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Abstract

An unconstrained end-to-end text localization and recog-

nition method is presented. The method introduces a novel

approach for character detection and recognition which

combines the advantages of sliding-window and connected

component methods. Characters are detected and recog-

nized as image regions which contain strokes of specific ori-

entations in a specific relative position, where the strokes

are efficiently detected by convolving the image gradient

field with a set of oriented bar filters.

Additionally, a novel character representation efficiently

calculated from the values obtained in the stroke detection

phase is introduced. The representation is robust to shift at

the stroke level, which makes it less sensitive to intra-class

variations and the noise induced by normalizing character

size and positioning. The effectiveness of the representa-

tion is demonstrated by the results achieved in the classifi-

cation of real-world characters using an euclidian nearest-

neighbor classifier trained on synthetic data in a plain form.

The method was evaluated on a standard dataset, where it

achieves state-of-the-art results in both text localization and

recognition.

1. Introduction

Detecting and reading text in scene images (also known

as scene text localization and recognition or photo OCR)

is an open problem of computer vision with many inter-

esting applications, ranging from helping visually impaired

people, translating language with an automatic input of text

written in an unknown script, to indexing large image/video

databases by their textual content (e.g. Google Street View,

Flickr, etc.). Unlike traditional document OCR, none of the

scene text recognition methods has yet achieved sufficient

accuracy for practical applications (the winner of the most

recent competition achieved a localization recall of only

62% [14]), which is why the problem has been recently re-

ceiving significant attention.

Text localization can be computationally very expensive

because in an image of N pixels generally any of the 2N

subsets can correspond to text. Text localization methods

can be divided into two groups based on how they deal with

this issue.

The methods in the first group exploit a sliding-window

Figure 1. Character detection and recognition of connected and

rotated characters. The character representation allows efficient

detection of rotated characters, as only a permutation of the feature

vector is required. Characters in orientations 0◦, 45◦ and 90
◦ were

detected and overlapping regions suppressed (marked gray) using

classification confidence

approach to localize individual characters [17] or whole

words [6], drawing inspiration from other object detection

methods where this approach has been has been success-

fully applied [2, 16]. Strengths of such methods include ro-

bustness to noise and blur, because they exploit features ag-

gregated over the whole region of interest. The main draw-

back is that the number of rectangles that needs to be evalu-

ated grows rapidly when text with different scale, aspect, ro-

tation and other distortions has to be found - an effect which

does not occur in general object detection tasks where the

variance of sliding window parameters is lower.

The second, recently more popular approach [4, 13, 11,

19, 12, 15] is based on localizing individual characters as

connected components using local properties of an image

(color, intensity, stroke-width, etc.). The complexity of the

methods does not depend on the parameters of the text as

characters of all scales and orientations can be detected in

one pass and the connected component representation also

provides character segmentation which can be exploited in

an OCR stage. The biggest disadvantage of such methods

is a dependence on the assumption that a character is a con-

nected component, which is very brittle - a change in a sin-
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Figure 2. Block structure of the proposed method
gle image pixel introduced by noise can cause an unpro-

portional change in the connected component size, shape or

other properties, which subsequently affects its classifica-

tion. The assumption also prevents the methods from de-

tecting characters which consist of several connected com-

ponents or where multiple characters are joint into a single

connected component.

In this paper, we present an unconstrained end-to-end

text localization and recognition method, which detects

and recognizes characters as image regions which contain

strokes of specific orientations in a specific relative position,

where the strokes are efficiently detected by convolving the

gradient field with a set of oriented bar filters.

As a first contribution, we introduce a novel approach

for character detection which combines the advantages of

sliding-window and connected component methods. In the

proposed method, the detected strokes induce the set of

rectangles to be classified, which reduces the number of

rectangles by three orders of magnitude when compared to

the standard sliding-window methods. From the complex-

ity perspective this makes the proposed method competitive

with the methods based on connected components, but at

the same time the robustness against noise and blur is main-

tained and the assumption that a character is a connected

component is dropped, which allows for detection of joint

or disconnected characters.

As a second contribution, a novel character representa-

tion efficiently calculated from the values obtained in the

stroke detection phase is introduced. The representation

is robust to shift at the stroke level, which makes it less

sensitive to intra-class variations and the noise induced by

normalizing character’s size and positioning. The effective-

ness of the representation is demonstrated by the results

achieved in classification of real-world characters using a

linear (approximative) nearest-neighbor classifier trained on

synthetic data in a plain form (i.e. without any blurring or

distortions). Additionally, the representation allows for ef-

ficient detection of rotated characters, as only a permutation

of the feature vector is required (see Figure 1).

The method was evaluated on the most cited dataset [14],

where it achieves state-of-the-art results in both text local-

ization and recognition.

The rest of the paper is structured as follows: In Sec-

tion 2, an overview of previously published methods is

given. The proposed method is described in Section 3. In

Section 4, the experimental evaluation is presented. The pa-

per is concluded in Section 5.

2. Previous Work

Several methods which focus only on a particular sub-

problem (text localization [6, 13, 19, 4] or character respec-

tively word cut-out recognition [3, 9]) have been published.

Most relevantly, the method of Epstein et al. [4] converts an

input image to a greyscale and uses the Canny detector [1]

to find edges. Pairs of parallel edges are then used to cal-

culate stroke width for each pixel and pixels with a similar

stroke width are grouped together into characters. Along-

side the aforementioned limitation of the connected compo-

nents methods, the method also relies on a successful edge

detection which might be problematic in noisy images and

moreover it cannot handle ambiguities because each image

pixel can belong to only one stroke. The proposed method

differs radically from [4] in that it does not rely on hard de-

cisions made by an edge detector, and in that it does not

aim to estimate the stroke width (it actually assumes a unit

stroke width - see Section 3.1), but rather it estimates the

possible positions of strokes and detects characters based

on known patterns of stroke orientations and their relative

positions. The method of Epstein et al. provides character

segmentation but does not perform text recognition.

The method of Wang and Belongie [17] finds individ-

ual characters as visual words using the sliding-window

approach and then uses a lexicon to group characters into

words. The method is able to cope with noisy data, but its

generality is limited as a lexicon of words (which contains

at most 500 words in their experiments) has to be supplied

for each individual image and the sliding-window is limited

to horizontal rectangles with a limited number of scales and

aspects.

An end-to-end text localization and recognition

method [12] introduced by Neumann and Matas detects

characters as a subset of Extremal Regions and then

recognizes candidate regions in a separate OCR stage.

The method performs well even on low contrast images

and its computational complexity is close to real time.

The text recognition however performs poorly on noisy

images, because of the sensitivity induced by the connected

component assumption. Moreover, the character represen-

tation exploited in the method [11] is based on a direction

of the boundary pixels chain-code, whose robustness is

limited. For an exhaustive survey of text localization and

recognition methods refer to the ICDAR Robust Reading

competition results [8, 7, 14].

3. The Proposed Method

We assume that each character is defined by a set of its

strokes and their relative position. For instance, the letter

“F” consists of two strokes in the 0◦ direction and one stroke

in the 90◦ direction, where the 90◦ stroke is to the left from

the two 0◦ strokes and on the contrary the 0◦ strokes are lo-
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Figure 3. A stroke of direction α is detected as two opposing ridges

in the gradient (approximately) perpendicular to the stroke direc-

tion. Note that the distance w between the ridges is the stroke

width

(a) (b)

(c) (d)

(e)
Figure 4. Oriented stroke detection. Source image (a). Image

gradient projection in the direction α = 0
◦ and scale s = 0.25

(b). Normalized gradient projection (G0,0.25) (c). Response of

the convolution filter (R0,0.25), normalized gradient projection as

a background (d). Color-coded responses of all filters at the scale

s = 0.25 (e)

cated near the middle respectively the end of the 90◦ stroke.

In the proposed method, the strokes are modelled as re-

sponses to oriented filters in the gradient projection scale

space (see Section 3.1) and the relative stroke position is

modelled by subsampling the responses into a fixed-sized

matrix. Characters are detected by recognizing a known

stroke pattern with a classifier trained with synthetic data

(see Section 3.3).

3.1. Stroke Detection

Let us consider an image I as a mapping I : D ⊂ N
2 →

[0, 1]. A gradient projection Gα,s in the direction α and

scale s is the change of intensity in the image I rotated by

angle α and resized to the scale s, taken in the horizontal

direction, i.e.

Gα,s =
∂RαSsI

∂x
(1)

where Rα denotes a rotation matrix of an angle α and Ss

denotes a scaling matrix of a scale s.

A stroke of direction α can be detected as two opposing

ridges in the gradient perpendicular to the stroke direction

(see Figure 3), where the distance w between the two ridges

corresponds to stroke width. In the proposed method, we

assume the stroke width value is one (w = 1) and we search

for all strokes of unit width in a scale space by convolving

the gradient projection with a 5 × 5 filter that responds to

such strokes.

The response of the convolution filter Rα,s in the direc-

tion α and scale s is defined as

Rα,s =
{
Gα,s ∗ F−1,1 −max(Gα,s ∗ F3,1, 0)

−max (Gα,s ∗ F−1,−3, 0)
}
Θ

(2)

Fa,b =

⎛
⎜⎜⎜⎜⎝
a a 0 b b

a a 0 b b

a a 0 b b

a a 0 b b

a a 0 b b

⎞
⎟⎟⎟⎟⎠ (3)

{x}Θ =

{
x x ≥ Θ

0 otherwise
(4)

where the first term in the Eq. 2 responds to a negative gradi-

ent ridge in the distance of one pixel from a positive gradient

ridge and the second and third term suppress the response

where there is only positive respectively negative gradient

ridge.

The thresholding parameter Θ represents a trade-off be-

tween an ability to detect strokes of low-contrast and the

number of candidate regions to classify (see Section 3.2).

In our implementation, we set Θ = 8 for all directions

and scales; lowering the threshold did not further improve

method’s recall, but it increased the number of candidate

regions (see Figure 6).

In our experiments, we first normalized the contrast of

the gradient projection with a low-pass filter and then con-

volved it over a range of 10 exponentially decreasing scales

(in the interval of 0.05 and 1.0) and 4 orientations (0◦, 45◦,

90◦ and 135◦) - see Figure 4. The convolution is preformed
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Figure 5. Candidate regions are induced through bounding-boxes

of strokes, which reduces the number of target rectangles by three

orders of magnitude when compared to the sliding-window meth-

ods. Candidate regions T (top). Sample image regions extracted

for better clarity (bottom). Note that the proposed method does not

extract any image patches as part of the process

twice, once in the original image and once in an inverted

image to detect strokes with an opposite ridge orientation.

3.2. Candidate Region Detection

In the next step, we generate candidate image regions

(in the form of bounding-boxes) for classification. Un-

like sliding-window methods which exhaustively evaluate

all image regions, we exploit the fact that we are only in-

terested in image regions which contain at least one stroke

(in our character representation, regions without any stroke

would be rejected as non-characters anyways). Moreover,

if we assume that for each character there exists a sub-

set of its strokes that induces its bounding-box, we can

efficiently generate candidate regions by taking unions of

stroke bounding-boxes.

Let us denote Bα,s as the set of bounding-boxes of con-

nected components (strokes) in Rα,s (where the binariza-

tion was obtained by simply taking non-zero values). The

set of candidate regions T is then defined as

T =
⋃
b∈B

K⋃
k=0

υ(c, k) (5)

B =
⋃
∀α,s

Bα,s (6)

υ(c, k) = ∪{b,N1(b), . . . , Nk(b)} , Nk(b) ∈ B (7)

where ∪ denotes a union of bounding-boxes (the smallest

rectangle that contains all rectangles in the set),
⋃

is a stan-

dard union of sets and Nk(b) is the k-th nearest compo-

nent from the bounding-box b (measured by distance of the

10
0

10
2

10
4

10
6

 2  4  6  8 10 12
Θ

|T|

Figure 6. The number of candidate regions |T | as a function of the

thresholding parameter Θ

bounding-boxes’ centers). In other words, for each con-

nected component (stroke) we consider its bounding-box

and thenK bounding-boxes created as a union of bounding-

boxes of 1 to K nearest connected components (see Fig-

ure 5).

The problem is overcomplete as typically there are many

different combinations of strokes which induce an identical

or nearly identical character bounding-box, which reduces

the probability of missing a true bounding-box in such a

greedy approach. For example, consider the letter “E” - it

consists of 4 strokes (3 horizontal and 1 vertical) and 4 out

of 6 possible stroke pairs (and all 4 possible stroke triplets)

induce identical character bounding-box. Moreover, the ex-

act position of the character bounding-box is not crucial be-

cause the character representation is robust to shift.

This property also allows to further improve the

method’s performance by eliminating similar rectangles

from the T set by keeping only the largest rectangle of the

similar rectangles (two rectangles are considered similar if

their intersection is more than 95% of their union). Rectan-

gles smaller or larger than a size of the smallest resp. largest

character to be detected are also removed.

On average the number of candidate regions in an image

is of the order of magnitude between 103 and 104 (depend-

ing on the amount of text and other stroke-like textures),

which is orders of magnitude less than the number of can-

didate regions in a standard exhaustive sliding-window ap-

proach (in an image of 2× 106 pixels, there are ≈ 2× 106

different window locations times number of scales and as-

pects, i.e. magnitude between 106 and 108).

The number of neighboring bounding-boxes K was set

to 5; increasing the value further had very little impact on

the overall results because of the overcompletness of the

task and also because characters in our datasets (coming

from Latin alphabet) consist of a relatively low number of

strokes. Applying this method to a different script (e.g. Chi-

nese script) might however require an increase of the param-

eter value, but this still would be computationally feasible

as the number of candidate regions is linear in the number

of strokes.
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3.3. Character Recognition

Each candidate region b ∈ T is labelled with a Unicode

code(s) or rejected as “unknown” in the following process.

At first, a response of the candidate region Rα(b) is calcu-

lated as a maximum pooled over an interval of scales

Rα(b) = maxs∈ρ(b)M20(R
b
α,s) (8)

max(X1, X2, . . . , XL) =
(
mi,j

)
: mi,j =

L
max
l=1

xli,j (9)

Mn(Xd×d) =
(
mi,j

)
n×n

:

mi,j =
S

max
k=1

S
max
l=1

xSi+k,Sj+l

S =
d

n
(10)

where max is an element-wise maximum, ρ(b) is the scale

interval,Mn(X) is a pooling operation which extracts max-

imums of X into a fixed-size matrix of size n and Rb is the

subregion of R corresponding to the bounding-box b. If the

region is not a square, it is padded with zeros to form a

squared matrix.

Only a subset of scaled responses which were precom-

puted in the first stage (see Section 3.1) is used for each re-

gion, depending on its size and aspect, so that strokes from

lower scales do not suppress the ones from a higher scale.

The subset is determined by the trained function ρ(b), which

maps region’s height and width to an interval of admissible

scales. For example, a region which is two times wider than

higher can only be occupied by characters with a similar

aspect (i.e. “m”, ”w”, . . . ) and this limits the interval of

possible stroke widths. Because of the assumption of the

unit stroke width, the interval of possible stroke widths un-

ambiguously determines the interval of admissible scales.

The response in each orientation Rα(b) is then blurred

with a 7 × 7 Gaussian filter (σ = 2) for partial shift-

invariance and subsampled again with a M5 operation to

form a 5× 5 matrix R̂α.

R̂α =M5

(
Rα(b) ∗G

2
7×7

)
(11)

The final feature vector f(b) is created by concatenating re-

sponses of all 4 orientations R̂α(b), thus forming a 100-

dimensional feature vector (see Figure 7).

Given a training set T , a set of K nearest neighbors

N(b) = NK(f(b)), N(b) ∈ T is assigned to each candi-

date region (see Figure 9). A set of admissible labels L̂(b)
of a region b is then defined as

L̂(b) =
{
l(n) : n ∈ N(b) | ‖f(n)− f(b)‖ ≤ d̄(l(n))

}
(12)

where l(n) denotes label of the training sample n and d̄(l) is

a maximal distance for the label (class) l. A set of character

regionsR is then defined as
{
b ∈ T | L̂(b) �= ∅

}
.

α = 0 α = 45
◦

α = 90
◦

α = 135
◦

Rα,0.11

Rα,0.18

Rα,0.32

Rα,0.61

Rα

R̂α

Figure 7. The character representation is based on positions of ori-

ented strokes, which are pooled over multiple scales

Figure 8. Random samples from the training set. The set contains

5580 characters from 90 fonts with no distortions, blurring or ro-

tations

In our experiments, the training set consists of images

with a single black letter on a white background (see Figure

8). In total there were 5580 training samples (62 character

classes in 90 different fonts). Let us note that no further dis-

tortions, blurring, scaling or rotations were artificially intro-

duced to the training set, in order to demonstrate the power

of the feature representation, and that the method can be

easily extended to incorporate additional characters or even

scripts (without any limitation on the number of classes) and

to detect fonts with almost no overhead.

The nearest-neighbor classifierNK was implemented by

an approximative nearest-neighbor classifier [10] for perfor-

mance reasons and K was set to 11. The values d̄(l) were

estimated for each class by a cross-validation on the training

set as an average maximal distance over all folds, multiplied

by a tolerance factor of β. The value of β represents a trade-

off between detecting more characters from fonts not in the

training set and more false positives. In our experiments, we

used the value β = 2.5, which yields the best performance

on the training subset of the ICDAR dataset (see Section 4).

3.4. Word Formation

Given a set of character regions R, the regions are ag-

glomerated into a set of text lines T (see Algorithm 1). A
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Figure 9. Candidate regions are classified with a nearest-neighbor

classifier trained on synthetic data. Note that the distance from

the templates is not dramatically affected when the letter is dis-

connected (a) and that letter-like regions (c, d) have lower distance

from templates and lower entropy of labels than regions without

characters (e)

text line T ∈ T is a partially ordered set of regions whose

bottom points are arranged in a single direction. The par-

tial ordering is induced by relative position of the regions

in the direction of the text line and represents a left-to-right

ordering of characters in a word. In other words, the partial

ordering is induced by the restriction that a region can only

be preceded by regions to the left and succeeded by regions

to the right from the particular region, allowing for a small

overlap.

To detect words in the image and recognize their content,

an optimal sequence is found in each text line (where the

order in the sequence is induced by the partial ordering of

the text line) by maximizing the objective function

L∗(T ) = argmax∀i,l∈L̂(ri)

( |T |∑
i=1

φ(ri, L̂(ri))+

+

|T |−2∑
i=1

ψ (ri, ri+1, ri+2)
)
, ri ∈ T (13)

φ(r, l) = log pL(l|r) (14)

ψ(ri, ri+1, ri+2) = log pS(ri+2|ri, ri+1)pP (ri+2|ri, ri+1)

pA(ri+2|ri, ri+1) (15)

where pL is the probability of the region r having the label

l, pS is the probability of the inter-character spacing differ-

ence, pP is the probability of regions’ relative positioning

and pA is the adjacency probability given by the language

model.

The probability pL is approximated as a weighted sum of

the relative distances of the K nearest neighbors (see Sec-

tion 3.3)

pL(l|r) ≈
1

K

∑
n∈N(r):l(n)=l

minn′∈N(r) d(n
′, r)

d(n, r)

d(n, r) = ‖f(n)− f(r)‖ (16)

The probability pS models the observation that the spac-

ing between characters does not vary a lot in a single word.

We define the difference of spacing Δs of three regions as

Δs(r1, r2, r3) =
|s12 − s23|

max(s12, s23)

sij = rLj − r
R
i (17)

where rL and rR denote left respectively right boundary of

the region in the orientation of text. The probability pS is

then estimated from Δs, assuming that Δs is a random vari-

able with a Normal distribution (whose parameters were ob-

tained on synthetically generated words of different fonts).

Similarly, the probability pP models the observation that

positioning of a character triplet is not arbitrary. We define

the difference of top Δt respectively bottom Δb positions

as

Δt(r1, r2, r3) = min
(
|rT1 − r

T
2 |, |r

T
2 − r

T
3 |, |r

T
1 − r

T
3 |

)
(18)

Δb(r1, r2, r3) = min
(
|rB1 − r

B
2 |, |r

B
2 − r

B
3 |, |r

B
1 − r

B
3 |

)
(19)

where again rT and rB denote top respectively bottom

boundary of the region. The probability pS is then esti-

mated from Δt, whose distribution is modelled by a two-

dimensional Gaussian Mixture Model.

The probability pA is approximated by relative frequen-

cies of character triplets, which are calculated in the train-

ing stage (a list of approx. 30000 English words was used

to generate the relative frequencies).

A standard Dynamic Programming approach is used to

find the optimal value of Equation 13 (because the function

contains 2nd order terms, it is first necessary to transform

the task into a 1st order problem by expanding the state

space) and the optimal sequence is selected as content of

the text line. As a final step, spaces are detected as peaks

in the histogram of inter-character spacings to break down

text lines into words and overlapping words are eliminated

through a non-maximum suppression.

4. Experiments

The proposed method was evaluated on the ICDAR

2011 Robust Reading competition dataset [14], which con-

tains 1189 words and 6393 letters in 255 images. Using
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Data: a set of regionsR
Result: a set of text lines T

T←− ∅;
R←− R;

D ←− [−45,−35, . . . , 0, . . . , 45];
while |R| > 0 do

for d ∈ D do

B ←− bottom points of r ∈ R;

rotate b ∈ B by d;

Hd ←− histogram of y-coordinates of b ∈ B;

end

d̄←− index of the histogram Hd with the greatest

peak;

y ←− the value corresponding to the greatest peak

in Hd̄;

l←− line in the direction d̄ and position y;

T ←−
{
r ∈ R : the bottom point of r is close to

the line l
}

;

R←− R \ T ;

T←− T ∪ T ;

end

Algorithm 1: Text line formation

the ICDAR 2011 competition evaluation protocol [18], the

method reaches the recall of 66.4%, precision of 79.3% and

the f-measure of 72.3% in text localization (see Figure 10

for sample outputs).

The method achieves significantly better recall (66%)

than the winner of ICDAR 2011 Robust Reading compe-

tition (62%) and the recently published Shi’s method [15]

(63%). The overall f-measure (72%) outperforms all pub-

lished methods (see Table 1), but the precision is worse than

the winner of the ICDAR competition. Let us note that the

ICDAR 2011 competition was held in an open mode where

authors supply only outputs of their methods on a previ-

ously published competition dataset.

In the end-to-end text recognition, the method achieves

the recall of 45.4%, the precision of 44.8% and the f-

measure of 45.2%, which significantly outperforms the re-

sults achieved by the recently published method of Neu-

mann and Matas [12] (see Table 2).

The average processing time of the code implemented

in Matlab is approx. 35s per image on a standard PC. The

processing time can be further improved by parallelization

and a more efficient implementation of the convolution and

dynamic programming stages.

The problems of the method include ambiguities intro-

duced by the fact that a subregion of a character might be

another character, failures to detect letters on word bound-

aries which consist of just one stroke (e.g. “I”, “l”) and

false positives caused by strokes around areas with text (see

Figure 11).

method recall precision f

proposed method 66.4 79.3 72.3

Shi et al. [15] 63.1 83.3 71.8

Kim (ICDAR’11 winner) [14] 62.5 83.0 71.3

Neumann and Matas [12] 64.7 73.1 68.7

Epshtein et al. [4] 60.0 73.0 66.0

Yi’s Method [20] 58.1 67.2 62.3

TH-TextLoc System [5] 57.7 67.0 62.0

Table 1. Comparison with most recent text localization results on

the ICDAR 2011 dataset.

method recall precision f

proposed method 45.4 44.8 45.2

Neumann and Matas [12] 37.2 37.1 36.5
Table 2. Comparison with most recent end-to-end text recognition

results on the ICDAR 2011 dataset.

5. Conclusions

An end-to-end real-time text localization and recogni-

tion method was presented in the paper. The method intro-

duces a novel approach for character detection and recogni-

tion which combines the advantages of sliding-window and

connected component methods. Characters are detected and

recognized as image regions which contain strokes of spe-

cific orientations in a specific relative position, where the

strokes are efficiently detected by convolving the image gra-

dient field with a set of oriented bar filters. The characters

are selected from an efficiently obtained set of target regions

by a nearest-neighbor classifier, which exploits novel char-

acter representations based on strokes.

On the standard ICDAR 2011 dataset [14], the method

achieves state-of-the-art results in both text localization and

end-to-end text recognition.
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