,
such as hair, head, body, arms, and legs, where the pedestri-
ans can be heavily occluded. Unlike existing methods based
on template matching or Bayesian inference, our approach
directly maps low-level visual features to the label maps of
body parts with DDN, which is able to accurately estimate
complex pose variations with good robustness to occlusions
and background clutters. DDN jointly estimates occluded
regions and segments body parts by stacking three types
of hidden layers: occlusion estimation layers, completion
layers, and decomposition layers. The occlusion estimation
layers estimate a binary mask, indicating which part of a
pedestrian is invisible. The completion layers synthesize
low-level features of the invisible part from the original
features and the occlusion mask. The decomposition layers
directly transform the synthesized visual features to label
maps. We devise a new strategy to pre-train these hidden
layers, and then fine-tune the entire network using the
stochastic gradient descent. Experimental results show that
our approach achieves better segmentation accuracy than
the state-of-the-art methods on pedestrian images with or
without occlusions. Another important contribution of this
paper is that it provides a large scale benchmark human
parsing dataset1 that includes 3, 673 annotated samples
collected from 171 surveillance videos. It is 20 times larger
than existing public datasets.

1. Introduction
Pedestrian analysis is an important topic in computer

vision, including pedestrian detection, pose estimation,

∗This work is supported by the General Research Fund sponsored by
the Research Grants Council of Hong Kong (Project No. CUHK 417110,

CUHK 417011, CUHK 429412) and National Natural Science Foundation

of China (Project No. 61005057).
1http://mmlab.ie.cuhk.edu.hk/datasets.html.

Figure 1. Pedestrian parsing is difficult due to the appearance and pose
variations, occlusion, and background clutters. We illustrate the results of

DDN compared to P&S [20], SBP [1], and PbOS [6].

and body segmentation. It has important applications to

image and video search, and video surveillance. This

paper focuses on parsing a pedestrian figure into different

semantic parts, such as hair, head, body, arms, and legs.

This problem is challenging because of the large variations

of appearance, poses and shapes of pedestrians, as well as

the presence of occlusions and background clutters. Some

examples are shown in the first column of Fig.1.

Existing studies of pedestrian parsing [2, 1, 6, 20]

generally fall into two categories: template matching and

Bayesian inference. The pixel-level segmentation of body

parts was first proposed in [2], which searches for templates

of body parts (poselets) in the training set by incorporating

the 3D skeletons of humans. The identified templates are

directly used as segmentation results and cannot accurately

fit body boundaries of pedestrians in tests. No quatitative

experimental evaluation was provided in [2]. Bo et al. [1]

(SBP) provided the ground truth annotations of the Penn-

Fudan pedestrian database [27] and used it to evaluate the
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segmentation accuracy of their algorithm. Their method

segments an image into superpixels and then merges the

superpixels into candidate body parts by comparing their

shapes and positions with templates in the training set.

These approaches rely heavily on training templates. Some

examples are shown in the fourth column of Fig.1.

Rauschert et al. [20] (P&S) and Eslami et al. [6] (PbOS)
treated human parsing as a Bayesian inference problem.

Priors are learned to factorize shape and appearance of

pedestrians. They model the appearance prior as Gaussian

mixture of pixel colors, and the body shape prior is modeled

by the pose skeleton in [20] and the multinomial shape

boltzmann machine in [6]. Body shapes and appearance are

first generated from the prior models and then verified by

being matched with the observed images. The drawback

of these approaches is that their appearance models are

relatively weak. Their results are sensitive to background

clutters, complex poses, and many possible cloth styles.

Also, the inference throughMCMC is slow. Some examples

are shown in the third and the fifth columns of Fig.1.

No existing works consider the factor of occlusions,

which occur frequently in video surveillance and can

seriously deteriorate the performance of human parsing.

This paper addresses the aforementioned limitations by

proposing a new deep model, the Deep Decompositional

Network (DDN), which utilizes HOG features [3] as input

and outputs the segmentation label maps. HOG features

can effectively characterize the boundaries of body parts

and estimate human poses. In order to explicitly handle the

occlusion problem, DDN stacks three types of hidden layer-

s, including occlusion estimation layers, completion layers,

and decomposition layers (see Fig.2 (a)). Specifically, the

occlusion estimation layers infer a binary mask, indicating

which part of the features is occluded. The completion

layers then synthesize the missing features. Finally, the

decomposition layers decompose the synthesized features

to the label maps by learning a mapping (transformation)

from the feature space to the space of label maps (see an

example in Fig.2 (a)). Unlike CNN [11], whose weights

are shared and locally connected, we find fully connecting

adjacent layers in DDN can capture the global structures of

humans and can improve the parsing results.

At the training stage, we devise a new strategy based on

least squares dictionary learning to pre-train the occlusion

estimation layers and the decomposition layers, while the

completion layers are pre-trained with a modified denoising

autoencoder [26]. The entire network is then fine-tuned by

the stochastic gradient descent. At the testing stage, our

network can efficiently transform an image into label maps

without template matching or MCMC sampling.

Our work has three key contributions. (1) This is

the first time that deep learning is studied specifically for

pedestrian parsing. (2) To the best of our knowledge,

this is also the first study to consider the presence of

occlusions in human parsing. We propose a novel deep

network, where the models for occlusion estimation, data

completion, and data transformation are incorporated into a

unified deep architecture and jointly trained. This method

has advantages over learning each module separately. (3)

By carefully designing the architecture of the network and

proposing training strategies, the trained DDN not only

provides accurate parsing results, but is also robust to

occlusions, background clutters, and complex variations of

poses and cloth styles, and significantly outperforms state-

of-the-art on benchmark datasets. (4) We provide a large-

scale benchmark human parsing dataset (refer to footnote

1) which includes 3, 673 annotated samples collected from
171 surveillance videos, making it 20 times larger than
existing public datasets.

1.1. Related Work

We review some related works on occlusion estimation

[28, 4, 7, 24, 17], data completion [5, 21, 8], and cross-

modality data transformation [16, 14, 10].

Occlusion estimation. In [28, 4, 7], all the proposed

approaches estimated occlusions with SVM by using HOG

features, depth maps and optical flows. Our DDN with

deep structures are more powerful than SVM, which is a

flat model [8]. Tang et al. [24] employed two restricted

Boltzmann machines (RBM) [8] to model the patterns

of occlusions and uncorrupted images. In their network,

occlusion patterns are sampled from the models and then

verified with input images. Ouyang et al. [17, 18] took the

part detection scores as the input and used Deep Belief Net

(DBN) to estimate the visibility of body parts. In contrast,

our model directly maps the input features to occlusion

masks.

Data completion. Deep networks are strong generative
models for data completion. The deep belief network

(DBN) [8] and the deep Boltzmann machine (DBM) [21]

both consist of multiple layers of RBMs, and complete

the corrupted data using probabilistic inference. Recently,

the shape Boltzmann machine (SBM) [5] and multinomial

shape Boltzmann machine (MSBM) [6] were proposed

to complete discrete data. The denoising autoencoder

(DAE) [26] has shown excellent performance at recovering

corrupted data, and we have integrated it as a module in

our DDN. Instead of completing the missing data, Luo et

al. [13] marginalized missing data with proposed deep sum

product network for facial attribute recognition.

Data transformation. Several studies have looked at

transforming data from one modality, for example, an

image, to another, for example, a label map. Ngiam et al.

[16] proposed a multimodel deep network that concatenates

data across modalities as input and reconstructs them by

learning a shared representation. Luo et al. [12] learns

2649



Figure 2. DDN architecture, which combines occlusion estimation, data completion, and data transformation in an unified deep network.

the joint representation of images and label maps for face

parsing. Zhu et al. [29] proposed a deep network to

transform a face image under arbitrary pose and lighting

to a canonical view. Mnih et al. Jain et al. [10] used

convolutional neural networks (CNN), which consider data

of one modality as input and the corresponding data of the

other modality as output. The decomposition layers in DDN

are similar to CNN, but with fully-connected layers that

capture the global structures of the pedestrians.

2. Network Architecture
Fig.2 (a) shows the architecture of DDN, the input of

which is a feature vector x, and the output is a set of
label maps {y1, ..., yM} of body parts. Each layer is fully
connected with the next upper layer, and there are one

down-sampling layer, two occlusion estimation layers, two

completion layers, and two decomposition layers. This

architecture works well for pedestrian parsing. More layers

can be added for more complex problems.

At the bottom of DDN, the input x is down-sampled to
xd. x is also mapped to a binary occlusion mask xo ∈
[0, 1]n through two weight matrices W o1 , W o2 , and biases

bo1 , bo2 . Notice that xo is at the same size as xd in order to
reduce the number of parameters in the network. xoi = 0
if the i-th element of the feature is occluded, and xoi = 1
otherwise. xo is computed as

xo = τ(W o2ρ(W o1x + bo1) + bo2), (1)

where τ(x) = 1/(1 + exp(−x)) and ρ(x) = max(0, x).
The first occlusion estimation layer employs the rectified

linear function [15] ρ(x) as the activation function. The
second layer models binary data with the sigmoid function.

In the middle of DDN, the completion layers are modeled
as the denoising autoencoder (DAE) [26], which utilizes the

element-wise product of xo and xd as input, and outputs
the completed feature vector xc through four weight ma-
trices W c1 , W c2 , W c′1 , W c′2 , and the corresponding biases

bc1 , bc2 , uc1 , uc2 , where W ′ is the transpose of W . W c1

and W c2 are encoders that find the compact representation

of noisy data by projecting high dimensional data into a

low dimensional space. W c′1 and W c′2 are decoders that

reconstruct the data. xc is reconstructed from xo and xd as
follows,

z = ρ(W c2ρ(W c1(xo � xd) + bc1) + bc2), (2)

xc = ρ(W c′1ρ(W c′2z + uc2) + uc1), (3)

where z is the compact representation and � denotes the

element-wise product.

On the top of DDN, the completed feature xc is decom-
posed (transformed) into several label maps {y1, ..., yM}
with the corresponding weight matricesW t1 , W t2

1 , ..., W t2
M ,

and biases bt1 , bt21 , ..., bt2M . Each label map yi ∈ [0, 1]n is
estimated by

yi = τ(W t2
i ρ(W t1xc + bt1) + bt2i ), (4)

where yij = 0 indicates the pixel belongs to the background
and yij = 1 indicates the pixel is on the corresponding body
part.

3. Training Algorithms
Training DDN is done by estimating a set of weight

matrices and corresponding biases. It is challenging be-

cause of the huge amount of parameters. If the dimensions

of the input feature vector and the output label maps are

8, 000 and 10, 000. our network has millions of parameters.
We pre-train DDN in a layer-wise manner to initialize the

parameters, and then fine-tune the entire network.

3.1. Pre-training Occlusion Estimation Layer

The occlusion estimation layers infer a binary mask xo

from an input feature x. We cannot employ RBMs as

in [8] to unsupervised pre-train these layers, because our

input and output data are in different spaces. We devise

a supervised method based on the least squares dictionary

learning to pre-train these layers. We construct a training
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set X = {xi} and Xo = {xoi }, where the column vectors
xi and xoi denote a feature and its ground truth mask.
Initializing the weight matrices is done in order to optimize

arg min
W o1 ,W o2

‖ Xo − τ(W o2Ho1) ‖2F , (5)

where Ho1 = ρ(W o1X) is the output of the first layer as
shown in Fig.2, and ‖ · ‖F is the Frobenius norm. Note that
we drop the bias term b for simplification, sinceWx+b can

be written as W̃ x̃ with W̃ = [W b] and x̃ = [x′ 1]′. Solving
Eq.5 is not trivial because of its nonlinearity. However, we

can approximateW o1 , W o2 layer-wisely as

argmin
W o1

‖ Xo − W o1X ‖2F , (6)

argmin
W o2

‖ Xo − W o2Ho1 ‖2F . (7)

We first directly use X to approximate Xo with a linear
transform W o1 . Once W o1 has been learned, Ho1 =
ρ(W o1X) is used to approximate Xo again with another
linear transform W o2 . Eq.6 and Eq.7 have the closed-

form solutions, W o1 = XoX ′(XX ′)−1 and W o2 =
XoHo

′
1(Ho1Ho

′
1)−1. In the case when the data set is very

large and it is hard to compute the matrix inversion, one

can employ the on-line dictionary learning algorithm [23]

instead of the closed form solutions to recursively update

the weight matrices.

3.2. Pre-training Completion Layers

Our purpose is to synthesize the occluded portion of

feature xd. We cast it as a data reconstruction problem

using a strategy similar to DAE [26], which initializes the

parameters by a RBM [8] with stochastically corrupted data

as input, and then fine-tunes them by minimizing the square

error between the reconstructed data and the clean data.

This strategy makes it possible to obtain the weight matrices

robust to noise.

We pre-train each layer with two steps: parameters

initialization and reconstruction error minimization. In the
first step, for each completion layer, let ṽc be an input,
which is the corruption of a clean sample vc, and hc =
ρ(W cṽc + bc) be the output. The parameters of this layer
are initialized by RBM with an energy function

E(ṽc, hc) =
∑
i

(ṽci − bci )
2

2σ2
i

−
∑
j

ucjh
c
j −

∑
i,j

ṽci
σi

hcjW
c
ij ,

(8)

where σ is the standard deviation of the noise, and

W c, bc, uc are the weight matrix and biases described in
Sec.2. Eq.8 can be minimized using contrastive diver-

gence [8]. The conventional DAE corrupts each training

sample with stochastic noise. However, we use the

structured noises (as shown in Fig.3) to model occlusion

Figure 3. The 40 structured noises templates.

patterns. For each clean sample, we generate 40 corrupted
samples by computing the element-wise product between

the feature and the 40 templates in Fig.3. In the second step,
the reconstructed data vc = ρ(W c′hc + uc). We fine-tune
the parameters by minimizing the square error between vc

and the clean data vc using gradient descent.

3.3. Pre-training Decomposition Layers

The first decomposition layer transforms the output of

the previous layer to a different space through the weight

matrixW t1 . The second layer projects the output of the first

layer to several subspaces through a set of weight matrices

{W t2
i }. Therefore, we have

y =

⎡
⎢⎢⎢⎣

y1
y2
...

yM

⎤
⎥⎥⎥⎦ = τ(

⎡
⎢⎢⎢⎣

W t2
1

W t2
2
...

W t2
M

⎤
⎥⎥⎥⎦ht1 +

⎡
⎢⎢⎢⎣

bt21
bt22
...

bt2M

⎤
⎥⎥⎥⎦), (9)

where ht1 is the output of the first decomposition layer.
Both decomposition layers can be pre-trained using the

strategy introduced in Sec.3.1.

3.4. Fine-tuning

We fine-tune all the parameters of DDN by minimizing

the following loss function after pre-training

E(X;W,b) = ‖Y − Y ‖2F , (10)

where X = {xi}, Y = {yi}, and Y = {yi} are a set of
input features, a set of ground truth label maps, and a set

of outputs of our network. W and b are a set of weight
matrices and biases. They are optimized with the stochastic

gradient descent. For example, the weight matrices can be

updated as

Δi+1 = 0.9 ·Δi − 0.001 · ε · W �
i − ε · ∂E

∂W �
i

, (11)

W �
i+1 = W �

i +Δi+1. (12)

� ∈ {1, . . . , L} and i are the indices of layers and iterations.
L is the total number of layers. Δ is the momentum variable

2651



[19], ε is the learning rate, and ∂E
∂W � is the derivative.

∂E
∂W � = h�−1(e�)′ is computed as the outer product of the
back-propagation error e� and the output of the previous
layer h�−1. In our network, the error e� is computed in three
different ways. For the output layer of DDN,

eL = diag(y − y)diag(y)(1− y), (13)

where diag(·) is the diagonal matrix. For the �-th lower
layer with the sigmoid function, the backpropagation error

is denoted as e�,τ ,

e�,τ = diag(W �+1′e�+1)diag(h�)(1− h�), (14)

where W �+1 and e�+1 are the weight matrix and the error

of the next layer, and h� is the output of the �-th layer.
For a lower layer with the rectified linear function, the

backpropagation error is computed as

e�,ρi =

{
[W �+1′e�+1]i, δ�i > 0
0, δ�i ≤ 0

, (15)

where δ�i = [W �h�−1+ b�]i. [·]i denotes the i-th element of
a vector.

4. Experiments
We conduct two sets of experiments. Sec.4.1 evaluates

the effectiveness of pre-training. The occlusion estimation

layers are pre-trained with 600 images selected from the

CUHK occlusion dataset [17], where the ground truth

of occlusion masks was obtained as the overlapping re-

gions of the bounding boxes of neighboring pedestrians,

e.g. the second row of Fig.4. Both the completion and

decomposition layers are pre-trained with the HumanEva

dataset [22], which contains 937 clean pedestrians with
the ground truth of label maps annotated by [1]. Pre-

training the decomposition layers requires clean images

and their label maps. Pre-training the completion layers

requires clean images, the corrupted data of which can

be obtained by element-wise multiplication with the 40
occlusion templates shown in Fig.3.

Sec.4.2 shows the results of pedestrian parsing on two

datasets: the Penn-Fudan dataset [27] and a new dataset

constructed by us. The Penn-Fudan dataset includes 169
pedestrians taken in campus without occlusions. Our

pedestrian parsing dataset contains 3, 673 images from 171
videos of different surveillance scenes (PPSS), where 2, 064
images are occluded and 1, 609 are not. The ground truth
of label maps for all these images is provided. Some

examples are shown in Fig.7, which shows that large

pose, illumination, and occlusion variations are present.

Compared with Penn-Fudan, PPSS is much larger and more

diversified on scene coverage, and is therefore suitable to

evaluate the performance of pedestrian parsing algorithms

in practical applications.

Figure 4. We show the images and the ground truth masks from the CUHK
occlusion dataset in the first two rows. Estimated masks with DDN after

pre-training are shown in the last row.

SVM [7] RoBM [24] DDN

62.3 72.9 72.3

Table 1. The per-pixel accuracies (%) of occlusion estimation.

4.1. Effectiveness of Pre-training

I. Occlusion Estimation Layers. We compare with struc-
tured SVM [7] and RoBM [24] for occlusion estimation on

the CUHK dataset [17]. 500 images are selected for training
and another 100 images for testing. All of the methods
use HOG/mask as input/output pairs for training. Each

image and its mask have the size of [160, 80] and [80, 40]
respectively. The cell size of HOG is 6, which means that
the feature vector has 8, 525 dimensions. Both occlusion
estimation layers have 3, 200 neurons. The above settings
are adopted in all of the remaining experiments. We aug-

ment the original training images by randomly disturbing

bounding boxes and randomly changing pixel values in the

same way as [9]. Eventually, 50, 000 training samples are
obtained. In our method, we run gradient descent for several

iterations after the closed-form initializations. Table 1

reports the per-pixel accuracies, while Fig.4 presents some

examples. Our result is better than SVM and comparable

to RoBM. It is more efficient than RoBM because its pre-

training has a closed-form solution.

II. Completion Layers. We compare with PCA [25],

DBN [8], DBM [21], and MSBM [6] for data completion.

All these approaches are trained on the HumanEva dataset

[22] and tested on 100 images with random noises as shown
in Fig.3. The two completion layers in DDN have neurons

104 and 3, 000, respectively. DBN and DBM have two

hidden layers. The architecture of MSBM is the same as

[6]. Table 2 reports the mean square errors of the completed

feature values of invisible parts. Some exemplar results of

DDN are shown in Fig.5 on real occluded images.

PCA [25] DBN [8] DBM [21] MSBM [6] DDN

121 216 391 420 89

Table 2. The mean square errors of feature completions.

III. Decomposition Layers. We compare with bimodel
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bMAE [16] CNN [11] DDN

57.2 71.8 72.9

Table 3. The per-pixel accuracies (%) of label maps.

Figure 5. Examples of feature completion of DDN. The image is shown
on the left, the original HOG features with the occluded region (black box)

in the center, and the completed features on the right. For instance, the

features of the right leg of the woman in the first image is well completed.

autoencoder (bMAE) [16] and CNN [11] for data transfor-

mation on the HumanEva dataset. We randomly choose

100 images for test and the remainder for training. Table
3 reports the per-pixel accuracies for the above algorithms.

bMAE has two hidden layers. CNN has three convolutional

layers, and each layer has 32 filters. DDN outperforms

bMAE and is slightly better than CNN.

This section shows that the pre-training results of DDN

has achieved performance that is at least comparable to the

state-of-the-art. However, the major advantage of DDN

is that all the three modules can be well integrated into

an unified deep architecture and jointly fine-tuned for the

ultimate goal of human parsing. Sec.4.2 shows that the

performance of human parsing is significantly improved

after fine tuning. The performance also greatly outperforms

the baseline of simply cascading the best performer from

the state-of-the-art on each of the three tasks.

4.2. Pedestrian Parsing

Results on Penn-Fudan Dataset. This experiment is

conducted on images without occlusions. DDN is fine-

tuned with the HumanEva dataset [22]. It takes two hours to

train our network on one NVIDIA GTX 670 GPU, and takes

less than 0.1 second to parse an image. We also show the
results by using only the decomposition layers (DL), which

are trained with the HumanEva dataset.

Table 4 (a) reports the human parsing accuracy of DDN

compared with SBP [1], P&S [20], and PbOS [6]. The table
includes segmentation results on six fine-scale regions:

“hair”, “face”, “up-cloth” (upper clothes), “arms”, “lo-

cloth” (lower clothes), and “legs”; and also on five coarse-

scale regions: “head”, “up-body” (upper-body), “lo-body”

(lower body), “FB” (foreground), and “BG” (background).

The definitions of these regions are illustrated in Fig.2 (b).

PbOS [6] did not report its result on the fine-scale regions.

For fine-scale regions, DDN outperforms both P&S and
SBP on the averaged accuracies. It achieves the best

results on four regions except “face” and “arms”. SBP has

the best accuracy on “face” because its template matching

works well in this case, as “face” has similar shape and

appearance. For the coarse-scale regions, DDN performs

best on all the regions. DDN adopts HOG features and the

fully-connected network architecture. This design enables

it to effectively capture global pose variations. On the other

hand, it may lose certain fine-grained descriptive power

because HOG is not sensitive to small local changes. This

partially explains DDN does not outperform SBP on “face”

and “arms”. Some segmentation examples of DDN are

shown in Fig.6. For our methods, using DL alone achieves

better results than DDN, since this dataset has no occlusion,

which means that the occlusion estimation and completion

layers may slightly induce noise to the DL in the DDN.

Results on PPSS Dataset. We evaluate the robustness
of DDN to occlusions with the PPSS data set. Images from

the first 100 surveillance scenes are used for training, and
those from the remaining 71 scenes for testing. We pre-train
DDN as described in Sec.4.1, and fine-tune the network

with the training data of PPSS. We also report results of

DDN without fine-tining and using DL alone, which are

trained on PPSS.

Baselines. Since the implementations of SBP, P&S, and
PbOS are unavailable, we cannot evaluate their performance

under occlusions. Instead, we cascade RoBM [24], PCA

[25], and CNN [11] described in Sec.4.1 as our baseline.

These three methods have the best performance among

state-of-the-art methods on occlusion estimation, data com-

pletion, and data transformation. The RoBM and CNN are

tuned on PPSS for fair comparison.

Table 4 (b) reports the parsing accuracy. First, the

performance of DL drops significantly when occlusion

is present. DL essentially transform the occluded HOG

features to the label maps, which is difficult since the

feature space of occlusion is extremely large. Fig.8 presents

some segmentation examples of DDN compared to DL,

and shows that DDN can effectively capture the pose of

the human when large occlusion is present, because our

network is carefully designed to handle occlusion.

Second, DDN outperforms the baseline and improves

the pre-training because it jointly optimizes three types of

hidden layers. Fig.7 presents some segmentation results

of DDN, and shows that DDN can recover the “upper

body” and “lower body” even with the presence of large

occlusions, because DDN can capture the global structures

and poses of the pedestrians. Note that some small

body parts can still be estimated, such as “shoes” and

“arms”, since the correlations between pixels are implicitly

maintained by our network structure.

Fig.9 presents some incorrect results, which show that

DDN fails to distinguish some subtle pose variations some-

times. This is partially due to the limitation of HOG as

discussed above.

2653



Figure 6. More results of DDN on the Penn-Fudan data set [27].

(a) Segmentation accuracies on Penn-Fudan.

h
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lo
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A
v
g

SBP [1] 44.9 60.8 74.8 26.2 71.2 42.0 53.3

P&S [20] 40.0 42.8 75.2 24.7 73.0 46.6 50.4

DDN 44.7 54.2 78.1 25.3 75.0 49.8 54.7

DL 43.2 57.1 77.5 27.4 75.3 52.3 56.2

h
ea
d
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F
G
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G
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SBP [1] 51.8 73.6 71.6 73.3 81.0 70.3

P&S [20] 58.2 72.5 72.9 76.2 83.0 72.6

PbOS [6] 54.1 69.9 68.5 71.6 73.8 66.6

DDN 60.2 75.7 73.1 78.4 85.0 74.5

DL 60.0 76.3 75.6 78.7 86.3 75.4

(b) Segmentation accuracies on PPSS.
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Baseline 29.1 38.7 60.2 17.2 53.0 21.5 36.7

DL 22.0 29.1 57.3 10.6 46.1 12.9 30.0

DDN

(pre-train)
29.5 39.0 61.7 16.2 54.6 21.9 37.1

DDN 35.5 44.1 68.4 17.0 61.7 23.8 41.8

h
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d

u
p
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lo
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y

F
G

B
G

A
v
g

Baseline 38.3 62.6 60.0 67.1 75.0 60.6

DL 30.2 51.5 52.8 59.1 68.6 52.4

DDN

(pre-train)
39.1 60.5 57.9 68.4 74.3 59.6

DDN 41.2 69.3 65.5 71.4 80.0 65.5

Table 4. Per-pixel segmentation accuracies (%) on the Penn-Fudan [27] (a) and PPSS (b) datasets.

Figure 8. The image, ground truth, the result of DDN, and DL are shown.

Figure 9. Some incorrect results on the PPSS dataset.

5. Conclusions

We present a new Deep Decompositional Network

(DDN) for pedestrian parsing. DDN combines the occlu-

sion estimation layers, completion layers, and the decompo-

sition layers in an unified network, which can handle large

occlusions. We construct a large benchmark parsing dataset

that is larger and more difficult than the existing dataset.

Our method outperforms the state-of-the-art on pedestrian

parsing, both with and without occlusions.
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