
Progressive Multigrid Eigensolvers for Multiscale Spectral Segmentation

Michael Maire1 and Stella X. Yu2

1California Institute of Technology - Pasadena, CA
2University of California at Berkeley / ICSI - Berkeley, CA

mmaire@caltech.edu, stellayu@berkeley.edu

Abstract

We reexamine the role of multiscale cues in image seg-

mentation using an architecture that constructs a globally

coherent scale-space output representation. This charac-

teristic is in contrast to many existing works on bottom-up

segmentation, which prematurely compress information into

a single scale. The architecture is a standard extension of

Normalized Cuts from an image plane to an image pyramid,

with cross-scale constraints enforcing consistency in the so-

lution while allowing emergence of coarse-to-fine detail.

We observe that multiscale processing, in addition to im-

proving segmentation quality, offers a route by which to

speed computation. We make a significant algorithmic ad-

vance in the form of a custom multigrid eigensolver for con-

strained Angular Embedding problems possessing coarse-

to-fine structure. Multiscale Normalized Cuts is a special

case. Our solver builds atop recent results on randomized

matrix approximation, using a novel interpolation opera-

tion to mold its computational strategy according to cross-

scale constraints in the problem definition. Applying our

solver to multiscale segmentation problems demonstrates

speedup by more than an order of magnitude. This speedup

is at the algorithmic level and carries over to any imple-

mentation target.

1. Introduction

Spectral clustering techniques have wide applicability

to perceptual organization problems. The spectral relax-

ation of the Normalized Cuts problem [14] appears as

the driving method in much research on image segmen-

tation [5, 13, 17, 15, 1, 11]. The importance of exploit-

ing multiscale cues to generate high quality segmentations

is widely recognized. Yu [15] formulates segmentation as

clustering on the average of multiscale affinity matrices. Ar-

beláez et al. [1] derive entries of a single affinity matrix

from a combination of multiscale features. Both of these

systems summarize multiscale cues and optimize a single

output that best explains the summary.

Cour et al. [5] present an alternative, suggesting multi-

range or multiscale approaches which couple sparse affin-

ity matrices at coarse and fine levels of an image pyramid

using constraints [17]. Though this work lacks the sophisti-

cated post-processing steps found in other spectral segmen-

tation pipelines, such as gPb [1], it offers the insight that

scale-space representation should be preserved throughout

the clustering procedure.

While image pyramids offer concise means of describing

both short and long range interactions, they do not alleviate

the fact that the computation time required to solve spec-

tral clustering problems is often prohibitive. Both image

pyramids and the Nyström method [6] can be seen as tech-

niques for approximating dense affinity matrices. But, run-

time for Normalized Cuts with only sparse affinity matrices

on a modern CPU can still be measured in minutes [5, 1].

Sparse affinity matrices make these problems feasible in

terms of asymptotic computational complexity, but far from

fast. Multigrid methods [13, 4, 2, 8] provide a strategy for

further reducing the computational load.

Our key observation is that multigrid and multiscale

techniques are complimentary and should be intertwined,

producing fast high-quality segmentation algorithms. Un-

like generic multigrid methods [4, 2, 8], we explicitly ad-

dress constrained problems [17, 5] with the intuition that

the constraints themselves can guide the schedule of com-

putations within the solver. Figure 1 provides a comparison.

Sections 2 and 3 present eigensolver technical details in

the more general setting of Angular Embedding, an exten-

sion of Normalized Cuts to handle both grouping and or-

dering relationships [16], recently used in simultaneously

resolving segmentation, figure-ground, and object detec-

tion [9, 10]. We develop our solver within the framework

of randomized matrix approximation [7], a new mathemati-

cal technique which naturally fits our interpolation strategy.

We also inherit its favorable parallelization properties.

Section 4 demonstrates speedup results as well as seg-

mentation improvements, in the form of high quality con-

tours, achieved by combining our efficient solver with the

best aspects of previous systems [5, 1]. Section 5 concludes.

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.272

2184

�

�

�

�

�

� �

�

W

Ψ(W)
Ψ(Ψ(W))

Multigrid [4, 2, 8]

�

�

�

�

�
�

�

�

U1

U2

W

τ (W)

τ (τ (W))

Multirange [5]

�

�

�

�

�
�

�

�

U1

U2

W0

W1

W2

Multiscale [5, 15]

�

�

�

�

�
�

�

�

U1

U2

W0

W1

W2

���������	

�

�

W2

ΦU2

�
�

�

�

U2

W1

W2

ΦU1
�

�

�

�

�
�

�

�

U1

U2

W0

W1

W2

��
�	����	 �����
��� ���������	

�

�

τ
U
(W0,W1,W2)

ΦU2

�
�

�

�

U2

τ
U
(W0,W1)

W2

ΦU1
�

�

�

�

�
�

�

�

U1

U2

W0

W1

W2

���������	�
��
�	����	 �����
��� ���������	

Figure 1. System comparison. Multigrid techniques exploit coarse-to-fine structure within a spectral clustering problem by adapting the

optimization routine used to solve it. Multirange or multiscale techniques instead adapt the problem definition to explicitly encode such

structure. We combine both approaches, producing a progressive multigrid algorithm for the solver. Top Left: Consider a sparse matrix W

defining pairwise affinities between nodes in a graph (e.g. connections between neighboring pixels, for image segmentation, as shown in

green). Generic multigrid eigensolvers [4, 2, 8], applied to the corresponding Normalized Cuts eigenproblem [14], coarsen the problem by

subsampling nodes and interpolating weights. Solution eigenvectors from iteratively coarsened problems, Ψ(W) and Ψ(Ψ(W)), initialize

the solver on the next finer problems, W and Ψ(W), respectively (blue arrows). Top Middle: Multirange [5] simulates the effect of a

dense affinity matrix by sampling longer-range affinities on coarser pixel grids (τ(W)) and tying graphs together using constraints (Us, red

links) [17]. Top Right: Rather than resampling, a true multiscale approach [5, 15] ties together level-dependent information, in the form

of different affinities, W0, W1, W2, on each subgraph. Bottom: Our custom eigensolver maps a multiscale constrained spectral clustering

problem onto a progressive multigrid computation strategy. Unlike generic multigrid methods, the constraints from the problem definition

shape computation within the solver. Instead of coarsening uniformly, our algorithm drops or adds entire levels at once. Constraints both

tie levels in the expanded problem and determine interpolation functions ΦUs
for moving work between levels. When dropping a level, say

W0, we can optionally use the constraints to fold it into the next coarsest level, substituting transformed affinity τ
U
(W0,W1) for W1.

2185

l r

n1

n0

l r l r

Diffuse: A = D−
1
2 WD−

1
2 A

Project: A = (I −D−
1
2U(U∗D−1U)−1U∗D−

1
2)A

Interpolate: A = [A; D
1
2

[n0]
U [n0](U

∗

[n0]
U [n0])

−1(−U∗[n1]
D
−

1
2

[n1]
A)]

C
n 1·(

l+r
)

C(n1+n0)·(l+r)

�

���

���

ΦU (A)

Figure 2. Multiscale evolution from random noise to eigenvectors. Left: Let there be n1 and n0 nodes at coarse and fine scales

respectively, with �n0 = n0+n1 total nodes. To compute m length �n0 eigenvectors, within matrix A we store l = 2m random vectors

(l-block) for spanning the eigenspace, and r=m more vectors (r-block) for testing convergence. We build these vectors progressively over

scale, at each step applying diffusion and projection based on the graph weights and constraints, and then checking whether the r vectors

lie in the l space. We first initialize (orange) the coarse scale n1×(l+ r) vectors (top block) with random Gaussian noise, and follow with

diffusion and projection, repeating until convergence (pink). We then use the top block to initialize the (bottom-block) fine-scale n0×(l+r)
vectors via interpolation (blue) defined by inter-scale constraints. This is followed again by diffusion, projection, and checking the entire

matrix A. Upon convergence, the r block is no longer of any use. We apply diffusion to the l block before collapsing it to a core l×l matrix

B. We extract m eigenvectors of this much smaller matrix B and then interpolate back to recover the desired m eigenvectors of length �n0.

Right: In an equivalent view, A initially lives in a subspace of dimension n1(l + r), where diffusion and projection operations are cheap.

Performing most of the work in this subspace before interpolating to deal with the full problem in the larger space gives us a speedup.

2. Spectral Clustering with Constraints

We consider Angular Embedding (AE) [16] problems

with constraints [17], defined by a triple (C,Θ, U) of real-

valued matrices. Skew-symmetric n× n matrix Θ specifies

relative ordering relationships between n nodes. Symmetric

n× n matrix C specifies a confidence on each relationship.

Normalized Cuts is a special case, where Θ = 0 and con-

fidence is synonymous with affinity. The task is to embed

nodes into an m-dimensional space, such that location in

this embedding space preserves the pairwise relationships.

The n × u matrix U specifies u linear constraints that

the solution embedding x must satisfy: U∗x = 0, where ∗

denotes complex conjugate transpose. In the case of multi-

scale segmentation, U will state that each coarse pixel must

be consistent with the finer pixels in the scale below it; the

coarse pixel’s embedding must be the average of the fine.

The optimal embedding is given by the leading m eigen-

vectors of the generalized eigenproblem:

QPQx = λx (1)

where P is a normalized weight matrix and Q is a projector

onto the feasible solution space (Q enforces constraints):

P = D−1W (2)

Q = I −D−1U(UTD−1U)−1UT (3)

with D and W defined in terms of C and Θ by:

D = diag(C1) W = C • exp(iΘ) (4)

where 1 is a column vector of n ones, I is the identity ma-

trix, diag(·) is a matrix with its vector argument on the main

diagonal, • denotes the matrix Hadamard product, i =
�
−1

and exponentiation acts element-wise. For convenience, we

work with degree-normalized variable z = D
1
2x with cor-

respondingly modified �P , �Q, and �U replacing P , Q, U .

The multiscale setting upgrades each of C, Θ, U to an

array of matrices, C, Θ, U, indexed by level s. Let ns

denote the number of nodes at level s and �ns =
�
ś≥s

nś the

number of nodes in levels s and coarser.

Node relationships are within-level only, making Cs, Θs

ns × ns matrices. Constraints must appear incrementally,

associating nodes newly appearing at level s with nodes

from coarser levels. Hence, Us has dimensions �ns × us.

3. Eigensolver

Let Ms = QsPsQs denote the matrix whose leading

eigenvectors solve the multiscale AE problem (C,Θ,U)
restricted to levels s and coarser. The intuition behind our

eigensolver is to interpolate from the eigenvectors of Ms an

initial solver state for Ms−1, eventually obtaining the eigen-

vectors of M0 and thereby solving the unrestricted problem.

Coarser subproblems speed the solution to finer ones.

2186

Image Multiscale Eigenvectors 2 through 7

1 coarse iteration: 0.46 sec 20 coarse iterations: 3 sec 20 coarse, 1 medium: 5 sec 20 c., 3 med, 1 fine: 17 sec 20 c., 3 med, 3 fine: 27 sec

P
ro

g
re

s
s
iv

e
M

u
lt

ig
ri

d

M
u

lt
is

c
a
le

E
ig

e
n

v
e
c
to

r
7

B
a
s
e
li
n

e
E

ig
e
n

s
o

lv
e
r

1 fine iteration: 15 sec 5 fine iterations: 34 sec 20 fine iterations: 94 sec 50 fine iterations: 202 sec 225 fine iterations: 760 sec

Figure 3. Eigenvector convergence comparison. Top: Image and leading eigenvectors for multiscale Normalized Cuts applied across a

three-level image pyramid with scales linked by constraints. Bottom: Our progressive multigrid solver processes sub-pyramids in coarse-

to-fine order. The baseline solver immediately starts work on the finest pyramid, taking far longer to converge (760 sec vs 27 sec).

To accomplish this, we borrow the randomized sub-

space iteration procedure from recent results concerning

probabilistic algorithms for constructing matrix decompo-

sitions [7]. Instead of working directly with large sparse

matrices Ms and their eigenvectors, we incrementally con-

struct a tall dense matrix A whose range approximates the

range of M0. Computation of approximation A for M pro-

ceeds by sampling a sufficient number of random vectors

and repeatedly applying M until these vectors form a basis

A that captures the range of M . Though seemingly similar

to a power iteration method for finding eigenvectors, we do

not yet extract them. A itself is not a set of eigenvectors, but

later they can be cheaply obtained from A. When desiring

m eigenvectors, we must oversample the size of the basis

A (sampling 2m vectors is sufficient) in order the ensure

the randomized algorithm has a negligible (exponentially

small) probability of failure.

We add a novel interpolation step to randomized sub-

space iteration in order to initialize As−1 from As. As

coarse and fine subproblems share the coarse levels, initial-

ization is a copy operation on these coarse levels and an

interpolation for the finest level (see dotted and solid blue

arrows in Figure 1). We equivalently work with a single

matrix A and grow it by adding rows during interpolation.

Suppose we have a two-level problem with cross-scale

constraint U∗x = 0. This can be rewritten as:

[
U[n1]; U[n0]

]∗ [
x[n1]; x[n0]

]
= 0 (5)

where U[n1] is the n1 × u upper block of U involving val-

ues for the n1 coarse nodes and U[n0] is the lower block

with values for the n0 fine nodes. The notation similarly

selects subranges of x. Given only x1, solving this under-

constrained equation for x0 in the least squares sense al-

lows us to interpolate a fine representation from a coarse

one. We apply precisely the same interpolation procedure

during coarse-to-fine subspace iteration, with x replaced by

the appropriate subblock of A.

Changing variables from x to z, Figure 2 illustrates the

core operations within our eigensolver. Determining con-

vergence requires evolving two separate bases within A and

checking the accuracy with which the first reconstructs the

second. Algorithms 1 and 2 present full technical details.

Algorithm 2’s outer loop iterates over coarse-to-fine

pyramids. Lines 4-16 extract the active subproblem; here

Diag(·) places its matrix arguments on the block diagonal

of a larger matrix. Lines 17-27 initialize A or interpolate

from a coarser level. Lines 28-33 perform almost all com-

putational work, refining A until the solution converges for

the subproblem; here k ← 2k guarantees that asymptoti-

cally we waste negligible time convergence testing. Lines

2187

Algorithm 1 Matrix approximation via subspace iteration

Given functions f , g such that f(X) = MX and g(X) =
M∗X for some n × n matrix M , compute an n × (l + r)
matrix A whose leftmost l columns approximate the range

of M and rightmost r columns test convergence [7].

Initialize A using Gaussian random sampling.

1: function MXAPPROXINIT(f, n, l, r)

2: draw n× (l + r) Gaussian matrix Ω ∈ C
n·(l+r)

3: A← MXAPPROXREORTH(f(Ω), l, r)

4: return A

Perform a single update to A to improve the approximation.

5: function MXAPPROXUPDATE(f, g, A, l, r)

6: A← g(A)
7: A← MXAPPROXREORTH(A, l, r) � optional1

8: A← f(A)
9: A← MXAPPROXREORTH(A, l, r) � optional1

10: return A

Perform k updates to A to improve the approximation. Also

return
ˆ̂
A, the left l columns of A just before the final update.

11: function MXAPPROXREFINE(f, g, A, l, r, k)

12: for j ← 0, . . . , (k − 2) do

13: A← MXAPPROXUPDATE(f, g, A, l, r)
14: end for

15: (
ˆ̂
A,)← MXAPPROXSPLIT(A, l, r)

16:
ˆ̂
A← QR-ORTHONORMALIZE(

ˆ̂
A)

17: A← MXAPPROXUPDATE(f, g, A, l, r) � final one

18: A← MXAPPROXREORTH(A, l, r)

19: return (A,
ˆ̂
A)

Reorthonormalize bases in the left/rightmost columns of A.

20: function MXAPPROXREORTH(A, l, r)

21: (�A, �A)← MXAPPROXSPLIT(A, l, r)

22: �A← QR-ORTHONORMALIZE(�A) � left basis

23: �A← QR-ORTHONORMALIZE(�A) � right basis

24: return
[
�A �A

]
� recombine A

Split A into the bases in its left/rightmost columns.

25: function MXAPPROXSPLIT(A, l, r)

26: �A← A[0:(n−1), 0:(l−1)] � leftmost l columns

27: �A← A[0:(n−1), l:(l+r−1)] � rightmost r columns

28: return (�A, �A)

Test for convergence by returning an error bound estimate.

29: function MXAPPROXTEST(
ˆ̂
A, �A)

30: E ← �A−
ˆ̂
A

ˆ̂
A∗ �A � n× r error matrix

31: return max
j=0,...,r−1

∥∥E[0:(n−1), j]

∥∥
1Reorthonormalization here guarantees numerical stability. In practice,

these calls can be executed rarely; we found no issue dropping them.

Algorithm 2 Progressive multigrid Angular Embedding

Compute the m leading eigenvectors V and eigenvalues Λ
of a multiscale constrained Angular Embedding problem.

1: function MULTIGRIDAE(C,Θ,U,m)

2: A← [], l← 2m, r ← m

3: for s← smax, . . . , 0 do � loop over scales

4: C ← Diag(Csmax
, . . . ,Cs) � setup subproblem

5: Θ← Diag(Θsmax
, . . . ,Θs)

6: D ← diag(C1)
7: W ← C • exp(iΘ)

8: �P ← D−
1
2WD−

1
2

9: U ← [Usmax
; . . . ;Us]

10: if U = [] then � no constraints

11: f(·)← DIFFUSE(�P , ·)
12: else � constraints

13: �U ← D−
1
2U

14: �R← INCCHOLESKY(�U∗ �U)
15: f(·)← DIFFUSEPROJECT(�P , �U, �R, ·)
16: end if

17: if A = [] then � initialize

18: A← MXAPPROXINIT(f, �ns, l, r)
19: else � interpolate

20: �Uα ← U[0:(�ns+1−1), (�us+1):(�us−1)]

21: �Uβ ← U[(�ns+1):(�ns−1), (�us+1):(�us−1)]

22: �Rβ ← INCCHOLESKY(�U∗β
�Uβ)

23: �Dα ← D[0:(�ns+1−1), 0:(�ns+1−1)]

24: �Dβ ← D[(�ns+1):(�ns−1), (�ns+1):(�ns−1)]

25:
�

�Uα ← �D
− 1

2
α

�Uα,
�

�Uβ ← �D
1
2

β
�Uβ

26: A←
[
A;

�

�Uβ(�Rβ \ �R∗β \ (−
�

�U∗αA))
]

27: end if

28: k ← 1
29: repeat � apply diffusion/projection

30: (A,
ˆ̂
A)← MXAPPROXREFINE(f, f, A, l, r, k)

31: (, �A)← MXAPPROXSPLIT(A, l, r)
32: k ← 2k
33: until (MXAPPROXTEST(

ˆ̂
A, �A) < ε)

34: end for

35: (�A,)← MXAPPROXSPLIT(A, l, r)

36: B ← �A∗f(�A) � B is an l × l matrix

37: (V,Λ)← EIGS(B,m) � small eigenproblem

38: V ← D−
1
2 �AV � �n0 ×m eigenvectors

39: return (V,Λ)

Apply eigensolver diffusion and projection operations.

40: function DIFFUSE(�P ,Z) return �PZ

41: function DIFFUSEPROJECT(�P , �U, �R,Z)

42: Z ← Z − �U(�R \ �R∗ \ �U∗Z)
43: Z ← �PZ

44: Z ← Z − �U(�R \ �R∗ \ �U∗Z)

45: return Z

2188

35-38 solve a trivially small eigenproblem and recover the

solution to the original Angular Embedding problem.

An important point is that we never explicitly construct
�M = �Q �P �Q as it may become dense even though �P and �Q

are sparse. Yu and Shi [17] discuss options for resolving this

issue. We adopt the one of using the incomplete Cholesky

factorization of (�U∗ �U) and solving a linear system. Nota-

tion R \ z in the pseudocode means to solve Ry = z and

return y. Using the same trick, we avoid computing the ex-

plicit inverse (�U∗β
�Uβ)

−1 when interpolating.

Algorithm 3 implements weight folding for the trans-

formed system show in Figure 1, optionally replacing lines

6-7 of Algorithm 2 or, more efficiently, being conducted in

an initial pass. For segmentation, we do not see significant

differences with weight folding, so report results without.

Algorithm 3 Weight folding for transformed multigrid AE

Compute degree matrix D and weight matrix W that are ac-

tive for the pyramid based at level s when solving the multi-

scale AE problem (C,Θ,U) using transformed multigrid.

1: function WEIGHTFOLD(C,Θ,U, s)

2: C ← Diag(Csmax
, . . . ,C0) � initialize weights

3: Θ← Diag(Θsmax
, . . . ,Θ0)

4: D ← diag(C1)
5: W ← C • exp(iΘ) � �n0 × �n0 matrix

6: U ← [Usmax
; . . . ;U0]

7: for ś← 0, . . . , (s− 1) do � fold levels below s

8: �Uα ← U[0:(�nś+1−1), (�uś+1):(�uś−1)]

9: �Uβ ← U[(�nś+1):(�nś−1), (�uś+1):(�uś−1)]

10: �Rα ← INCCHOLESKY(�U∗α
�Uα)

11: �Wα ←W[0:(�ns+1−1), 0:(�ns+1−1)]

12: �Wβ ←W[(�nś+1):(�nś−1), (�nś+1):(�nś−1)]

13: �W ← �Uα(�Rα \ �R
∗
α \ (−

�U∗β
�Wβ))

14: �W ← �Uα(�Rα \ �R
∗
α \ (−

�U∗β
�W ∗))

15: W ← �Wα +�W ∗ � �nś+1 × �nś+1 matrix

16: end for

17: D ← diag(abs(W)1)

18: return (D,W)

3.1. Hardware Parallelism

Ignoring our multigrid strategy, using randomized ma-

trix approximation techniques for eigenproblems has the

same computational complexity as traditional eigensolvers,

but with a slightly larger constant factor. However, these

techniques are better suited to parallel implementations. We

inherit this property; each step of our eigensolver operates

simultaneously across at least m vectors.

Efficiently parallelizing a Lanczos eigensolver for run-

ning the gPb algorithm [1] on a GPU requires assuming

the affinity matrix has a repeating stencil structure [3]. Our

12 14 16 18 20 22 24 26 28 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Log
2
(Computation Cost)

E
rr

or
 B

ou
nd

Eigensolver Convergence Behavior

31x

Progressive Multigrid
Baseline Multiscale

Figure 4. Progressive multigrid speeds convergence. For any

fixed computational cost, running our solver using a progressive

multigrid strategy produces significantly lower error than running

it on the multiscale problem without using multigrid. Jumps in er-

ror (arrows) occur as the multigrid solver switches levels. Here,

cost is the total amount of computation required for diffusion

and projection operations, adjusted for the fact that operations are

cheaper on coarser subproblems when using progressive multigrid.

Note the log scale; multigrid is 31 times faster by this measure.

Baseline (tol=0.1) Multigrid (tol=0.1) Multigrid (tol=0.01)
0

200

400

600

800

1000

1200

1400

1600

1800

C
P

U
 T

im
e

(s
ec

on
ds

)

Setup Subproblems
Initialize A
Interpolate A
Diffuse+Project A
Convergence Test
Small Eigenproblem

Figure 5. Eigensolver runtime breakdown. Diffusion and pro-

jection operations applied to refine the matrix approximation dom-

inate the running time of our solver in both baseline and progres-

sive multigrid modes. Even with a tighter error tolerance, the

multigrid strategy offers an 11× speedup over the baseline. Com-

putation is for 32 multiscale eigenvectors. Times are averaged over

the 100 BSDS [12] test images.

eigensolver is parallelizable without any restrictions on the

sparsity patterns in the problem definition. This is impor-

tant as recent work relies on solving Angular Embedding

problems with data-dependent sparsity patterns [9, 10].

2189

Image Multiscale sPb: Coarse Multiscale sPb: Medium Multiscale sPb: Fine sPb [1]

Figure 6. Multiscale spectral Pb. Following the procedure of Arbeláez et al. [1], we take gradients of eigenvectors to turn the result of

spectral clustering into a spectral probability of boundary (sPb) measure. Our eigenvectors live on an image pyramid, rather than a grid, so

we end up with a set of consistent coarse-to-fine boundaries across three scales. Comparing our results (center columns) to the original sPb

(right) shows the advantage of preserving multiscale information throughout the spectral clustering stage. Row 1: The original sPb places

an incorrect edge inside the arch and fails to pop out the top-left corner from the background. Row 2: Our multiscale version correctly

separates the right side of the bird’s head from the background; the corresponding original sPb edge is extremely weak. Rows 3, 4: Tiger

and zebra stripes behave as they should, emerging at fine scale and disappearing at coarse. The original sPb must trade off representing

object boundaries vs interior details, compressing both into a single output. Rows 5-7: Foreground objects pop-out strongly at coarse scale;

their boundaries are more salient across scales. Row 8: Multiscale preserves salient structure in the left side of the image.

2190

4. Experiments

We apply our eigensolver to image segmentation prob-

lems, defined on a multilevel pyramid [5], with scale-

dependent affinities on each level. Intervening contour,

computed on top of probability of boundary [1], determines

affinities at three different scales. Unlike Arbeláez et al. [1],

we refrain from collapsing the affinity matrix into a single

scale before spectral clustering. We preserve multiscale in-

formation through the entire segmentation pipeline.

Figure 3 provides a visual comparison of eigensolver

convergence behavior on an example image segmentation

problem. Figures 4 and 5 quantify the speedup in terms

of both counting operations and recording actual CPU run-

time. Note that the solver spends the vast majority of time

on applying the inherently m-way parallel diffusion and

projection operations to matrix A, as shown by the yellow

blocks in Figure 5.

Though our eigensolver is amenable to parallelization,

our experiments are all on a serial implementation in MAT-

LAB and observed speedups are solely due to our use of

constraints to shape multigrid computation. Progressive

multigrid gives more than a factor of 10 speedup over the

baseline. All benchmarks are for finding 32 eigenvectors

and are averaged over the 100 images of the Berkeley seg-

mentation dataset test set [12].

Figure 6 compares the output from our multiscale spec-

tral clustering problem to the single scale currently used in

gPb. Clear differences hint at future applications of our mul-

tiscale pipeline to improving image segmentation quality.

5. Conclusion

Our novel eigensolver merges constrained spectral clus-

tering with progressive multigrid computation. We demon-

strate large speedups in solving multiscale image segmenta-

tion problems. Our eigensolver is applicable to many prob-

lems with coarse-to-fine structure and our segmentation

framework shows the benefits of a full multiscale pipeline.

Acknowledgments. ONR MURI N00014-10-1-0933 and

ARO/JPL-NASA Stennis NAS7.03001 supported Michael

Maire’s work. NSF CAREER IIS-1257700 supported Stella

Yu’s work.

References

[1] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. Contour

detection and hierarchical image segmentation. PAMI, 2011.

[2] M. Brezina, T. Manteuffel, S. McCormick, J. Ruge,

G. Sanders, and P. Vassilevski. A generalized eigensolver

based on smoothed aggregation (GES-SA) for initializing

smoothed aggregation multigrid (SA). Numerical Linear Al-

gebra with Applications, 15(2-3):249–269, 2008.

[3] B. Catanzaro, B.-Y. Su, N. Sundaram, Y. Lee, M. Murphy,

and K. Keutzer. Efficient, high-quality image contour detec-

tion. ICCV, 2009.

[4] C. Chennubhotla and A. D. Jepson. Hierarchical eigensolver

for transition matrices in spectral methods. NIPS, 2005.

[5] T. Cour, F. Benezit, and J. Shi. Spectral segmentation with

multiscale graph decomposition. CVPR, 2005.

[6] C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral

grouping using the Nyström method. PAMI, 2004.

[7] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding struc-

ture with randomness: Probabilistic algorithms for construct-

ing approximate matrix decompositions. SIREV, 2011.

[8] D. Kushnir, M. Galun, and A. Brandt. Efficient multilevel

eigensolvers with applications to data analysis tasks. PAMI,

2010.

[9] M. Maire. Simultaneous segmentation and figure/ground or-

ganization using angular embedding. ECCV, 2010.

[10] M. Maire, S. X. Yu, and P. Perona. Object detection and seg-

mentation from joint embedding of parts and pixels. ICCV,

2011.

[11] S. Maji, N. K. Vishnoi, and J. Malik. Biased normalized cuts.

CVPR, 2011.

[12] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database

of human segmented natural images and its application to

evaluating segmentation algorithms and measuring ecologi-

cal statistics. ICCV, 2001.

[13] E. Sharon, M. Galun, D. Sharon, R. Basri, and A. Brandt. Hi-

erarchy and adaptivity in segmenting visual scenes. Nature,

442:810–813, 2006.

[14] J. Shi and J. Malik. Normalized cuts and image segmenta-

tion. PAMI, 2000.

[15] S. X. Yu. Segmentation induced by scale invariance. CVPR,

2005.

[16] S. X. Yu. Angular embedding: A robust quadratic criterion.

PAMI, 2012.

[17] S. X. Yu and J. Shi. Segmentation given partial grouping

constraints. PAMI, 2004.

2191

