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Abstract

We estimate illuminant chromaticity from temporal se-
quences, for scenes illuminated by either one or two dom-
inant illuminants. While there are many methods for illu-
minant estimation from a single image, few works so far
have focused on videos, and even fewer on multiple light
sources. Our aim is to leverage information provided by the
temporal acquisition, where either the objects or the cam-
era or the light source are/is in motion in order to estimate
illuminant color without the need for user interaction or us-
ing strong assumptions and heuristics. We introduce a sim-
ple physically-based formulation based on the assumption
that the incident light chromaticity is constant over a short
space-time domain. We show that a deterministic approach
is not sufficient for accurate and robust estimation: how-
ever, a probabilistic formulation makes it possible to implic-
itly integrate away hidden factors that have been ignored by
the physical model. Experimental results are reported on
a dataset of natural video sequences and on the GrayBall
benchmark, indicating that we compare favorably with the
state-of-the-art.

1. Introduction

Although a human observer is typically able to discount

the color of the incident illumination when interpreting col-

ors of objects in the scene (a phenomenon known as color
constancy), the same surface may appear very different in

images captured under illuminants with different colors.

Estimating the colors of illuminants in a scene is thus an

important task in computer vision and computational pho-

tography, making it possible to white-balance an image or

a video sequence, or to apply post-exposure relighting ef-

fects. However, most existing color constancy and white
balance methods assume that the illumination in the scene

is dominated by a single illuminant color.

In practice, a scene is often illuminated by two different

illuminants. For example, in an outdoor scene the illumi-

nant color in the sunlit areas differs significantly from the

the illuminant color in the shade, a difference that becomes

more apparent towards sunset. Similarly, indoor scenes of-

Figure 1. Left: First frame of a sequence recorded under two

light sources and corresponding illuminant colors (ESTimated and

Ground Truth). Middle: Locally estimated incident light color

{Γs}. Right: Light mixture coefficients {αs} (see Section 4).

ten feature a mixture of artificial and natural light. Hsu et
al. [7] propose a method for recovering the linear mixture

coefficients at each pixel of an image, but rely on the user to

provide their method with the colors of the two illuminants.

By using multiple images, we can formulate the problem

of illuminant estimation in a well-constrained form, thus

avoiding the need of any prior or additional information

provided by a user, as most previous work do.

The main contribution of this work is two-fold:

1. We introduce a new physically-based approach to es-

timate illuminant chromaticity from a temporal se-

quence; we show experimentally that the distribution

of the incident light at edge-points, where speculari-

ties may be often encountered, can be modeled by a

Laplace distribution; this enables one to estimate the

global illuminant color robustly and accurately using

the MAP estimation framework.

2. We show that our approach can be extended to scenes
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lit by a spatially varying mixture of two different illu-

minants. Hence, we propose an efficient framework

for estimating the chromaticity vectors of both illu-

minants, as well as recovering their relative mixture

across the scene.

Our framework can be applied to natural images sequences,

indoor or outdoor, as long as specularities are present in the

scene. We validate our illuminant estimation approach on

existing as well as new datasets and demonstrate the ability

to white-balance and relight such images.

The rest of the paper is organized as follows: after a short

review of the state-of-the-art in color constancy, we describe

a new method for estimating the illuminant color from a nat-

ural video sequence, as long as some surfaces in the scene

have a specular reflectance component (Section 3). We then

extend this method for the completely automatic estimation

of two illuminant colors from a sequence, along with the

corresponding mixture coefficients, without requiring any

additional input (Section 4). We present results in Section 5,

including a comparison with the state-of-the art that shows

our approach is competitive.

2. Related work

Color constancy has been extensively studied and we re-

fer the reader to a recent survey [5] for a relatively complete

review of the state-of-the-art in this area. In this section

we briefly review the most relevant methods to our work,

namely those based of the dichromatic model [15, 17, 20],

and methods concerned with multi-illuminant estimation [7,

6]. Note that none of these approaches focus on video or

temporal sequences: to our knowledge, the only work deal-

ing with illuminant estimation in videos is based on averag-

ing results from existing frame-wise methods [14, 19].

Physically-based modeling. Shafer [15] introduced the

physically-based dichromatic reflection model, which de-

composes the observed radiance into diffuse and specu-

lar components. This model has been used by a num-

ber of researchers to estimate illuminant color [10, 9, 3].

More recently, Tan et al. [17] defined an inverse intensity-

chromaticity space, exploiting the different characteristics

of diffuse and specular pixels in this space to estimate the

illuminant’s RGB components. Yang et al. [20] operate on a

pair of images, simultaneously estimating illuminant chro-

maticity, correspondences between pairs of point, and spec-

ularities. While all of these approaches are based on the

physics of reflection, most of them encountered limited suc-

cess outside laboratory experiments (i.e., on complex im-

ages in uncontrolled environment and lighting).

The closest work to our single illuminant estimation

method (described in Section 3) is that of Yang et al. [20],

which is based on a heuristic that votes for discretized val-

ues of the illuminant chromaticity Γ. In contrast to [20],

starting from the same equations, we formulate the problem

of illuminant estimation in a probabilistic manner to implic-

itly integrate hidden factors that have been ignored by the

underlying physical model. This results in a different, sim-

ple yet robust approach, making it possible to reliably esti-

mate the global illuminant chromaticity from natural image

sequences acquired under uncontrolled settings.

Multi-illuminant estimation. The need for multi-

illuminant estimation arises when different regions of a

scene captured by a camera are illuminated by different

light sources [16, 7, 2, 8, 6]. Among these, the most closely

related to our work is the one of Gisenji et al. [6], who

propose estimating the incident light chromaticity locally

in patches around points of interest, before estimating

the two global color illuminants. This method is mainly

practical but not theoretically justified. Conversely, our

approach, which is also based on a local-to-global frame-

work, is mathematically justified and based on inverting

the compositing equation of the illuminant colors. Also

related is the work of Hsu et al. [7], who address a different

but related problem: performing white balance in scenes

lit by two differently colored illuminants. However, this

work operates on a single image assuming that the two

global illuminant chromaticities are known and focuses on

recovering their mixture across the image. In contrast, the

method we describe in Section 4 operates on a temporal

sequence of images, automatically recovering both the

illuminant chromaticities and the illuminant mixtures.

3. Single illuminant chromaticity estimation
3.1. The dichromatic reflection model

The dichromatic model for dielectric materials (such as

plastic, acrylics, hair, etc.) expresses the light reflected from

an object as a linear combination of diffuse (body) and spec-

ular (interface) components [15]. The diffuse component

has the same radiance when viewed from any angle, follow-

ing Lambert’s law, while the specular component captures

the directional reflection of the incident light hitting the ob-

ject’s surface. After tristimulus integration, the color I at

each pixel p may be expressed as:

I(p) = D(p) +m(p)L, (1)

where D = (Dr, Dg, Db) is the diffusely reflected compo-

nent and L = (Lr, Lg, Lb) denotes the global illuminant

color vector, multiplied by a scalar weight function m(p),
which depends on the spatial position and local geometry of

the scene point visible at pixel p. The specular component

m(p)L has the same spectral distribution as the incident

light [15, 10, 3]. In this section we assume that the spectral
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distribution of the illuminant is identical everywhere in the

scene, making L independent of the spatial location p.

3.2. Illuminant chromaticity from a sequence

Extending the model in eq. (1) to a temporal sequence of

images, assuming that that the illuminant color L does not

change with time, gives:

I(p, t) = D(p, t) +m(p, t)L. (2)

Consider a 3D point P projected to p at time t, and to

p+Δp at time t+Δt. If the incident illumination at P has

not changed, the diffuse component reflected at that point

also remains the same:

D(p, t) = D(p+Δp, t+Δt). (3)

Thus, the illuminant color L = (Lr, Lg, Lb) can be

derived from equations (2) and (3). For each component

c ∈ {r, g, b}, we have:

Ic(p+Δp,t+Δt)− Ic(p, t) (4)

=
(
m(p+Δp, t+Δt)−m(p, t)

)
Lc,

since the diffuse component in the right-hand side cancels

out due to property (3). Denoting the left hand side of eq. (4)

by ΔIc(p, t), and normalizing both sides of the equation,

we obtain (whenever ||ΔI(p, t)|| �= 0):

ΔIc(p, t)

||ΔI(p, t)||1 =
Lc

||L||1 = Γc, (5)

where ||Y||1 =
∑

c∈{r,g,b} Yc.1

Hence Γ = (Γr,Γg,Γb) is the global incident light chro-

maticity vector, simply obtained by differentiating (and nor-

malizing) the RGB irradiance components of any point p
with a specular component, tracked between two consecu-

tive frames t and t+Δt. Note that this formulation assumes

that the displacement Δp is known : ΔI(p, t) is the differ-

ence between image I at t+Δt and the wrapped image at t.
So far we implicitly assumed that: (1) a change in the

specular reflection occurs at p from time t to time t + Δt;
and (2) the displacementΔp is estimated accurately. These

two factors suggest that reliable sets of points to evalu-

ate eq. (5) accurately are edge-points extracted from each

frame. The rational behind this is that flow/displacement

estimation is usually robust at edges (because edges are

discontinuities that are preserved/invariant over time, un-

less occlusion or shadows appear). More importantly, edge

points delineate local discontinuities or object’s surface

boundaries (with large local curvature) and specularities are

likely to be observed at these points. The counter argument

1By abuse of notation we use || · ||, even though it can take negative

values, and thus is not a norm, strictly speaking.

Figure 2. Top: two successive frames of a video sequence; Bottom:

empirical distributions P (xc) for the Red, Green and Blue chan-

nels and approximations by a Laplace distribution (yellow curve).

to this choice might be that pixel values at edges often con-

tain a mixture of light coming from two different objects;

experimentally, we found that this is not a limiting factor.

In Section 5, we experimentally compare a number of dif-

ferent point choice strategies and their impact on the results.

3.3. Robust probabilistic estimation

Yang et al. [20] already proposed estimating illuminant

chromaticity from a pair of images using eq. (5), demon-

strating their method on certain, suitably constrained image

pairs. In this section, we propose an alternative probabilistic

estimation approach, which is simpler, yet robust enough to

reliably estimate Γ from natural image sequences.

Equation (5) is based on Shafer’s physically-based

dichromatic model [15, 10]. It does not, however, take into

account several factors which also might affect the observed

scene irradiance in a noticeable way: (i) the effect of the in-

cident light direction is neglected; (ii) local inter-reflections
are not taken into account; they can, however, account for a

significant amount of light incident to a given object [13]; as

a result, the assumption of a single and uniform global illu-

minant might not be completely valid everywhere; (iii) the

statistical nature of the image capture process (e.g., camera

noise) is ignored.

We therefore cast the problem of illuminant chromaticity

recovery in a probabilistic framework, where Γ is obtained

using Maximum-a-Posteriori estimation:

Γ̂ = argmax
Γ

P (Γ|x) (6)

where x = {(xr(p), xg(p), xb(p))} is an observation vec-

tor consisting of all the pixels p of a temporal image se-

quence. Applying Bayes’ rule, we express:

P (Γ|x) ∝ P (x|Γ)P (Γ), (7)
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and reasonably assuming that all illuminants are equiprob-

able (P (Γ) = const), we rewrite the right-hand side:

P (Γ|x) ∝ P (x|Γ) (8)

∝
∏

c∈{r,g,b}
P (xc|Γ) =

∏

c∈{r,g,b}
P (xc|Γc).

Above we made the additional assumption that the observed

channels xc are mutually independent, and depend only on

the corresponding illuminant channel Γc.

More specifically, we define the observed features as

xc(p) =
ΔIc(p,t)
||ΔI(p,t)|| (the left-hand side of eq. (5)), where the

image points p are a set of edge points extracted from the

image sequence. We estimate the likelihood P (xc|Γc) from

its empirical distribution: we discretize xc in n bins ranging

from ε to 1 (i.e., the set of values that the chromaticities can

take), and compute the histogram of xc. Figure 2 (bottom)

illustrates the empirical distributions for the three channels

xc computed from the video frames (top).

We experimented with estimating Eq. (6) in two differ-

ent ways: (i) in a purely empirical fashion, by setting Γ̂c

to the histogram mode for each channel xc; (ii) by observ-

ing experimentally that the histograms follow a multivariate

Laplace distribution, whose maximum likelihood estimator

is the median of the samples, we set Γ̂c to the median value

of xc, for each channel c independently. Finally, the esti-

mated chromaticity vector is normalized so that
∑

c Γ̂c = 1.

The latter approach proved to be more robust in practice.

4. Two light sources

Until now we assumed a single illuminant whose color is

constant across the image. In this section we extend our ap-

proach to the common scenario where the illuminant color

at each point may be modeled as a spatially varying mixture

of two dominant chromaticities. Examples include: illumi-

nation by a mixture of sunlight and skylight, or a mixture of

artificial illumination and natural daylight.

Our approach is partly motivated by the work of Hsu et
al. [7] who proposed a method for recovering the mixture

coefficients from a single image, when the two global il-

luminant chromaticities are known. In contrast to their ap-

proach, we use a temporal sequence (with as few as 2-3

images) but recover both the two chromaticities and their

spatially varying mixture.

We assume that the mixture is constant across small

space-time patches, and consequently the combined illumi-

nant chromaticity is also constant across each patch. We

further restrict ourselves to cases where the change in the

view/acquisition angle between the first and the last frame

is kept relatively small.

We begin by independently estimating the combined illu-

minant chromaticity over a set of small overlapping patches,

using the method described in the previous section sepa-

rately for each patch. Since some of the patches might

not contain enough edge points with specularities, making

it impossible to obtain an estimate of the illuminant there,

we use linear interpolation from neighboring patches to fill

such holes. We then use the resulting combined illuminant

chromaticity map to estimate the spatially varying mixture

coefficients and the two illuminant chromaticities, as de-

scribed in the remainder of this section.

4.1. Problem statement and solution

Assuming the chromaticities of the two global illumi-

nants in the scene are given by the (unknown) normalized

vectors Γ1 and Γ2, we replace the incident global illumi-

nation vector L in eq. (2) at point (p, t) with a spatially

varying one:

L(p, t) = k1(p, t) Γ1 + k2(p, t) Γ2, (9)

where k1 and k2 are the non-negative intensity coefficients

of Γ1 and Γ2. Assuming that the incident light L(p, t) is

roughly constant across small space-time patches, we write:

Ls = ks1 Γ1 + ks2 Γ2 (10)

for each small space-time patch s. Normalizing both sides

and making use of the fact that Γ1 and Γ2 are normalized,

we express the local combined incident light chromaticity

as a convex combination:

Γs
c =

Ls
c

||Ls||1 =
ks1Γ1,c + ks2Γ2,c

||ks1 Γ1 + ks2 Γ2||1
= αs Γ1,c + (1− αs) Γ2,c, (11)

where αs =
ks
1

ks
1+ks

2
, for c ∈ {r, g, b}. This equation resem-

bles the compositing equation in natural image matting; a

similar observation was made by Hsu et al. [7]. However,

unlike natural image matting where the composited colors

as well as α vary across the image (underconstrained prob-

lem), in our case the composited vectors Γ1 and Γ2 are as-

sumed constant. This enables a more direct solution once

the left-hand side (Γs) has been estimated.

Manipulating eq. (11) we derive a linear relationship be-

tween αs and each channel of Γs:

Γs
c = αs(Γ1,c − Γ2,c) + Γ2,c

αs =
Γs
c − Γ2,c

Γ1,c − Γ2,c

αs = acΓ
s
c − bc (12)

where ac =
1

Γ1,c−Γ2,c
and bc =

Γ2,c

Γ1,c−Γ2,c
when Γ1,c �= Γ2,c

and a = {ac}. To recover the mixture coefficients αs we

minimize the following quadratic cost function:
∑

s,c

(αs − acΓ
s
c + bc)

2
+ ε||a||2 (13)
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Figure 3. Video dataset recorded under normal lighting conditions

using a single illuminant: the first frames of six of the sequences.

by solving for the smallest eigenvector of the associated

symmetric homogeneous linear system [11]. The vector of

αs values is then obtained by shifting and scaling the result-

ing eigenvector’s entries to [0, 1] (assuming that each of the

illuminants is exclusive in at least one patch in the image).

Having obtained the mixing coefficients αs, we recover

Γ1 andΓ2 by solving equation (11) using least squares min-

imization.

5. Experimental evaluation
5.1. Implementation details

Our method is implemented in Matlab (code is available

online). We used some off-the-shelf functions with the fol-

lowing settings:

• Illuminant chromaticity estimation is performed in lin-

ear RGB, assuming gamma of 2.2.

• Edge detection is performed using the standard Canny

operator in Matlab with the default threshold of 0. For

the estimation we only use edge points p for which

|∑cΔIc(p, t)| > T .

• Point correspondences between frames are computed

using Liu et al.’s SIFTFlow algorithm [12].

• Empirical distributions P (xc|Γc), are quantized to

2000 bins for single illumimant estimation, and to 500

bins for two illuminants, in the range [0.001, 1]. Note

that the quantization imposes an upper bound on the

estimation accuracy (on the order of 10−4 per chan-

nel). Finer quantization leads to overfitting, while

coarser reduces the accuracy.

• We use 100×100 pixel tiles for two-illuminant estima-

tion. The tiles are overlapping, with a spacing of 10

pixels. Note that this defines a sub-sampling of the

original space/time domain.

5.2. Datasets and experimental settings

We evaluate the performance of single illuminant estima-

tion on two datasets: a newly created dataset of 13 video se-

quences and the GrayBall database [1]. To validate the two-

illuminant estimation approach, we recorded three video se-

quences of scenes lit by two light sources.

Figure 4. Video dataset simulating extreme lighting conditions:

reddish ΓR = (0.54695, 0.1779, 0.27515), and bluish ΓB =
(0.35132, 0.12528, 0.52339). Shown are the first frames from

two sequences (out of four).

The single-illuminant dataset we created consists of

video sequences captured with a high definition video cam-

era (Panasonic HD-TM 700), at 60 fps and 1920×1080 pix-

els per frame. The set includes three outdoor scenes and

six indoor scenes. The videos were recorded with a mov-

ing camera. A flat grey card with spectrally uniform re-

flectance was placed in each scene, appearing in each video

sequence for a few seconds. We supplemented this dataset

with two additional publicly available sequences2. The re-

maining four sequences of this set were taken using red or

blue filters (Fig. (4)), in order to simulate “extreme” lighting

conditions.

The ground truth illuminant was estimated, for each se-

quence individually, using the grey card. We extracted pix-

els on the grey card over 5 consecutive frames, and com-

puted their normalized average RGB value. For each se-

quence, we also computed the variance σc and mean angu-

lar variation β of the grey card RGB vectors to ensure that

the scene complies with a constant illumination assumption

(0.1◦ < β ≤ 0.5◦ and 1.e− 7 < σ2 ≤ 1.e− 5).

As for the two-illuminant dataset, it consists of videos

acquired under complex lighting conditions (Fig. 5): two

incandescent lamps (blue and red), sun and skylight, incan-

descent lamp and natural daylight. Two grey cards were

placed in the scene during acquisition, ensuring that each

grey card is illuminated by only one of the illuminants. The

ground truth values were computed as explained earlier.

We also used the GrayBall database of Ciurea and

Funt [1]. This dataset is composed of frames extracted from

several video clips taken at different locations. The tempo-

ral ordering of the frames had been preserved, resulting in

a time lapse of about 1/3 second between consecutive im-

ages [19]. The entire database contains over 11,000 images,

of both indoor and outdoor scenes. A small grey sphere was

mounted onto the video camera, appearing in all the images,

and used to estimate a per-frame ground truth illuminant

chromaticity. This ground truth is given in the camera refer-

ence system (i.e. RGB domain) [1]. Note that, in the Gray-

Ball database, the illuminant varies slightly from frame to

frame and therefore violates our assumption of uniform illu-

2http://www.cs.huji.ac.il/labs/cglab/projects/tonestab/
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Edges Near edges Entire image
Laplace 5.389 5.429 5.450

Gaussian 6.462 6.486 6.487

Table 1. Comparison of different strategies for point selection

(columns) and between Laplace and Gaussian distribution mod-

eling (rows) (see Section 3.3), T = 10.−1. The reported angu-

lar error (in degrees) is averaged over the nine video sequences

recorded with normal lighting conditions.

Average Best 1/3 Worst 1/3
GE-1 [18] 6.572 2.1787 11.271

GE-2 [18] 7.150 2.958 11.723

GGM [4] 7.013 6.208 9.166

IIC [17] 8.303 3.984 12.540

Our approach 5.389 2.402 8.784

Table 2. Angular errors (in degrees) for video sequences recorded

under normal lighting conditions.

mination over time. We use this dataset because it is, to our

knowledge, the only publicly available temporal sequence

data for which both ground truth and results of previously

published methods are available.

Results are reported in terms of the angular deviation β
between the ground truth Γg and the estimated illuminant

Γ̂, in camera sensor basis: β = arccos( Γ̂·Γg

||Γg|| ||Γ̂|| ).

5.3. Single illuminant estimation

We begin with an experimental validation of the claims

made in Section 3.2 regarding the choice to use edge points

for illuminant estimation and the use of the Laplace dis-

tribution to model P (xc|Γc). Table 1 compares between

three different strategies for choosing the specular points:

choosing from points detected by the Canny edge detector,

choosing from points next to edges, and choosing from the

entire image. Note that we do not attempt here to compare

between different edge detectors, but only to validate that

edges are a good source of points for our estimator. We also

compare between using the Laplace model and a Gaussian

model (i.e. using the mean of x , instead of the median, as

the estimated illuminant). As can be seen from the table,

smaller errors are obtained when using edge points and the

Laplace model.

Video dataset. Tables 2 and 3 report illuminant esti-

mation accuracy for the sequences recorded under normal

illumination conditions (Fig. 3) and under extreme light-

ing (Fig. 4). We used a temporal window of 3 frames for the

former, of 5 for the latter (to account for the noise in data

acquisition due to the relatively dark environment), with a

time step between consecutive frames of 3ms for both (ex-

cept for the two downloaded sequences2 for wich we set a

time step of 1ms). To estimate the illuminant we exclude

Reddish Bluish
GE-1 [18] 8.907 13.052

GE-2 [18] 10.246 13.657

GGM [4] 15.544 25.505

IIC [17] — 19.675

Our approach 7.708 6.236

Table 3. Average angular errors (in degrees) for video sequences

recorded with red and blue filters, with T = 10−1.

the region of the frames that contains the grey card.

We compare our approach to several state-of-the-art

methods: the Grey-Edge algorithm [18], Generalized

Gamut Mapping (GGM) [4], and Inverse Intensity Chro-

maticity method (IIC) [17]. For Grey-Edge, we use first

order and second order derivatives (GE-1 and GE-2, respec-

tively), with L1 norm and a Gaussian filter σ = 1 [18]. For

GGM we use the intersection 1-jet criteria (i.e. based on first

order derivatives), because it was reported to give the best

results on several databases [4]. The IIC method was chosen

because it is a popular reference among color constancy ap-

proaches based on a physical model. We used the authors’

implementation of these algorithms. All these approaches

estimate a per-frame illuminant; we average the illuminant

chromaticity vector computed for each frame, and report the

angular error between the mean chromaticity vector and the

ground truth [19]. We report the overall mean angular error,

as well as the average angular errors over the best and the

worst thirds of the results of each method.

Tables 2 and 3 show that IIC performs poorly on this

dataset. This can be attributed to the fact that images in

uncontrolled environments contain a large amount of satu-

rated pixels or noise, factors which are ignored by purely

deterministic models. GGM does not perform well in ex-

treme light conditions, because the very limited range of

color visible in the input frames does not enable a good

matching with the prior gamut used by this algorithm. On

the other hand, GGM, GE-1, and GE-2, all give reasonably

good results under normal lighting conditions (6.5◦, 7.1◦,
7.0◦). Note the large variance between the best and worst

thirds for the GE methods, indicating a relatively unstable

behavior. Our approach outperforms all of these methods

on average for both normal and extreme lighting (5.3◦ and

6.9◦), and exhibits stable performance. Note that the advan-

tage of our approach can be attributed to the fact that it uses

the temporal sequence, while other methods reported here

work on each individual frame separately.

GrayBall dataset. In Table 4, we compare the perfor-

mance of our approach on the GrayBall database to two

state-of-the-art methods [4, 19], as well as to the classical

GrayWorld method for reference. Reported values for these

methods are taken from the original papers. For our method,

we used pairs of consecutive frames and T = 0.1. We did
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GrayWorld GGM [4] GE-2 [19] Ours
Mean 7.9 6.9 5.4 5.4

Median 7.0 5.8 4.1 4.6

Table 4. Angular errors (in degrees) for images from the GrayBall

database.

(a) (b) (c)

Figure 5. First frames of three sequences captured with two lights.

(a) Two incandescent lamps (Γ1 red, Γ2 blue). (b) Outdoor scene

lit by sunlight (Γ1) and skylight (Γ2). (c) Incandescent lamp (Γ1

green) and natural daylight (Γ2).

not attempt to apply IIC to this dataset, since it seems irrel-

evant to use this method for natural images, which contain

saturated pixels and are acquired under uncontrolled light-

ing conditions. We refer the reader to [5] for an extended

comparison of methods on this dataset, among which we

include here only the best ones.

On this dataset the results obtained by Wang et al. [19]

are equivalent to ours in term of average error (5.4◦).
Wang’s method uses several parameters (three to five

threshold values), which have been tuned specifically on

the GrayBall database (no results on other datasets are pro-

vided); we believe that the accuracy reported by the au-

thors [19] is in part due to this parameter tuning.

5.4. Two illuminant estimation

Figure 1 shows the estimated incident light color map

{Γs}Ss=1, the light mixture coefficients {αs}Ss=1, and the

estimated light chromaticity, computed from sequence (a).

During recording, the scene was illuminated by a red light

from the back on the right side and a blue light from the

front on the left side. The incident color map (middle)

clearly captures the pattern of these two dominant light

sources. The mixture coefficients map (right) indicates the

relative contribution of one illuminant with respect to the

other, interpolated across the image.

Table 5 reports quantitative results obtained from se-

quences recorded with two lights sources (Figure 5). We

compare with the state-of-the-art, namely local GE-1, lo-

cal GE-2, and local GrayWorld (GW) (see [6] for details).

We apply local GE-1 and GE-2 using L1 norm and Gaus-

sian σ = 2. Results were computed using 3–5 frames from

each sequence, with a time step of 2–4ms between frames.

Ours Local GE [6] Local GW
Γ1 Γ2 Γ1 Γ2 Γ1 Γ2

Seq. (a) 9.65 5.14 31.69 4.8 12.94 10.49

Seq. (b) 5.74 4.76 9.69 9.82 5.89 8.81

Seq. (c) 7.35 6.49 17.9 5.65 7.63 5.74

Table 5. Two illuminant estimation. Angular errors (in degrees)

for the estimation of Γ1,Γ2 on the sequences shown in Figure 5.

Figure 6. First frames of three video sequences (top) and estimated

illuminant colors (bottom).

Patch/tiles size is set to 50 × 50 pixels in sequences (a)

and (c) of our dataset, to 100 × 100 otherwise. From [6],

we report the best result among local GE-1 and local GE-2,

averaged over frames of the sequence. Overall, our method

provides more accurate estimates than those obtained with

the other methods. We have observed that both GE and GW

tend to produce estimates biased towards gray. This makes

the estimation of strongly colored illuminants (e.g., the red

light Γ1 in sequence (a)) difficult.

Figure 6 shows additional results obtained on sequences

for which the ground truth was not available. Motion be-

tween frames originates from camera displacement (right),

object/human motion (middle), or light source motion (left).

Color patches in the bottom row show the two estimated il-

luminant colors for each sequence. Note that the dominant

tone is correctly retrieved (blue or gray mixed with yellow-

orange in these three cases).

5.5. Application to white balance correction

The aim of white balance correction is to remove the

color cast introduced by a non-white illuminant: i.e., to

generate a new image/sequence that renders the scene as

if it had been captured under a white illuminant. Figure 7

demonstrates the result of applying white balance to a scene

illuminated by a mixture of (warmer colored) late afternoon

sunlight and (cooler colored) skylight. (Additional results,

including scenes with a single illuminant, are provided in

the supplementary material). Having estimated the inci-

dent light color Γs across the image, we simply perform

the white balance separately at each pixel, instead of glob-

ally for the entire image, producing the result shown in Fig-
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Figure 7. White balance with two illuminants. (a) Input frame of

a scene illuminated by afternoon sunlight and skylight. (b) Result

of spatially variant white balance correction after two illuminant

estimation. (c) “Relighting” by changing the chromaticity of one

of the illuminants. (d) For comparison: uniform white balance

correction using a single estimated illuminant.

ure 7(b). A global white balance correction (using a sin-

gle estimated illuminant) is shown in Figure 7(d) for com-

parison, suffering from a stronger remaining greenish color

cast. The availability of the mixture coefficient map makes

it possible to simulate changes in the colors of one or both

illuminants. This is demonstrated in Figure 7(c), where the

illuminant corresponding to the sunlight was changed to a

more reddish color.

6. Conclusion
The ease with which one can acquire temporal sequences

using commercial cameras and the ubiquity of videos on

the web, makes natural the exploitation of temporal infor-

mation for various image processing tasks. In this work,

we presented an effective way to leverage temporal depen-

dencies between frames to tackle the problem of illuminant

estimation from a video sequence. By using multiple im-

ages, we can formulate the problem of illuminant(s) estima-

tion as a well constrained problem, thus avoiding the need

of prior knowledge or additional information provided by

a user. Our physically-based model, embedded in a proba-

bilistic framework (via MAP estimation), applies to natural

images of indoor or outdoor scenes. Our approach is simply

extended to scenes lit by two global illuminants, whenever

the incident light chromaticity at each point of the scene can

be modeled by a mixture of the two illuminant colors. We

show that on several datasets, our results in general are com-

parable or improve upon the state-of-the-art both for single

illuminant estimation and for two-illuminant estimation.
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