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Abstract

Existing mobile image instance retrieval applications as-
sume a network-based usage where image features are sent
to a server to query an online visual database. In this
scenario, there are no restrictions on the size of the vi-
sual database. This paper, however, examines how to per-
form this same task offline, where the entire visual index
must reside on the mobile device itself within a small mem-
ory footprint. Such solutions have applications on location
recognition and product recognition. Mobile instance re-
trieval requires a significant reduction in the visual index
size. To achieve this, we describe a set of strategies that
can reduce the visual index up to 60-80 × compared to a
standard instance retrieval implementation found on desk-
tops or servers. While our proposed reduction steps affect
the overall mean Average Precision (mAP), they are able
to maintain a good Precision for the top K results (PK).
We argue that for such offline application, maintaining a
good PK is sufficient. The effectiveness of this approach
is demonstrated on several standard databases. A working
application designed for a remote historical site is also pre-
sented. This application is able to reduce an 50,000 image
index structure to 25 MBs while providing a precision of
97% for P10 and 100% for P1.

1. Introduction
Mobile image retrieval allows users to identify visual in-

formation about their environment by transmitting image

queries to an online image database that has associated an-

notations (e.g. location, product information, etc) with the

images. However, this is reliant on a network connection to

transmit and receive the query and retrieved information.

This paper examines mobile image retrieval for offline
use when a network connection is limited or not available.

In this scenario, the entire visual search index must reside

on the mobile device itself. More specifically, we are in-

terested in “instance retrieval”, where the annotations asso-

ciated with the images (e.g. building’s name, object infor-

mation) are returned by the query and not the images them-

selves. Figure 1 shows an example use case where mobile
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Figure 1. Example use of our method where landmark location

can be performed offline by indexing an image collection within a

small memory footprint for use on a mobile device.

camera photos are used to identify buildings and landmarks

without the need for a network connection.

While our targeted instance retrieval does not need to

store the images, the entire visual index structure needs to fit

on a mobile device, ideally within a small footprint (e.g. 16-

32MB). This small memory footprint serves two purposes.

First, while mobile phones have up to 16-32GB of storage,

this is mainly in the form of slower flash memory that is

an order of magnitude slower than RAM. Having the en-

tire index within tens of MBs makes it possible for use in

a resident application on the phone’s RAM. Second, this

small size is inline with common practices for mobile ap-

plications; e.g. the iPhone average application size is cur-

rently 23MB. Additionally, iPhone apps less than 50MB can

be downloaded using 3G/4G, anything large must be down-

loaded using a wireless connection [1].

Contribution We introduce a series of pruning steps that

can significantly reduce the index size and incorporate par-

tial geometry in it. These include a simple vocabulary prun-

ing based on word frequency, exploiting a 2-word-phrase

based index structure, placing constraints on feature geom-

etry and encoding the relative geometry of visual words.

Each step is discussed in detail and a running example us-

ing the Oxford building dataset is used to show the effects

on the index size and performance. While this reduction

does come at a cost of a lower mAP, our reduction strate-

gies do not adversely affect the mean precision at K (PK).
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In fact, our collective strategies are able to reduce the visual

index up to 60-80 × with virtually no change in P10, P5 and

P1. As we show, this is perfectly suited for mobile instance

retrieval application. Higher precision for smaller K is im-

portant since, the eventual goal of the solution is to transfer

the information from the top-K results to the query image.

1.1. Related Work

Image recognition and retrieval for mobile devices al-

ready has several successful examples. Commercial apps

like Google Goggles, Amazon Snaptell, Nokia’s Point and

Find, are current popular examples. Most of these mobile

apps use a client-server model and communicate with a re-

mote server for matching within large image databases [12,

6, 5, 7]. Some of these applications send the image to the

server, while other implementations send a compressed fea-

ture representation over to the server [4, 10, 18]. We ad-

dress this problem in a far more challenging setting, where

the entire computation must happen on the mobile device.

This requires the entire database of information to reside

on the device storage. Prior work targeting this offline sce-

nario [11, 13, 27, 30] have only been demonstrated on im-

age databases of the order of hundreds of images. We tar-

get databases at least 10-100 times larger where the mo-

bile device should store a compact search index to instantly

recognize the query and annotate it. In order to avoid any

time-consuming post-processing, we need the search index

to effectively borrow the advantages of geometric verifica-

tion into index structure.

Image recognition and retrieval primarily involves

matching local image features which represent an image’s

appearance and geometry, to those in the database. Us-

ing Bag-of-Words approaches [20, 23, 26], scalability is

achieved with the help of (i) quantization, which enables

the efficient computation of similarity and (ii) order-less

description of image features, making the representation

invariant to many popular transformations. Variations of

this approach have been motivated either towards building

a compact and efficient search index or, a geometry induced

search framework.

Decreasing the memory footprint of the search index has

been earlier addressed targeting desktop environments [15,

17, 32]. Identifying a useful subset of training features

that are robust and distinctive and using only these for spe-

cific retrieval tasks can achieve significant memory savings

without loss in matching performance [29]. Hamming em-

bedding techniques for feature representation in the form

of binary strings have been introduced to efficiently work

with smaller vocabularies [14]. Such techniques have also

been employed for binary representation of global image

features like GIST [28]. A popular alternative approach to

inverted files in large-scale search is the min-hashing tech-

nique [9, 8]. Usage of Fisher Vectors [22] and vector of lo-

cally aggregated descriptors (VLADs) [16] for large-scale

image search has been demonstrated with compact image

vectors using joint optimization of dimensionality reduction

and indexing for precise vector comparisons.

Words alone may not be meaningful to retrieve seman-

tically related images. In such cases, one could use larger

constructs (e.g. phrases) defined over multiple words as the

basic primitive [19, 25]. A few attempts have introduced

novel techniques which can help in phrases with index

structures like min-hash [8, 34]. Introduction of geometry

constraints into the phrase or index definition [21, 34, 35]

often helps in improving the recall of the rare objects in

large databases. However, with introduction of geometry,

the search index size grows. Our approach attempts to

achieve a compact geometry preserving indexing by effi-

ciently utilizing the advantages of visual-phrase representa-

tion of images. We prune the largest possible 2-word-phrase

space to design a compact solution.

2. Reducing the Index Footprint
There are two broad directions in image retrieval: (a)

category retrieval and (b) instance retrieval. This work ad-

dresses the latter, which focuses on retrieving images and/or

associated information related to a specific instance/object,

where the query can be from a widely varying imaging con-

dition (like scale, view-point, illumination, etc) compared

to those in the database. Instance retrieval literature has

been dominated by the Bag-of-Words (BoW) method and

its variations [9, 20, 23, 26].

In this section, we start by analysing the memory and

storage requirements of the instance retrieval solution im-

plemented as an inverted index search with a BoW repre-

sentation. We experiment on the Oxford-5K dataset [23] to

demonstrate the quantitative performance of various index-

ing strategies. This dataset contains 5,062 images from 11

different landmarks, each represented by 5 possible queries.

Local features (often SIFT vectors) are first extracted at

interest points and quantized with the help of a precomputed

vocabulary. With quantization, a 128-Byte SIFT represen-

tation gets converted to a compact visual word represen-

tation of 4 Bytes (or smaller depending on the vocabulary

size). Visual word representations are attractive for their in-

variance to the common transformations and compactness.

Database images get represented as a histogram of visual

words that are indexed with an appropriate index structure

(often an inverted index). During the retrieval, SIFT vectors

are extracted at interest points from the query image. They

are quantized into visual words, and a set of images having

most of these visual words in common, are retrieved from

the database. Weighting visual words based on a TF-IDF

measure has shown to improve the performance [26]. Even

then, this list could contain many false positives. As such,

the retrieved images are matched with the query image, and
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re-ranked based on the matching scores. Often, fitting a fun-

damental matrix or geometric verification (GV) of the two

images is the basis for matching.

The choice of quantization scheme is a trade off between

accuracy vs efficiency. Clustering with a flat k-means ap-

proach gives better results, but the quantization is linear in

terms of the vocabulary. A vocabulary tree built with hi-

erarchical k-means (HKM) [20] has logarithmic order and

highly speeds up the vocabulary assignment, with small

compromise on clustering results. Approximate k-means

(AKM) [23] also has similar time and memory complexity

as HKM. We choose to use HKM for our experiments.

For many instance retrieval tasks, the vocabulary size can

be as high as 1M. If there are 5K images, the histogram rep-

resentation could be as large as 5GB (5K · 1M · 1Byte). An

efficient implementation with an inverted index can do this

in around 110MB. An additional variable length encoding

(VLE) technique could be used to further compress the in-

dex size. This, however, incurs additional decoding costs

which may be undesirable on a mobile device. We report

and compare the memory footprint without using VLE com-

pression techniques for all our experiments. In addition,

we need 2.3 GB memory to store the SIFT vectors with

keypoint information, which are required during the final

Geometric Verification (GV). Note, this does not count the

storage of the image database. In Table 1, we present the

space requirement as well as the retrieval performance of a

desktop (BoW-D) implementation of a retrieval system on

Oxford Building dataset. We show performance with and

without GV. While GV improves the mAP and PK , it re-

quires significant computational resources, in addition, the

resulting memory requirement is unacceptable for mobiles.

2.1. Baselines with Pruned Visual Words

We first reduce the memory requirement with two sim-

plifications. First, for the problem of our interest, we do not

store the images on the phone (we only need the annotation

information or tags). This limits the storage to only the fea-

tures and representations. Second, as done by other retrieval

systems, instead of using SIFT vectors for GV, we match the

visual word indices in the corresponding images. This re-

duces the memory requirement by a factor of 32 (i.e., 128
4 ),

without visible reduction in performance, as can be seen in

Table 1 (see row:BoW-WGV).

A large vocabulary is one of the primary reason for the

large index size; e.g. instance retrieval solutions need large

(closer to 1M) vocabulary for finer quantization [23, 24].

Smaller vocabularies reduce the search index, but at the cost

of performance. We desire a smaller vocabulary with finer

quantization. We do this by pruning the vocabulary by dis-

carding some of the visual words while indexing.

Instead of directly computing a smaller vocabulary, we

prune the large vocabulary and define a smaller one by

Voc Index mAP P10 P5 P1

BoW-D 1M 110MB .580 .75 .87 .88

BoW-D-GV 1M 2.4GB .618 .79 .92 .93

BoW-WGV 1M 510MB .616 .78 .92 .93

BoW-Pr 750K 80MB .555 .75 .88 .91

BoW-PrGV 750K 480MB .582 .77 .91 .92

Base-Phr 530K 58MB .592 .78 .92 .93

Table 1. Baseline instance retrieval on the Oxford Buildings 5K

dataset using the BoW framework. Last two rows reflect results

with pruning and using 2-word-phrases respectively.

recursively removing the least influencing visual words.

Pruning is done by identifying and eliminating visual words

that are the least useful for the retrieval task. Borrow-

ing the idea behind TF-IDF, visual words that occur in a

large number of images or conversely, in few outlier im-

ages are treated less discriminative. A visual word occur-

ring in greater than TH images or, less than TL images is

removed (TL and TH are experimentally determined). That

is, instead of weighing the visual words based on TF-IDF,

we discard (i.e., assign a zero weight) the least scored vi-

sual words and work only with the informative visual words

(with weight as one). Using such a vocabulary pruning, we

reduce the vocabulary size from 1M to 750K, with only a

minor reduction in performance as can be seen in Table 1.

Results of the pruned vocabulary (BoW-Pr and BoW-PrGV)

are comparable to the original.

2.2. 2-word-phrase Search Index

Using a set of neighboring words (often referred to as

phrases) is often more informative than isolated words. This

has been attempted in various forms [3, 8, 25, 31]. Focus

of most of the previous work has been on obtaining higher

quantitative performance (i.e., mAP) during the retrieval. In

this work, we first define a phrase as a pair of visual words,

and show how that can help in the instance retrieval task.

Figure 2. Building a 2-word-phrase index: Each image, repre-

sented by BoW quantized features, is processed to obtain phrases

by dividing the image into “overlapping” grids and indexing 2-

word combinations in each grid. In the final index, only phrases

that index more than one image are retained.
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A 2-word-phrase is detected from an object and is in-

dexed in search records, if it occurs repetitively in images

containing that particular object. Such phrases can be rep-

resented as pk = {wi, wj} such that wi is in the neighbor-

hood of wj , and indexed in a similar manner to that of visual

words. For implementation, we consider the neighborhood

as a fixed size of 50 pixels. To avoid duplicate 2-word-

phrases in the index structure, we constrain wi ≤ wj . pk is

indexed in a hash-map with {wi, wj} as a key. The map

data structure is typically implemented as binary search

trees with logarithmic look-up time. Extracting higher or-

der phrases increases the computational requirements dur-

ing query processing. We find the additional computations

are not affordable on low-processing devices. Further, in-

dexing higher order features ( ≥ 3 words ) is harder and do

not always enhance the retrieval performance [33].

With a vocabulary size of 1M, the number of possible 2-

word-phrases could be as large as 1012, however, this does

not happen in practice. We first find a set of phrases that are

prominently present in the database. For example, phrases

formed with a vocabulary as small as a 500K, one can obtain

performance comparable to that of 1M visual words (see

Table 1) without any explicit geometric verification. Even

in this case, the subset of relevant phrases are computed

based on the TF-IDF scores.

To speed up the computation, we divide the image into

overlapping rectangular grids (see Figure 2) and choose

combinations of visual word pairs from each grid. The over-

lap must be sufficient to ensure that true-positive 2-word-

phrases are not missed out at grid-boundaries. A 40− 50%
overlap is ensured between consecutive rectangular grids.

Table 1 shows the comparison with traditional approaches.

In row:Base-Phr, one can observe that the vocabulary is

pruned to half the original size and the index requirement

reduces by almost half to 58MB. The mean average pre-

cision (mAP) increases by ~1% as compared to baseline

BoW method (BoW-D) and reduces by ~2% as compared to

BoW with geometric verification (BoW-D-GV). However,

P10 and P5 are comparable with the latter. Since we are

motivated to look for the most similar image and not bother

about the rank-list, the drop in mAP is ignored.

3. Geometry-aware 2-word-phrases
For our problem of instance retrieval, such as location

recognition or product search, further constraints on the

geometry can be assumed. For example, the variation of

depth within an object will likely be small, even if the ob-

ject/product is not planar. In this section, we demonstrate

how the geometry can be effectively used in selecting a

much smaller subset of phrases for our instance retrieval

problem. In general, we constrain the phrases selected,

based on (i) the scale of keypoints at the visual word lo-

cation, (ii) the relative placement of the words, and (iii) the

Voc Index mAP P10 P5 P1

ScA-Phr 462K 41MB .581 .78 .92 .93

SpA-Phr 280K 36MB .579 .78 .92 .93

Scp-Phr 250K 28MB .571 .78 .91 .92

SV-Phr 180K 16MB .567 .77 .90 .91

BoW-D-GV 1M 2.4GB .618 .79 .92 .93

FV 64 4.5MB .298 .50 .66 .76

VLAD 256 23MB .309 .49 .63 .69

Table 2. Results on using the Geometry aware 2-word-phrases.

ScA-Phr, SpA-Phr, Scp-Phr and SV-Phr Phr refer to the the 2-

word-phrase index methods with scale-aware, space-aware, both

scale-space aware and spatial validity constraints respectively. The

last three rows refer to the state-of-the-art Bag-of-words (as BoW-

D-GV in Table 1), Fisher Vectors and VLAD approaches [17].

possibility of it contributing reliably for a geometric verifi-

cation. We compare the results with the standard desktop

version of BoW with GV (BoW-D-GV), and with the state-

of-the-art image search techniques with compact represen-

tations: the Fisher Vectors (FV) and Vector of locally ag-

gregated descriptors (VLADs) [17]. Note we are using the

basic implementation for VLADs in [17], recent improve-

ment gains in results have been demonstrated [2].

3.1. Scale-aware constraints

We define phrases only in a small neighborhood (50 pix-

els in practice) and assume both the visual words are at the

same scale. This is mostly true except for situations of seri-

ous depth discontinuity. However, for situations like prod-

uct search or location search, this is a reasonable assump-

tion. Phrases defined using words with the same scale are

referred to as scale-aware phrases. This also helps in select-

ing phrases that will be reliable for viewpoint variations.

During feature extraction, SIFT keypoints are detected

at scale-space extrema points using the DOG-space pyra-

mid, constructed at scale-levels that are multiples of 2. We

separate scale according to log-scale (log(si)) value corre-

sponding to the feature keypoints detected at si scale. Two

visual words with keypoint scales si and sj , are combined

into a 2-word-phrase, if |(log(si) − log(sj))| is less than a

particular threshold τ . For our implementation we use τ as

3. The separation of scale allows to enlarge our rectangular

window size to 70 − 100 pixels as the number of 2-word-

phrase combinations get reduced significantly. This accom-

modates more true-positives and reduces the probability of

false-positives. In Table 2, with scale-aware phrases (ScA-

Phr) the search index is reduced with a further pruned vo-

cabulary, while precision P10, P5 and P1 are preserved.

3.2. Space-aware constraints

Phrases capture larger geometry of the configuration of

visual words. We constrain the geometry of occurrence of

two visual words further by encoding the relative placement
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Figure 3. Space aware constraint is enforced with a two bit infor-

mation qij along with the 2-word-phrase {wi, wj} as shown.

of visual words in a neighbourhood. We embed a loose spa-

tial constraint using just 2-bits of information. In a phrase

pk defined by {wi, wj}, where wi ≤ wj , we choose wi as

the origin and determine in which rectangular quadrant wj

lies in (See Figure 3). Depending on the quadrant where

wj lies, a two-bit value of qij = 0, 1, 2, or, 3, the 2-word-

phrase key is modified as {pk, qij} i.e. {wi, wj , qij}.

With just two-additional bits per index key, we further

prune the vocabulary size and reduce the phrases from the

search index. In Table 2, row:SpA-Phr corresponding to

space-aware phrases, shows a decrease in the size of search

index. Using both the scale and space constraints (row:Scp-

Phr) together, we achieve a search index structure as small

as 28MB with a vocabulary pruned to 250K.

3.3. Spatial Validity Constraints

Motivated by the approach presented in [29], we retain

useful features by validating the training features in each

image using an unsupervised pre-processing. Useless fea-

tures that come from occlusions and unstable keypoints are

likely to exist in only a single image, while useful features

are found in more than one image of the same object. To

identify useful features, each image is used as a query and

geometric verification is performed on the top M retrievals

based on visual word matching. The features that score as

inliers in this procedure are considered useful and hence re-

tained. Other features are discarded. Using M = 100, we

Figure 4. Spatially validated features in example images. The

red dots represent the rejected features after geometric validation

based pre-processing, while green dots are the useful features. We

can observe the unstable features due to occlusion are removed.

observe that this brings down the average number of fea-

tures per image by 90% (See Figure 4).

We now prune 2-word-phrases that have a component

visual feature rendered useless by the above technique.

Hence, the phrases obtained by the combination of space

and scale aware constraints are further processed. This

brings down the vocabulary size to 160K and the search

index is reduced to 16MB. As shown in Table 2 (row:SV-

Phr), phrases constrained with spatial validity further com-

promise the mAP over the conventional BoW-D-GV ap-

proach but help in significant reduction of index size.

3.4. mAP vs PK

Image retrieval research is often focused on achieving

a superior mAP of the retrieved images. This is achieved

by pulling out rare images or images which contain the ob-

ject or location of interest in only a small part of the image.

This is relevant when the objective is to retrieve from a “ca-

sual” database of images. We are working on a database

of images with annotations (which are often prepared and

specially annotated by a user). Given a specific view of a

product or building, we are not interested in getting all the

images of the same object. Instead, we desire a similar view

in a reliable manner and possibly transfer the annotation to

the query image. This needs highly similar images coming

at the top of the retrieved list. Our retrieval process is de-

signed to retain the highly similar images at the top of the

list. This is done by (i) using the scale information while

defining phrases and (ii) spatial constraints preferred im-

ages with similar view angles to be at the top of the list.

4. Results and Discussions
We demonstrate that the method of using 2-word-phrases

in our search index, significantly reduces the size of the In-

verted look-up index. By identifying 2-word-phrases that

inherit robust geometrical constraints, we are able to further

reduce the search index by 3-4 times. In the previous sec-

tions, we make use of Oxford-5K as our primary evaluation

dataset. We now show results on three other datasets.

Evaluation Criteria: Image retrieval systems measure

the performance in terms of the mAP. Average precision is

the area under the precision-recall curve. This is computed

for each query based on the ranked list of retrieved images,

and the average performance on all queries give us the mAP.

We are interested in search applications that are not con-

cerned with the ranked list, but only the top image. Hence,

although we take care of sharp drop in AP, only the Preci-

sion at K (PK) matters. Hence, we measure the mean Pre-

cision at 10, 5, 1 (P10, P5, P1) to evaluate our performance.

4.1. Performance on Multiple Datasets

Paris Buildings [24] : This dataset has 6,386 high-

resolution (1024×768) images of 11 iconic landmarks from
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Dataset #Images #Queries

Oxford Buildings 5,062 55

Paris Buildings 6,383 55

UkBench Dataset 10,200 10,200

Heritage Structures 50,292 40

Table 3. Number of images in each dataset and the number of

queries used for evaluation.

�
���

�
�
�� 

!
"
#�
$%�

&
#��' 

!
(�
�
$��� 

!
)
*�
�
���+' 

!

Figure 5. Random Sampling of images from each of the four

datasets used for evaluation: Oxford Buildings, Paris Buildings,

UkBench, and Heritage structures.

France. Five query images are taken from each of the 11

buildings to give a total of 55 queries. The images are

marked by architecturally distinct landmarks unlike iden-

tical buildings in Oxford-5K, which creates a difference in

the vocabulary used for quantization. With a vocabulary

size of 1M , we observe that the mAP is affected with our

2-word-phrase indexing technique. However, we were able

to reduce the memory footprint significantly, compared to

BoW approach with SIFT-based GV (BoW-D-GV).

UkBench dataset [20] : This dataset has 10,200

medium-resolution (640 × 480) images with 2,550 groups

of 4 images each. Each group has images of a particular

object from different viewpoint and angle variations. Since,

the objects are very distinct, this dataset has large variations

in appearance. A vocabulary of size 1M was built using

Dataset Method Voc Index P10* P1

Paris

(6,086)

BoW-D-GV 1M 1.9GB .98 1.0

Base-Phr 300K 51MB .91 .95

Geom-Phr 200K 34MB .91 .98

ukbench

(10,200)

BoW-D-GV 1M 1.2GB .76 .92

Base-Phr 300K 22MB .65 .88

Geom-Phr 200K 16MB .68 .91

Heritage

(50,292)

BoW-D-GV 1M 1.6GB .97 1.0

Base-Phr 350K 37MB .96 1.0

Geom-Phr 200K 25MB .97 1.0

Table 4. Performance on the remaining three datasets. *: For the

Ukbench dataset, we evaluate P4 instead of P10. Base-Phr re-

fer to baseline 2-word-phrases and Geom-Phr shows results with

geometry-aware 2-word-phrase indexing.

features from all the objects. The evaluation criteria here is

P4 and P1. Each image in the dataset is taken as a query

image and performance is measured. It was observed that

on average, we usually get more than 2 out of the 4 positives

in the top-4. The size of the search index is reduced by 75

times, compared to BoW-D-GV.

Heritage Dataset : We introduce a novel data set of

images from a world heritage site. This dataset has 50,292

medium-resolution (480 × 360) images of specific build-

ings, architectural details, interiors and exteriors of heritage

monuments, etc. (See Figure 5, last two rows). Four query

images are taken from each of the 10 distinct and iconic

monumental structures we identified to evaluate on, giving

us a total of 40 queries. This dataset has similarities with

the Oxford-5K in terms of the identical buildings and struc-

tures, marked by a unique style of architecture. We measure

performance in terms of precision at 10, 5, 1. We reduce the

search index size significantly, however, PK is preserved.

4.2. Analysis

Selecting a phrase or co-occurrence of visual words from

a query image to match with a similar co-occurrence in the

database brings in spatial constraints during the matching

procedure. Along with further addition of loose-geometry

to the pair of visual words in a phrase, the constraints be-

come stronger in order to avoid false matches.

With the help of 2-word-phrases as a key in the search in-

dex, our method tries to achieve the same precision at ranks

10, 5 and 1 as obtained by the conventional BoW-based ap-

proach with the GV post-processing. Matching spatially

and geometrically constrained 2-word-phrases partially in-

corporates the advantages of GV. In Figure 6, we can ob-

serve that while the raw individual visual word matches in-

clude a lot of false-positives, on matching 2-word-phrases,

we mostly have true-positive matches.

We also observe that the 2-word-phrases help in signif-

icantly reducing the size of the search index. This can be

realised if we understand that only stable feature keypoints

are preserved and indexed in the search records. Lone key-

points that cannot be paired with others in the chosen neigh-

borhood, as well as those set of pairs that occur in single
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Figure 6. Visual word vs. 2-word-phrases matches between two

images of the same object captured from very distinct view points.

While word matches require a geometric verification to remove

false positive matches, most of the matched 2-word-phrases are

true. A few two-word-phrases-matches are highlighted with same-

colored ellipses around the keypoint pairs.
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Figure 7. Graph of Performance Vs Index size with the 2-word-

phrases indexing. The mAP decreases with size of the search in-

dex. However, Precision at 10, 5, 1 remain largely unaffected.

images, are rejected. This results in pruning of the original

vocabulary. As the vocabulary size decreases, the memory

footprint for the search index also decreases. This affects

the mAP. However, we observe that the Precision at 10, 5, 1
remain mostly unaffected (See Figure 7). This is because,

while the ranked-list is affected with smaller search index,

the top results are in general, preserved.

4.3. Mobile App

We now discuss an implementation for a mobile instance

search on a mid-end mobile phone. Our application pro-

vides details of the monuments based on the image captured

on a mobile phone. The app is implemented for Android de-

vices and designed to allow a tourist point his mobile at an

object and know its details without using a network connec-

tion. Examples of the recognition is shown in Figure 8.

The app is designed for the heritage data set discussed

in the section 4.1. The search index is built on a dataset

with 50,292 medium resolution (480× 360) images, which

amounts to 5.3GB. Note that the images are never stored on

the mobile devices. We extract SIFT features from all im-

ages and use hierarchical k-means to build a corresponding

visual vocabulary of size 100K. The memory occupied by

the vocabulary tree during query processing is 17MB. With

our 2-word-phrase indexing technique, we get a compact

search index of 25MB. These along with the annotations

for the database images are all that we store as application

data on the mobile device.

The heritage site is marked by architecturally similar

monumental structures and towers spread over a large area.

We did real-time testing of our app at this site and analyzed

how our solution performs in terms of correctness of re-

trieved annotations, memory usage and the speed of anno-

tation delivery. The app successfully returned correct anno-

tations at a wide-variety of locations and for different mon-

uments. On average, the annotation was delivered within a

second or two (See Table 4.3). Since, this is a tourist loca-

tion, we did face failure cases, when a large part of the mon-

ument was occluded by crowd, however, overall we found

the app to be successful at its task.

Event Time(in seconds)

SIFT keypoint Detection 0.250

Extracting SIFT descriptors 0.270

Quantizing to Vocabulary 0.010

Compute 2-word-phrases 0.470

Index Search 0.080

Total 1.080

Table 5. Average computational time analysis on a mobile phone

with 1GHz processor. Feature extraction and constructing 2-word-

phrases take up significant time.

5. Conclusion
This paper presents an indexing strategy for reducing the

memory footprint for instance retrieval along with exploit-

ing the spatial geometry of 2-word-phrases. Precision at K

is preserved even with significant reduction in the size of

search index. We successfully demonstrate the usage of 2-

word-phrases as key in the inverted search index and how

this helps in pruning the vocabulary as well as compacting

the search index. This facilitates successful application in

low-memory, slow-processing mobile environments.
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[2] R. Arandjelović and A. Zisserman. All about VLAD. In

CVPR, 2013. 4

[3] Y. Cao, C. Wang, Z. Li, L. Zhang, and L. Zhang. Spatial-

bag-of-features. In CVPR, 2010. 3

[4] V. Chandrasekhar, D. M. Chen, Z. Li, G. Takacs, S. S. Tsai,

R. Grzeszczuk, and B. Girod. Low-rate image retrieval with

tree histogram coding. In MobiMedia, 2009. 2

[5] V. Chandrasekhar, Y. Reznik, G. Takacs, D. Chen, S. Tsai,

R. Grzeszczuk, and B. Girod. Quantization schemes for low

bitrate compressed histogram of gradients descriptors. In

CVPR Workshops, 2010. 2

[6] V. Chandrasekhar, G. Takacs, D. M. Chen, S. S. Tsai,

Y. Reznik, R. Grzeszczuk, and B. Girod. Compressed his-

togram of gradients:a low-bitrate descriptor. IJCV, 2012. 2

[7] D. M. Chen, S. S. Tsai, V. Chandrasekhar, G. Takacs, J. P.

Singh, and B. Girod. Tree histogram coding for mobile im-

age matching. In DCC, 2009. 2

[8] O. Chum, M. Perdoch, and J. Matas. Geometric min-

hashing: Finding a (thick) needle in a haystack. In CVPR,

2009. 2, 3

1263



Figure 8. An application of the compact search index structure for tourism. Mobile phone localizes and gives details of what it sees without

the help of external network. The first row shows usage at different locations and monuments; the second row demonstrates the robustness

of the approach to view-changes of a particular monumental structure.

[9] O. Chum, J. Philbin, and A. Zisserman. Near duplicate image

detection: min-hash and tf-idf weighting. In BMVC, 2008. 2

[10] J. Feng. Mobile product search with bag of hash bits and

boundary reranking. In CVPR, 2012. 2
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