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Abstract

Face detection is an important task in computer vision
and often serves as the first step for a variety of applications.
State-of-the-art approaches use efficient learning algorithms
and train on large amounts of manually labeled imagery.
Acquiring appropriate training images, however, is very
time-consuming and does not guarantee that the collected
training data is representative in terms of data variability.
Moreover, available data sets are often acquired under con-
trolled settings, restricting, for example, scene illumination
or 3D head pose to a narrow range. This paper takes a look
into the automated generation of adaptive training samples
from a 3D morphable face model. Using statistical insights,
the tailored training data guarantees full data variability
and is enriched by arbitrary facial attributes such as age
or body weight. Moreover, it can automatically adapt to
environmental constraints, such as illumination or viewing
angle of recorded video footage from surveillance cameras.
We use the tailored imagery to train a new many-core imple-
mentation of Viola Jones’ AdaBoost object detection frame-
work. The new implementation is not only faster but also
enables the use of multiple feature channels such as color
features at training time. In our experiments we trained
seven view-dependent face detectors and evaluate these on
the Face Detection Data Set and Benchmark (FDDB). Our
experiments show that the use of tailored training imagery
outperforms state-of-the-art approaches on this challenging
dataset.

1. Introduction
Face detection is an important task for a wide range of

applications in computer vision. Thus, a variety of face

detection algorithms have been presented in recent years,

many of them involving supervised or unsupervised machine

learning methods. Their goal is to learn a face classification
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Figure 2. Comparison of the detections at equal error rate. Train-

ing on the synthetically tailored views of 75 distinct subjects, is

sufficient to outperform previously presented face detectors on the

challenging Face Detection Data Set and Benchmark (FDDB) [1].

function by training on a set of annotated sample pictures

which is then applied to new, unseen pictures in order to

detect faces. This, however, requires large amounts of manu-

ally labeled face pictures during the training phase, which

is not only very time-consuming but also difficult to obtain.

Moreover, available data sets are often acquired under con-

trolled settings, restricting, for example, scene illumination

or 3D head pose to a narrow range. Or, in contrast, they

may scatter widely but without a guarantee that they sample

all relevant dimensions sufficiently densely. Also, manually

labeled data often involves mistakes. When training multi-

view classifiers for example, the manually labeled viewing

angles might be inaccurate and thus lead to biased results.

This paper addresses these shortcomings and takes a look

into the automated generation of tailored training samples

from a 3D morphable face model.

To automatically compute training samples, we start from
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Multiple Viewing Directions and Facial Attributes (Skin Color, Beard, Body Weight)
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Figure 1. Top row: Comparison of detection results at distinct viewing angles. The respective bounding box color denotes the automatically

classified viewing angle φ ∈ [−30◦; +30◦]. Bottom row: Exemplary detection results on challenging ’FDDB’ imagery [1]. The algorithm

robustly detects faces despite apparent variation of facial attributes such as increased body weight, beards, bright or dark skin color.

a few randomized facial samples which we gain from a 3D

morphable face model [2, 3]. Each 3D random face is then

modulated by automatically changing a set of facial attributes

such as gender, weight or age. For each modulated face, we

either freely choose the settings for rendering, such as the

parameters for 3D pose, position, size and illumination, or ex-

tract these parameters from given particular video sequences

recorded by surveillance cameras. The latter method in par-

ticular can be helpful when training classifiers for cameras

that are positioned at unusual viewing angles or in a very

dark or artificially lit environment. Using this procedure, we

generate seven distinct training sets, each set corresponding

to a specific range of face orientations. On each training

set we then train a view-specific classifier using an adaptive

boosting (AdaBoost) approach which we derived from the

object detection method Viola and Jones initially presented

in 2001 [4]. In contrast to their approach, we implemented

the algorithm to run in a many-core setup that also extends

the feature plane by an arbitrary number of additional layers,

which may be used either for color representation or further

feature sets.

Finally, we merge our seven view-dependent classifiers

to a single classifier and compare its performance to state of

the art methods on the FDDB benchmark dataset [1].

2. Related Work
Face detection is often the first step in complex image

processing applications, like face recognition, visual surveil-

lance, or human-machine interaction. This explains the high

level of interest of the research community in this topic.

Many solutions to detecting faces in images have been pre-

sented in the last decade. Comprehensive surveys may be

found in Yang et. al. [5, 6]. Out of the presented approaches

we focus on the widely used appearance-based machine

learning approach presented by Viola and Jones [4, 7].

Object Detection Framework The algorithm is based on

the assumption that many coarse Haar feature classifiers,

connected in series, are superior to a single classifier built

with high-level image descriptors. The coarse classifiers

are organized hierarchically, where the number of computed

Haar features tends to increase with each stage. While in

the first stage only a few Haar features are computed, each

following stage has stricter requirements and usually requires

more features. At training time, the AdaBoost algorithm

determines a constant threshold for each stage, to which

the candidates can be compared at detection time. Image

candidates passing all stages are considered to contain a face.

Negative images exit at earlier stages. The overall number of

Haar features varies and depends on the training parameters.

Detection Performance Using the integral image struc-

ture [4] Haar features can be computed quickly. On mobile

devices or when applied to video sequences, however, per-

formance may decay drastically. Consequently, a variety of

algorithmic performance improvements has been presented

in literature. Noticeable speedups have been achieved when

running Viola and Jones’ detector on several GPUs [8, 9] or

by combining GPU and CPU [10, 11]. Chuang et. al. [12]

introduced an enhanced training algorithm considering sam-

pling optima for video material. Others explored the possibil-

ities of parallelism using many-core architectures, improved

memory behavior or investigated how to optimally compute

the integral image [13, 14, 15, 16, 17, 18]. All above meth-

ods reported considerable computational speedup, but only

at runtime. We, in contrast, parallelize the AdaBoost at

training time. Though we additionally introduce new layers

(more features) for the use of color channels, the many-core

architecture allows for fast large-scale training.

Acquired Training Data Data-driven face classifiers re-

quire appropriate training data. There are many supervised or

unsupervised solutions to image annotation, such as collab-
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orative annotation projects [19, 20, 21, 22], or algorithmic

approaches for Google’s image search [23], web content

[24, 25, 26, 27] or labeled social media content [28, 29].

As a result, a large variety of manually labeled datasets has

been published. Comprehensive surveys of facial datasets

can be found in [30, 31, 32]. Other challenging datasets

can be found in [33, 34, 1]. Out of these, the face dataset

of the MPI for Biological Cybernetics is the most related

to our work. However, their dataset does not cover the full

spectrum of statistical data variability and does not include

facial attributes such as age or body weight.

Synthetic Training Data In general, manually collected

facial datasets show insufficient data variability. To increase

variability, people usually collect large amounts of images.

Automatically synthesized training data, by contrast, in-

volves high-level face models to increase variability: In

2004 Yue-Min et. al. [35] relit faces in training images us-

ing harmonic images they derived from a 3D face model.

Dianle et. al. [36] use an active shape model to synthesize

training data. The data is then used to find facial landmarks

in different views. A variety of face recognition systems

[37, 38, 39, 40, 41] use 3D models to synthesize intermediate

views or viewpoint invariant reference frames for the purpose

of face recognition. A more comprehensive survey on simi-

lar methods can be found in [42]. Pishchulin et. al. [43] use

a morphable body model to generate training data for pedes-

trian detection. They could show that even a low number of

synthetic training samples — with increased data variabil-

ity — can outperform detectors trained on large manually

collected data sets. Similar to our work, Weyrauch et. al.

[44] use a morphable model for pose invariant face recogni-

tion. From three input images of each subject in the train-

ing database, a 3D model [2] is extracted. The model is

then rendered under varying pose and illumination condi-

tions to build a set of synthetic images, used for training

a component-based face recognition system. In contrast to

their method, we focus on face detection, and show that

state-of-the-art results can be obtained by leveraging tailored

training data from a 3D morphable model. We do not require

initial facial input images, but randomly generate artificial

faces while controlling the data variability. Moreover, we

introduce facial attributes such as body weight or skin tone

and make use of an advanced face model [3] to render the

subjects’ ages. We also show that our approach is suitable

to adjust rendering parameters to particular illumination and

pose constraints of given surveillance cameras (Figure 8).

3. Synthetic Training Images
When manually labeling and selecting training images of

faces, there is no guarantee that the collected data includes

all possible shape and texture variations of faces. Conse-

quently, people usually collect large amounts of training data

-3 -1.2 0 +1.2 +3

Random Faces
Data Variability: 76,99%

Facial Attributes (e.g. Beard)
Data Variability: 99,73%

Figure 3. First we generate random faces by modulating existing

faces from the database permitting 76.99% of all possible varia-

tions (σ ∈ [−1, 2;+1, 2]) which we secondly modulate applying

attributes at full data variability (σ ∈ [−3;+3]).

to at least sample as much variation as possible. Examples

can be found in [30, 31, 32]. When generating synthetic

training data, in contrast, this workaround is not necessary.

By deploying a statistically driven face model for data gen-

eration, one can be sure to incorporate the full data variance

(with respect to the database of the face model). We use this

technique in the following section to first generate random-

ized 3D faces using a 3D morphable face model [2, 3]. In a

second step, we modulate these three-dimensional random

faces by applying facial attributes, which we then render

for defined viewing angles and illumination parameters. Fi-

nally, we compose the face renderings with natural-looking

background images.

Modeling To generate artificial training data we employ

a 3D morphable face model [2, 3]. The model’s database

contains m = 512 faces ranging from the age of 3 months to

≈ 40 years with an approximately equal number of female

and male individuals (200 adults, 236 children aged between

7 and 16 years and 76 very young children aged between

3 and 12 months). The 3D shape of each face Fi is stored

in terms of the x, y, z coordinates of all surface vertices

k ∈ {
1, ..., n

}
, n = 75972 in a vector Si. Analogously, we

store the color values (red, green and blue) of the surface

vertices in a texture vector Ti:

Si = (x1, y1, z1, . . . , xn, yn, zn)
T (1)

Ti = (R1, G1, B1, . . . , Rn, Gn, Bn)
T (2)

Performing a Principal Component Analysis on all shape and

texture vectors we estimate the probability distributions of

faces around their averages s and t. The result is a small set

of (m− 1) = 511 orthogonal principal axes (eigenvectors)

sj , tj which vary around the averages s and t :

S = s+

m−1∑

j=1

αj · sj, T = t+

m−1∑

j=1

βj · tj (3)

The eigenvectors of the PCA represent the variation

across all faces in the database. Most eigenvectors do not

explicitly represent semantically meaningful facial features.

By definition of the principal component analysis, however,

the eigenvectors are sorted according to their corresponding
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Figure 4. Generation of synthetic face data: from an initially gener-

ated random face (top middle), we first derive a female and male

version (second row) and then apply attribute-vectors to those to

modulate the age, weight, skin color, beard shadow, ear size and the

facial expression. The above figure shows the modulation results

for σ = ±2.

eigenvalues in decreasing order. Thus the highest variation

between all faces in the database is represented by the front-

most eigenvectors. In the following analysis, we therefore

only consider the first eigenvectors (j <= 50) for shape

sj and texture tj to control the variance of the computed

training data. The rear eigenvectors (j > 50) contain highly

individual details which are not relevant for our purpose and

thus may be ignored. In a first step, we generate a set of

randomized 3D faces by manipulating available 3D faces

from the 3D morphable model face database. We then ap-

ply shape and texture variation to the selected samples by

deploying a varying factor σ to the first 50 eigenvectors s
and t (σ ∈ [−1.2; 1.2]). We initially keep the scaling factor

σ relatively low with respect to the available variability to

prevent producing unwanted artifacts which would require a

manual quality check (cf. Figure 3). Modifying the first 50
eigenvectors only serves as regularization and prevents en-

hancing highly individual details. The results are randomly

generated faces (or ’random faces’) which serve as the basis

for all following steps. We additionally require a large angle

(Mahalanobis Distance) between computed sample face vec-

tors to ensure low similarity in-between the random faces.

-30° -20° -10° 0° 10° 20° 30°

Figure 5. Each row shows the various renderings of a single ma-

nipulated random face. In a final compositing step we randomly

scale the size of the rendered faces to simulate typical surveillance

recordings and blend the rendered views with background scenes.

Modulation In a first step we generate a female and male

version for each random face. To these we subsequently

apply a set of facial attributes such as increased or decreased

body weight or, for example, light or dark skin color. We

learn these attributes in a step prior to the stimulus genera-

tion procedure, so they can be applied automatically to each

face. The learning procedure ([2]) involves manual labeling

of each database face according to the perceived strength of

the attribute in each face. Each face Fi is attributed a scalar

value μi. Then, we fit a linear function f to these data that

reproduces the labels μi. Following the gradient of f in PCA

space will then produce a perceived change of the attribute

strength in a given face, while all other individual character-

istics of the face remain unchanged. Please note, that this

has to be done only once for each attribute, regardless of

how many data sets for training are required.

We performed this method for the following facial at-

tributes: age (young / old); body weight (obese / skinny);

beard shadow (dark shadow / no shadow); skin color (light

/ dark); ears (big / small) and also for one facial expres-

sion (friendly / unfriendly). We apply these attributes to all

random faces using a scaling factor σ ∈ [−3.0; 3.0], corre-

sponding to 99.73% of all possible variations (cf. Figure 3).

The strength of all attributes can be precisely determined in

terms of variance. For example, for female faces we avoid

bearded female faces by setting σ = 0. Results of the modu-

lation are shown in Figure 4, where we rendered all facial

attributes for the values σ = ±2.

Rendering In the next step, we transform all previously

generated 3D faces into 2D representations. To obtain an

image Ii(x, y) from a given 3D face Fi, we apply standard

computer graphics procedures:

Rρ(Fi) = Ii(x, y) (4)

2851



Figure 6. The background scenes used for image compositing are

randomly sampled from the PASCAL2 Visual Object Classes Chal-

lenge 2012. The scenes typically show outdoor scenes, urban

scenes or any other human environment.

By backprojection from PCA space we first determine ob-

ject coordinate vectors for shape and texture of each face.

Applying rigid transformation and scaling we then map

each coordinate to world coordinates. Next, a perspec-

tive projection maps each world coordinate to a point in

image space. In a final step we compute the surface nor-

mals. The resulting images depend on a set of rendering

parameters ρ, where the respective number of parameters

is given in brackets: 3D rotation (3), 3D translation (3),

focal length of the camera (1), angle of directed light (2),

intensity of directed light (3) and ambient light (3), color

contrast (1), gain (3) and offset (3) in each color chan-

nel. All faces are rendered at seven predefined viewing

angles. We thus generate a total of seven distinct train-

ing sets that all differ in the chosen face viewing angle

φ, where φ ∈{− 30◦;−20◦;−10◦; 0◦; +10◦; +20◦; +30◦}.

In addition, to achieve naturally varying results, we apply

slight random variations while rendering. Within each set,

we modulate for example the left-right viewing direction

of the face ([−3◦; 3◦]), the up-down angle (”‘nodding‘”,

θ ∈ [−15◦; 15◦]) and the in-plane rotation (γ ∈ [−5; 5]).
All above values are motivated by heuristics. To simulate

various environments, we additionally modulate color and

intensity of the ambient light and apply random variations

to color contrast, color gain and offset. Finally, we render a

segmentation mask for each face. For each of the resulting

training sets we later train a single face classifier which we

combine to a multi-view face detector in the end.

Compositing In a final step we blend the rendered faces

with background scenes that do not contain any faces (‘nega-

tives’). We use background images that are randomly sam-

pled from the ‘PASCAL2 Visual Object Classes Challenge

2012 (VOC2012)’1 image collection. To exclude apparent

faces from the selected images, we initially remove all im-

ages that are labeled to contain humans or human faces.

The remaining images typically show outdoor scenes, urban

scenes or any other human environment (cf. Figure 6). We

blend each rendered face with a random background and

apply a smooth contour blend (Gaussian blur) using the ren-

dered contour mask at the facial contour. In addition, we

1 http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2012/

randomly vary the size and position of the face in the back-

ground image and then store its rectangular coordinates as

ground truth. Each composed image contains exactly one

individual face in the end. Images containing at least one

face are also referred to as ‘positives’. Figure 5 illustrates

examples of the composed positive training images.

4. Enhanced AdaBoost Training
Using the above-described synthetic training data, we

train a face classification system. Given an image patch, the

system should determine whether the patch contains faces or

not and should locate potential faces in the image. Moreover,

the system should work across varying image sizes, depths

and resolutions.

The above requirements are satisfied by the OpenCV2

implementation of Viola and Jones’ AdaBoost framework

[4, 7]. While the algorithm performs very well during testing

phase (real-time), the training phase can quickly turn slow

and tedious, especially when training on numerous images

(>3000). One reason is that per stage, a very high num-

ber of features has to be computed, evaluated, selected or

finally discarded. This makes the training procedure very

slow and can become very impractical when it comes to

determine proper training parameters. One can easily spend

days to weeks tweaking parameters. Another drawback of

Viola and Jones’ method is that only greyscale images are

processed as opposed to recent approaches that have shown

that color information may improve face detection results

([45]). To overcome these drawbacks we present two major

adaptions to the OpenCV system: Firstly, we introduce new

feature layers that can be used either for color channels or

arbitrary descriptors and secondly, we parallelize the com-

plete training procedure to run on many-core architectures.

Despite using more feature layers (or colors) we could thus

tremendously speed up the training procedure.

Parallelization Sharing the load among multiple CPUs

allows for very fast training procedures and for the train-

ing on thousands of images, rather than a few hundred, in

a very short time. In our tests this decreased the training

time by a factor of 5.3 using eight cores versus a single core.

Parallelizing the AdaBoost training procedure [4, 7] is not

straightforward, however, since the algorithm is sequential

by nature. Among the non-sequential parts, the most ex-

pensive step is the computation of features on every image

patch. At each step a massive number of features has to be

33.96% 22.64% 18.87% 13.84% 10.69%

Figure 7. Histogram of the selected Haar features at training time.

Haar feature x2 is selected in 1
3

of all cases.
2http://opencv.willowgarage.com/wiki/
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computed and among these, the most descriptive ones have

to be selected. We speed up these processes by introducing

the following improvements: a) We precompute a subset

of the features in each CPU b) We parallelize the feature

selection at each AdaBoost iteration (involving a lightweight

synchronization with the master CPU). c) We parallelize the

negative patch selection (for which the classifier fails) as this

procedure massively slows the algorithm down at the later

stages (on the order of hours). All modifications have been

implemented using the OpenMP3 API.

New Features Layers OpenCV’s Viola-Jones implemen-

tation was initially designed to train on intensity images only.

We, however, expect the color channels to contain relevant in-

formation for the detection of faces. Evaluation showed that

by introducing additional layers the algorithm now finds the

most descriptive features in the red (57.86%) channel, fol-

lowed by the blue (25.16%) and green (16.98%) channels.

Out of these, Haar feature x2 is the most frequently selected

feature (cf. Figure 7). In future work, we are planning to

exploit other color spaces suitable for skin-color modeling,

as for example proposed by [46].

View-Classification We moreover alter the training pro-

cedure: In contrast to common practice, where people use

manually labeled and probably also biased data, we know

the exact viewing angle of each face in our training sets,

allowing us to train view-dependent detectors rather than

a generalized single classifier. However, during the detec-

tion phase one might want to detect all faces in an image,

regardless of their viewing angles. For this purpose we later

recombine the view-dependent cascades to a single multi-

view classifier that is capable of finding faces at any viewing

direction in the image (cf. Figure 1).

5. Evaluation and Results
Overall we trained seven distinct classifiers, one for each

of our seven synthetic training sets. For each classifier we

trained on 5000 positive samples (thus 35000 in total) and

5000 negative samples. After training, we evaluated the

resulting classifiers according to the Face Detection Data

Set and Benchmark (FDDB) as recommended by Jain and

Learned-Miller in 2010 [1]. The FDDB benchmark dataset

comprises 2845 images with a total of 5171 annotated faces.

Within the dataset a considerable number of challenging pic-

tures can be found. Examples are challenges such as low

resolution faces, out-of-focus faces, occlusions or difficult

and unusual face poses. Please also note that the FDDB-

benchmark framework requires evaluation in terms of a ten-

fold cross validation per definition. Before evaluating our

classifiers according to the FDDB standard, we first align

all seven classifiers. We therefore apply a stage threshold

3http://openmp.org/wp/

bias shift to all seven detectors such that they all start with

zero false alarms at the same point in the receiver opera-

tor characteristic (ROC). After threshold adjustment, we

build a cascade of all seven classifiers, which — for each

image patch — searches for faces at the respective view-

ing angles. We currently combine the view-based detectors

naively, more sophisticated methods, however, (e. g., vec-

tor boosting [47]) could lead to improved accuracy. The

resulting cross-validated ROC curve is shown in Figure 2.

However, the results indicate that training on statistically

well distributed synthetic training data seems to be a promis-

ing concept: Though the method of Li et al. still appears

partially superior to ours, our classifier could outperform

most previously published methods, such as Kienzle, Miko-

lajaczyk, Subburaman, VJGPR and the standard Viola-Jones

approach reported on the FDDB benchmark homepage 4.

6. Applications
Most presented face detection algorithms so far do involve

a time-comsuming initial step: the collection and labeling of

training images. This step is inevitable to achieve optimal

detection results for a specific camera type or environmental

setting. Detection accuracy is directly related to the quality

of training data. Synthetic training data, in contrast, might

overcome these drawbacks, and additionally offers a wide

range of new applications:

Self-Learning Surveillance Cameras Surveillance cam-

eras, as for example in large cities, are usually installed over

the course of years and thus vary widely in terms of their in-

trinsic parameters (such as focal length or resolution). They

are located all over the city, at varying positions, viewing

perspectives, illuminations and environments. Regardless of

this fact, surveillance systems often use the same detector

for all cameras. Camera-specific properties are ignored and

detection might fail, for example at unusual viewing per-

spectives like a birds-eye view. Camera-specific detectors

could be a solution to this. However, generalized detectors

are still standard, since it would be too time-consuming to

train hundreds of camera-specific face detectors.

Using our system, taking a few snapshots per surveillance

camera is sufficient to train camera-specific detectors. With

the help of little manual interaction (about seven clicks per

sample face) we can extract the parameters ρ from the cam-

era snapshots. All parameters are estimated automatically

in an analysis-by-synthesis loop which finds the parameters

α, β,ρ that make the synthetic image Imodel as similar as

possible to the original image Iinput in terms of pixelwise

difference

EI =
∑

x

∑

y

∑

c∈{r,g,b}
(Ic,input(x, y)− Ic,model(x, y))

2

4http://vis-www.cs.umass.edu/fddb/results.html
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Scene snapshots at night Scene snapshots at daytime

Synthetically tailored views 

Sample scene snapshots, from which we automatically extract facial illumination and pose parameters

Figure 8. Top row: Shown are four still images recorded by a single surveillance camera. While the scenes on the left were recorded at night,

the scenes on the right show recordings at daytime. Middle row: From the still images we manually extract a few cropped face images

which we then use to automatically estimate facial illumination and pose parameters by fitting the 3D morphable face model them. Bottom
row: Using the estimated light and pose parameters we render tailored training imagery showing arbitrarily modulated random faces.

Inferring from the extracted parameters ρ, it is straightfor-

ward to automatically generate thousands of labeled training

images. The generated files guarantee coverage of the full

spectrum of statistical data variability and may be equipped

with tailored facial attributes. Using the parallelized train-

ing procedure on top, one may quickly compute effective

detectors for each single camera, at the cost of a few clicks.

Selective Training Data Regarding surveillance systems,

it might also be the case that one wants to train a detector

for specific target groups. Examples could be a surveillance

camera at a primary school. For these cases, specific training

data might be helpful but difficult to obtain. To overcome

these difficulties we can use our system to generate training

samples following predefined constraints. We can do this by

either taking a few samples and generating many variants

(bootstrapping) of them or by labeling our data with respect

to the wanted attribute (young vs. old) and manipulate exist-

ing faces from our datasets.

Full Control of Arbitrary Attributes Depending on the

use of the detector, it might be useful to train detectors for

specific accessories or attributes, such as glasses, beards

or hats. While common methods would require observing

enough sample data in the real world, our system allows us

to design arbitrary attributes in 3D and to place them on any

rendered face. This way, one may produce a large amount of

training images for any specific purpose.

7. Summary, Discussion and Future Aspects
We presented a face detection system that is trained only

on synthetic training data. The results indicate that using

synthetic training data is meaningful and offers a variety of

useful applications. The time consuming process of man-

ually labeling faces can be replaced by a fully automated

procedure. However, the generation of synthetic training

data highly depends on the availability of a suitable 3D face

model (such as morphable 3D face model or active shape

model). Constructing a morphable model from scratch is

very time consuming and also requires available 3D data

of faces. But once a model is all set, training data comes

at almost no computational cost and scales easily to larger

quantities. In addition, it is easy to adapt the artificial train-

ing data to any specific requirement. Facial attributes may

be designed, modified or extracted in arbitrary ways.

Though the presented results are already very promis-

ing, one could explore whether combining real-world data

with synthetic training data could further improve the re-

ported results. Also, when combining many view-dependent

classifiers, it would be suitable to perform an additional post-

processing step as, for example, vector boosting. For the

detection of facial skin, advanced color models could be

helpful to enhance our results. These improvements will be

part of future work.
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