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Abstract

We tackle the detection of prominent objects in images
as a retrieval task: given a global image descriptor, we find
the most similar images in an annotated dataset, and trans-
fer the object bounding boxes. We refer to this approach
as data driven detection (DDD), that is an alternative to
sliding windows. Previous works have used similar notions
but with task-independent similarities and representations,
i.e. they were not tailored to the end-goal of localization.
This article proposes two contributions: (i) a metric learn-
ing algorithm and (ii) a representation of images as object
probability maps, that are both optimized for detection. We
show experimentally that these two contributions are cru-
cial to DDD, do not require costly additional operations,
and in some cases yield comparable or better results than
state-of-the-art detectors despite conceptual simplicity and
increased speed. As an application of prominent object
detection, we improve fine-grained categorization by pre-
cropping images with the proposed approach.

1. Introduction
This paper deals with the problem of prominent object

detection, where the goal is to predict the region contain-

ing the relevant subject (or object of interest) in an image,

as opposed to other regions containing background or non-

relevant objects. This problem is encountered in a variety

of computer vision applications. For example, in image

thumbnailing [23] or auto-cropping the goal is to detect the

boundaries of the foreground object. In mobile phone appli-

cations, such as product search [28] or leafsnap.com [16],

users take pictures of an “object of interest”, and localiz-

ing the object is often necessary for the subsequent process-

ing steps. Another scenario where this problem is found is

fine-grained categorization [8, 29, 36, 35]. In fine-grained

categorization an image contains an object of a parent class

(e.g. bird, dog, car), and the goal is to classify it into one of

the more specific sub-classes (e.g. dog breed, bird species,

car makes and models). The localization of the prominent

object is a key cue that can be used to improve this difficult

Figure 1. We aim at detecting the prominent object of an image

using a global image representation. A query image is compared

to an annotated set, and the nearest neighbors transfer their anno-

tations. For this retrieval process, we use supervision to learn an

image representation and a metric geared toward detection.

recognition task (as shown in section 6).

As these examples show, the definition of prominent or

relevant object is application-dependent, and we assume

this is defined by a training set with annotated bounding

boxes. This can be considered as a special case of detec-

tion, with a single object per image. Research in detec-

tion has converged to combining a template descriptor (e.g.

HOG [6] or its extension to deformable parts [10]) with slid-

ing windows. While these methods have obtained impres-

sive results in multi-object, multi-class scenarios (such as

PASCAL VOC [9]), one drawback is that they require to

classify millions of windows per image. Although methods

for accelerating sliding window search have been proposed,

a large number of window descriptors have to be extracted

and classified independently.

In this paper, we aim at an efficient solution, and propose

to extract a single global feature for the input image and

to estimate the prominent object location directly from this

feature vector, avoiding sliding windows. In this context,

we note that if the descriptor contains spatially-variant in-

formation (which can be achieved by spatial pooling), then

the similarity between those global descriptors provides a

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.217

1729

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.217

1729



strong cue for object location: neighbors tend to coincide

not only in appearance but also in location (see Fig 1).

This suggests a simple retrieval-based method for promi-

nent object localization: given an input image, find the near-

est images from a database (using the global descriptor),

and transfer the bounding box of the most similar image.

This data-driven detection1 (DDD) approach has certain ad-

vantages. First, detection is performed at the ease and effi-

ciency of a retrieval operation. Second, it allows handling

any object shape and does not rely on the rectangular and

rigid object assumption of the sliding-window approaches.

Finally, as detection is obtained using a global image de-

scriptor, it intrinsically leverages context for detection.

However, this idea presents some initial issues. First,

having images of the object at any possible location in

the training set seems infeasible – although this effect can

be reduced by combining the top K results. But, more

importantly, previous literature suggests negative evidence

against that approach. Several works [27, 23, 26, 30, 20]

have exploited this “global image transfer”, but in all cases

they needed to combine it with more complex and some-

times costly refinements, which could indicate that the re-

trieval step is not sufficient on its own.

We believe that a key limitation of the previous idea is

that it uses generic image representations and similarities

that we call “task-independent”, and that are disconnected

from the end-task of detection. This paper proposes two

improvements:

A task-aware similarity function. We aim at predict-

ing that two images have similar localization annotations

directly from their image features. We apply metric learn-

ing to enforce image pairs with high overlap between detec-

tion rectangles to be more similar than images with no (or

small) overlap.

A task-aware representation. We propose to use a

compact image representation that is constructed from the

probability of each image patch to belong to the object. This

requires some knowledge about the object to locate, but al-

lows representing the image as a probability map of the ob-

ject location. Since there exists a strong correlation between

the true detection and such a probability map, these features

are well-suited to data-driven detection.

Both contributions use supervision to connect the fea-

tures and similarity to the detection task, by converting

an initial assumption (similar images tend to have similar

layouts) into an actual optimization step (we learn what

makes two layouts similar). Experiments indicate that these

two components significantly improve data-driven detec-

tion. Also, more compact representations are obtained that

1The term data-driven is recently used to refer to approaches which

successfully reduce complex regression problems (e.g. image annotation,

geolocalization) to nearest-neighbor transfer in huge datasets [31, 21, 13],

exploiting the phenomenon of the unreasonable effectiveness of data [12].

lead to a faster retrieval at test time. Despite their simplicity

at test time, these two components lead to an accuracy that

on some datasets is on par with the deformable part model

(DPM) [10], which is state-of-the-art for detection. Finally,

we show in fine-grained categorization experiments that we

improve classification accuracy by concentrating on the re-

gion predicted by a DDD.

The paper is organized as follows. § 2 reviews previous

work. § 3 summarizes the general principle of data-driven

detection. § 4 and 5 present the proposed task-aware simi-

larity and representation, respectively. § 6 presents experi-

ments on three detection tasks. § 7 concludes the paper.

2. Related Work
Detection. De-facto standard detection methods [6, 10]

combine a template representation and a sliding window

approach. Among them, HOG descriptors [6] have shown

big success for fully rigid objects in multi-class and multi-

object settings. DPM [10] builds on top of HOG, combining

it with deformable parts to be robust to small object defor-

mations. Both methods still have issues with flexible ob-

jects [9]. Additional abundant work on detection has been

published but the most successful methods cast detection

as a classification problem: a large number of classifica-

tion operations are performed (each possible sub-window

is classified as containing the object or not). In contrast, in

this paper we would like to take a data-driven approach, and

cast detection as a retrieval problem.

The class-generic objectness measure [2] has been used

for preprocessing, e.g. to improve or speed up detec-

tion [15]. It differs from DDD in spirit (it is not application

dependent) and in practice (it is a sliding window approach).

Data-Driven Localization. The concept of transferring

bounding boxes (or pixel-level masks) from the nearest

neighbors of an image has been successfully exploited in

previous work. Two main strategies exist: transfer at sub-

window level and transfer at full-image level.

In the first strategy, approaches still perform sliding win-

dow search and each sub-window is used as a query for

which nearest-neighbor similarity is computed [31, 22]. A

similar case is the figure-ground segmentation of [15] where

sliding window search is replaced by an objectness detec-

tor [2]. Although these works clearly have a data-driven

component that is key to their success (the scoring of sub-

windows), they still compare all sub-windows of an image

against a database, and pay a complexity price that it at least

as big as the one paid by sliding window approaches.

The second strategy performs transfer at full-image level

and exploits the intuition that similar images tend to have

similar segmentations [20, 23, 26, 30] or detections [27].

All these works boil-down to the same principle: find the

nearest neighbors of the input image; and feed the annota-

tions of those to a more complex method. For instance, in
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[20, 26, 30] a Markov random field is instantiated from the

transferred segmentations. Similarly, [27] uses the neigh-

bors to induce priors over object classes and bounding box

locations in a graphical model.

We observe that for the second strategy, transferring the

labels of the neighbors is crucial to guide the algorithm, but

as the retrieval step is based on task-independent features

and similarities, this is not sufficient. Their results may be

due to the more complex models used after the data-driven

step. In [15] a global neighbor transfer baseline produces

poor results in a multi-object binary segmentation task. Our

method belongs to the second strategy, except that we use

supervision in the retrieval step.

3. Data-driven detection baseline

Our goal is to infer the bounding box of the prominent

object from the global feature vector of the image, using a

training set with annotated bounding boxes. Based on the

intuition from recent data-driven segmentation works [27,

26, 30, 20, 15], data-driven detection (DDD) can be formal-

ized as follows. We denote by {xi, Ri} a training set of

feature-annotation pairs, where xi ∈ R
D denotes the fea-

ture vector of the ith image and Ri ∈ R
4 the ground-truth

rectangle indicating the extent of an object of interest in

the image (top-left and bottom-right corners). We assume

a similarity function between features k : R
D × R

D → R.

For a query feature q, kn = k(q, xn) denotes its similarity

to the nth element of the training set, and π(l) the index of

the element that ends up in position l after sorting the kn

values in descending order. We seek a function that pre-

dicts the rectangle R(q), using the L top-ranked samples:

R(q) = F(xπ(1), . . . xπ(L)). A straightforward choice for

F is a non-parametric regression:

R(q) =
L∑

l=1

wπ(l)Rπ(l), (1)

which expresses the predicted rectangle as a weighted com-

bination of the ground-truth rectangles of the L best ranked

samples. We chose wi = ki/
∑

r kr. The process is illus-

trated in Fig. 1.

Proposed baseline. Although the theoretical formulation

is valid for any feature and similarity, note that data-driven

methods need to be computationally efficient. We there-

fore prefer using similarities of the form of a Mercer ker-

nel which have known approximate explicit embeddings in

finite-dimensional spaces. In this case similarities can be

expressed as dot products k(q, x) = qT x, which can be ef-

ficiently computed, and the features q and x already encode

the explicit embeddings. In this article, we use Fisher Vec-

tors (FV) as our generic representation, as they fulfill the

above property and have obtained state-of-the-art results in

image categorization [25] and retrieval [24] tasks.

4. Task-aware metric
Our first contribution is a similarity learning algorithm

that optimizes a detection criterion. Metric learning2 ap-

proaches [3, 7, 34] aim at obtaining distances or similarities

optimized for tasks such as k-NN classification [7, 34] or

ranking [3]. All these works make use of categorical labels

for samples or pairs. We are not aware of previous works

applying metric learning on object location labels. A funda-

mental difference is that here the label space is continuous

and multi-dimensional, not categorical.

Definitions. We assume that a similarity function over an-

notations Ψ : R
4 × R

4 → R is defined. In the following, if

m and n index the images of a labeled data set, we may use

the shorthand Ψmn = Ψ(Rm, Rn).
For object localization, a common similarity is the over-

lap score, defined as the union-to-intersection area ratio

(e.g. see PASCAL detection challenge [9]):

Ψ(R,R′) =
Area(R ∩R′)
Area(R ∪R′)

. (2)

Similarity function. Our goal is to learn a similarity func-

tion k : R
D ×R

D → R which ranks images as similarly as

possible to the ranking induced by Ψ. Intuitively, this means

that image pairs with similar annotations are forced to have

similar representations according to the learnt metric.

More precisely, we consider a similarity function which

augments the dot product as:

kW (q, x) = qT Wx. (3)

Loss function. We define an objective function that quanti-

fies the “loss” of choosing kW given Ψ on a training set:

L(W ) =
∑

∀i,j,k
s.t.Ψ(Ri,Rj)>Ψ(Ri,Rk)

ΔijkI[[kW (xi, xk) > kW (xi, xj)]], (4)

where I[[a]] equals to 1 if a is true and to 0 if false. In

words, for a triplet (i, j, k) ordered such that Ψ(Ri, Rj) >
Ψ(Ri, Rk), we check whether kW (·, ·) respects the order-

ing; if not a cost of Δijk is paid (defined later), and we

accumulate the costs of all the triplets in the set.

Thus the goal is to minimize Eq. (4) w.r.t. W , but as it is

intractable we use the following convex upper-bound:

L(W ) =
∑

∀i,j,k
s.t.Ψ(Ri,Rj)>Ψ(Ri,Rk)

max(0,Δijk+kW (xi, xk)−kW (xi, xj)).

(5)

Note that Eq. (5) is reminiscent of a margin-rescale hinge

loss, commonly employed in structured learning. Following

2abusing the language we sometimes use the term “metric learning” as

a synonym of “distance learning” or even “similarity learning”
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Figure 2. Task-aware representation: patch-level object classifiers are used to represent query images by probability maps. Annotations of

training images with similar probability maps are transferred to solve detection.

this analogy, we refer to Δijk as the Δ-loss. In practice, the

Δ-loss acts as a margin.

The two components of L(W ) that are crucial to deal

with the structured output nature of our labels are (i) the Δ-

loss defined over rectangles and (ii) the sampling strategy

(triplets s.t. Ψ(Ri, Rj) > Ψ(Ri, Rk)). We consider three

possible choices of Δijk : (a) constant Δ-loss: Δijk =
1, (b) variable Δ-loss: Δijk = Ψij(Ψij − Ψik), which

encourages that simple cases in the detection space get well-

separated in the image space (or pay a big cost if not), (c)

biased sampling: Δijk = 1 but different sampling strategy:

triplets s.t. Ψij > θ and Ψik < θ, which encodes the notion

of separating “good” from “bad” pairs.

Optimization. Since it is typically infeasible to enumer-

ate all triplets, this loss function can be optimized through

stochastic gradient descent (SGD) [4]. Additionally, since

the dimensionality of the features could be large, which

would lead to the costly estimation of a large D×D matrix,

we perform a low-rank decomposition W = UT U , where

U is a D ×K matrix with K � D. Note that in this case,

the formulation is not convex anymore.

Following straightforward derivations it is possible to

show that the learning procedure becomes:

1. Sample a triplet (i, j, k) randomly with Ψij > Ψik.

2. Evaluate its contribution to the loss in Eq.(5):

Lijk(U) = max(0, kU (xi, xk) + Δijk − kU (xi, xj)).

3. If Lijk(U) > 0, perform a gradient step update:

U ← U + ηU(xiδ
T + δxT

i ),

where η is a a learning rate, and δ = xj − xk.

Note that, after learning, the low-rank decomposition

imposes a dimensionality reduction, since kU (q, x) =
(Uq)T (Ux), which is a dot-product. This leads to a sig-

nificant reduction of the search cost if the projections are

pre-computed for the database (e.g. 32K reduced to 8K di-

mensions in Sec. 6.1).

W is initialized as the identity matrix (or U as a matrix

of random numbers drawn from a normal distribution with

μ = 0 and σ = 1, in which case UT U ≈ I), and the number

of iterations acts as an implicit regularizer (that keeps the

solution close to the initial dot product similarity).

5. Task-aware representation
The second contribution is an improved representation

built using supervised information of the detection task.

More precisely, we propose to build a “probability map” in-

dicating probabilities that a certain pixel contains the promi-

nent object. This is based on a patch-level classifier that

has been pre-trained to distinguish between patches from

prominent objects and from the rest of the image.

We highlight that probability maps constitute responses

of local patch classifiers, which are noisy and smooth,

and that the response map of explicit object detectors (e.g.

object banks [19]) would be sparser and more accurate.

However, object banks suffer from the same limitations

as sliding-window based approaches, while the probability

map is fast to compute (just one extra dot product on top of

the patch encoding).

Probability maps have been used as an input for object

segmentation, to classify super-pixels [5], as the unary po-

tential of a random field [17], or with auto-context algo-

rithms [32]. In our case, we use probability maps directly

as an image representation within data-driven detection.

Patch extraction. Patches are extracted densely and at mul-

tiple scales within images of the training set, and are associ-

ated to a binary label depending on their degree of overlap

with the annotated object region. A descriptor is computed

for each patch, here a Fisher Vector per patch (as in [5]).

Patch classifier training. Patch-level descriptors and their

labels are used to train a linear SVM classifier which assigns

each patch to the “object” or “background” class. This clas-

sifier introduces the supervised information and makes the

representation task-aware.

Probability map computation. An image is represented

as follows. First, patches are extracted and described in

the exact same way as for training. The patch classifier as-

signs a score for each patch. These scores are transformed

into probabilities at the pixel level [5], yielding probabil-

ity maps (see Fig. 2, brighter areas correspond to locations

more likely containing the object).

Final image representation. To make them comparable,

the probability maps are resized to a small fixed-size image

(50x50 pixels), �2 normalized, and the values are stacked

into a feature vector. This is our new, task-aware image rep-
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resentation, which can also be matched with a dot product.

This representation has several advantages over a task-

independent one. First, by nature, this representation cap-

tures information about the end task, so images having simi-

lar representations are more likely to have similar detection

annotations. Second, probability maps are more compact

than FV. This means that, despite the extra cost at training

time to learn an object classifier, and the small constant cost

at test time to compute the map, the smaller dimension of

this representation makes retrieval and consequently detec-

tion much faster. Also, with its dimensionality (2.5K), if

we combine these representations with a task-aware metric,

working with the full-rank W is still feasible, which leads

to a convex problem. Finally, one can combine several low-

level cues (for instance SIFT and color) without increasing

the final dimension of the representation by averaging maps

computed using different channels [5].

Since probability maps are a strong cue for object loca-

tion, one may wonder why not using directly a sliding win-

dow over the probability map. This is one of the baselines

in our experiments. Intuitively, patch level classifiers are far

from perfect, but we expect classifier errors to be consis-

tent between similar training and query images. Therefore,

even for inaccurate probability maps, the closest maps in the

database can help transferring the object location reliably.

6. Experimental validation
We study our approach on three datasets with very differ-

ent objects to understand its advantages and its limitations:

prominent person detection on the Extended Leeds Sports

Pose (LSP) dataset, bird detection on the Caltech-UCSD

birds dataset, and dog detection on the ImageNet dataset.

Experimental setup. For all the experiments, the task-

independent feature chosen is the Fisher Vector (referred

to as FV-SIFT). Local patches are extracted densely at 5

scales, represented by SIFT (128 dim), and compressed us-

ing PCA (64 dim, 32 for LSP). Projected descriptors are

used to build a visual codebook of 64 Gaussians. Using it,

each image is transformed into a global signature (FV). We

only use derivatives w.r.t. the mean. Coarse geometry is in-

troduced by spatial pooling: the image is divided into a reg-

ular grid of 8×8 cells (4×4 for metric learning), each bin is

described cell a FV, and cell FVs are concatenated [18]. As

suggested in [25], we square-root and �2-normalize FV im-

age signatures. In all experiments, the number of neighbors

L are determined from the validation set. From the 3 loss

functions described in Sec. 4, option (c) (biased sampling)

yields the best results (with θ=0.5, η = 10−2).

For our task-aware features, the probability maps are

built from FVs computed at patch level as in [5]. This essen-

tially follows the same process as explained above but com-

puting one FV per patch instead of aggregating the patch

contributions. Probability maps are resized to 50×50 im-

Repr ML precision

DDD baseline FV-SIFT no 34.1

Task-aware DDD

FV-SIFT yes 43.1
PM-SIFT no 39.2

PM-SIFT yes 43.0

Other baselines

Random DDD 19.5

DPM 40.3

PM-SIFT + SW 38.6

Table 1. Results of prominent subject detection, in the LSP dataset,

that compares task-aware measures (metric learning or ML) and

task-aware representations (PM) to different baselines.

ages. The probability maps using FVs computed from low-

level SIFT descriptors are denoted PM-SIFT. We also con-

sider color statistics [25] as low-level descriptors (PM-COL)

and the average of both maps (PM-SIFT+COL).

6.1. Extended Leeds Sport Pose dataset

Dataset and evaluation. We first evaluate our contributions

on the Extended LSP dataset [14]. It consists of images of

persons in unconventional poses. While the database an-

notations are at the level of body joint locations (knees, el-

bows, neck, etc), it has been designed so that there is one

prominent person (i.e. a single annotated subject) per im-

age, which fits well our scenario. We would like to evaluate

the prominent subject detection task on these challenging

images. To this end, we transformed the annotation, and ob-

tained ground-truth rectangles by taking the bounding rect-

angle of the body joint annotations. We used the training,

validation and test sets as defined in [14]. The quality of

the detection is evaluated using the overlap score of Eq. (2),

and a detection is considered as correct if the score is above

50% (PASCAL criterion [9]).

Results. First, we study the influence of the task-aware met-

ric, by comparing the two first lines of Table 1, and we see

that metric learning brings a significant (+9%) improvement

when considering a standard representation. Using the same

low level descriptors (i.e. SIFT), the task-aware represen-

tation PM-SIFT still compares favorably to the baseline

(+5.1%). Using metric learning on top of PM-SIFT still

improves (+3.8%), and becomes comparable to the FV with

metric learning. Retrieval takes no more than 200ms/image.

We consider 3 additional baselines. First, the state-of-

the-art Deformable Part Model (DPM) [11, 10], trained with

3 components (+left-right orientations). DPM outperforms

the task-independent baseline, and is on-par with our task-

aware representation. Yet, it is outperformed by the metric-

learning approaches. We think that this detector is not well

suited to objects presenting such flexible configurations.

We also combine probability maps to a sliding window

(SW) process. The rectangle with the best density score

(density inside the rectangle minus density outside) is kept.

This is referred to as PM+SW in Table 1. This baseline
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Figure 3. Comparison of DDD for FV (and different spatial pool-

ing G=GW xGH ) and PM (for different resized map sizes) with

and without metric learning.

achieves competitive results (confirming that probability

maps are powerful representations), but is outperformed by

our best DDD strategies.

Finally, we measure the accuracy of selecting neigh-

bors randomly (Random DDD, that validates the number

of neighbors). This is to verify that there are no significant

annotation bias (an effect sometimes found with large ob-

jects). It obtains 19.5%, which is still considerably smaller

than any of the proposed methods and baselines.

Dimensionality. For the task aware metric, the low-rank

projection reduces the dimensionality from 32K to 8K. The

probability map is of size 50×50, thus the dimension is

2500. Other explored parameter combinations (in valida-

tion set), and their accuracy vs. dimension trade-offs, are

shown in Fig. 3. On top of improved accuracy, we can

clearly see the compression offered by the two contributions

as a strong advantage in our DDD framework.

Results with color. The previous results use SIFT as low-

level descriptor in the probability maps to be comparable

to the DPM and DDD baselines that are based on gradients

and do not use color. However, as discussed in section 5, ad-

ditional information about color can be introduced without

increasing the size of the representation. When combining

low-level SIFT and color descriptors in the probability maps

(PM-SIFT+COL) and using metric learning, we obtain the

best results with 44.5% (some results in Fig. 4).

6.2. ImageNet Dog dataset

Dataset and evaluation. ImageNet dogs is a dataset of

dog images used for fine-grained classification purposes [1].

Here, the dog is the prominent object, and we measure the

dog detection task, and the effect of our task-aware method

on the final classification accuracy. The dataset is composed

of 120 different breeds of dogs, making the detection chal-

lenging (see Fig. 1). As proposed for the challenge we use

20,580 images for training. As the test annotations are not

available, we have split the validation set into 1,000 images

that we use as an actual validation set to find the best pa-

rameters, and the remaining 5,000 images are used as our

Repr ML precision

DDD baseline FV-SIFT no 35.0

Task-aware DDD
PM-SIFT no 50.2

PM-SIFT+COL no 51.4

Other baselines

Random DDD 14.9

Centered R 31.1

DPM 40.4

PM-SIFT + SW 34.9

Table 2. Results of dog detection, in the ImageNet dataset

test set, for evaluation. We used a generic dog classifier in

the task-aware representation, trained using all 120 types of

annotations. For detection evaluation, we follow the Ima-

geNet challenge protocol that considers a detection as cor-

rect if the predicted bounding box overlaps enough with the

ground truth bounding box, or in the case of multiple in-

stances of the same class (which occurs seldomly), with any

of the ground truth bounding boxes (i.e. at least one object

has to be found). We observed that the average overlap be-

tween two randomly chosen annotations is already close to

50%. We then decided to report results for a threshold of

70% which is more informative (thus we use θ = 0.7).

Detection results. Results are reported in Table 2. The

best results for the FV-SIFT baseline are 35.0% and were

obtained with large vectors (of 262K dimensions). Our ex-

planation is that with bigger bounding boxes there is less

space for diversity in the annotations, which requires more

distinctive features. Such a dimensionality leads to pro-

hibitively big projection matrices for task-aware metrics.

The task-aware representation PM-SIFT yields 50.2%

precision and improves the task independent baseline by

+15.2%. Adding color information to the probability map

(PM-SIFT+COL) yields a further improvement of 1.2%

(reaching 51.4%). No further improvement was observed

with metric learning on top of these representations.

We consider the same baselines as in the previous sec-

tion. The sliding window (PM-SIFT+SW) is on par with the

FV-SIFT. Its poor performance could be explained by the

following observation: since dogs occupy a large fraction of

the image, and they generally do not have a squared shape,

the patch classifier training data is more noisy, yielding to

probability maps of poorer quality, to which the sliding win-

dow is more sensitive. However, if the errors are consistent,

DDD is still able to correctly transfer the rectangles even

for noisy maps.

DPM3 performs better, but is still below the proposed

task-aware representations (which are much faster). We

found it tends to fail for dogs in “non-canonical poses”.

The Random DDD baseline achieves 14.9%, thus con-

firming that all methods perform much better than random.

One could also ask whether detection is trivial just because

dogs seem centered. The Centered D baseline predicts

3trained with 3 components and 2 orientations, as before
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mAP

No detection (full image) 26.6

DDD (PM-SIFT+COL) 31.2

Ground-truth detection 35.5

Table 3. Fine-grained classification on the Dogs dataset, using de-

tection. Mean average precision is reported.

an object in the center, that occupies 90% of the image

(value optimized on validation), and obtains 31.4%. This

high number suggests there exists indeed a bias, but the pro-

posed method is still +15.3% above.

Fine-grained classification results. We propose to use lo-

calization as an aid for fine-grained classification, by crop-

ping the images using the output of DDD in order to remove

noise introduced by the background. We assume that the

object location is available at train time (as for DDD), and

we train classifiers over the 120 breeds of dogs using the

cropped images. At test time, we use the bounding boxes

predicted by our system to crop images, and classify the

cropped region. For classification, we use FV as a global

image representation (using both SIFT and color descriptors

with PCA of 64 dim, 256 Gaussians and no spatial pyramid)

and linear one-vs-all SVM classifiers. For detection, we

use the best DDD method. All parameters are chosen using

the validation set of 1,000 images, and classification results

are reported for the remaining 5,000 images. As suggested

by the challenge organizers, we compute average precision

(AP) on individual categories and report the mean average

precision (mAP) across all categories.

Classification results are reported in Table 3, and com-

pared to (i) the classification of full images, and (ii) crop-

ping using the ground-truth detections (to measure how far

we are from the classification figure of a perfect detection).

We confirm that the DDD improves fine-grained categoriza-

tion and is a few percent points below the perfect detection.

6.3. Caltech-UCSD Birds 200 2011

Dataset and evaluation. Caltech-UCSB 2011 [33] is an-

other fine-grained dataset composed of 200 bird species.

We follow the training and test split of [33] (5994 training

and 5794 testing images), and use a subset of the training

set as validation set (1994 images). We show detection re-

sults for generic bird detectors (the bird being the prominent

object of each image). The detectors are trained using the

200 types of annotations. The overlap threshold to compute

precision is set 70% for the same reason as in the dog set.

Detection results. Results are reported in Table 4 and qual-

itative results in Fig. 4. For the same reason as in the dogs

dataset, we concentrate on the task-aware representations.

In this set, probability maps based on color (PM-COL)

yield better results than those based on SIFT (PM-SIFT),

probably due to the colorful nature of birds. While PM-COL
is on par with the task-independent DDD baseline (FV-

Repr ML precision

DDD baseline FV-SIFT no 24.4

Task-aware DDD PM-SIFT no 21.0

PM-COL no 23.1

PM-SIFT+COL no 27.1

Other baselines

Random DDD 9.02

Centered D 14.9

DPM 47.9

PM-SIFT + SW 12.0

Table 4. Results of bird detection, in the Birds dataset

Top-1 accuracy

No detection 28.2

Centered D 31.0

DDD (PM-SIFT+COL) 41.9

DPM 42.2

Ground-truth detection 46.3

Table 5. Fine-grain classification on the Birds dataset, using detec-

tion. Top-1 accuracy is reported for a global image descriptor.

SIFT), the combination (PM-SIFT+COL) improves 2.7%.

In this set the difference between DPM and DDD is

very large (although DDD is much faster). Our explana-

tion is that birds tend to appear in a few rigid configurations

(wings open or closed). Still, the task-aware representa-

tions perform largely over the trivial baselines Centered
R and Random DDD. The sliding window (PM-SIFT+SW)

yields the same behavior as in the dogs set.

Fine-grained classification results. We also conduct a

fine-grained classification experiment on this set with the

same protocol as before, and measure the impact of detec-

tion on the final classification accuracy. For detection, we

use the best DDD method (PM-SIFT+COL) but also com-

pare to DPM, as it yielded much better results for detection,

and to the (Centered D) baseline, to evaluate against a

content-independent cropping strategy. We report the aver-

age of the top-1 accuracy across all the categories as this is

standard for this dataset. Results are shown in Table 5.

As expected, detection has an impact on fine-grained

classification (increase of >13%). However, the significant

result is that the impact of the DPM and the DDD meth-

ods on classification is the same. This looks initially sur-

prising as the difference in detection accuracy is very large.

However, the following observation could explain these re-

sults. Detection accuracy is evaluated at 70% overlap, thus

counting as correct detections only those which are really

accurate (note that the PASCAL criterion is 50%). But if

we inspect the detection precision at 20% overlap (which

corresponds to estimating the object location roughly), the

DPM is at 95.0% vs. 99.6% for the DDD. This means there

is about 4.6% of the image for which the DPM completely

misses the object location. In contrast, the DDD always

finds the object location roughly, but not precisely enough

for 70% overlap. While a rough detection result can still
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Figure 4. PM-SIFT+COL results. Left: Two examples of the LSP set. Column 1: query image with predicted detection, Column 2: closest

neighbor and its ground truth. Right: Two examples of the Birds dataset. The query image and the predicted location. The three closest

neighbors with ground truth. Probability maps are also displayed. Predictions might use more neighbors than the ones shown here.

capture information of the class, it is reasonable to expect

that most of this 4.6% missed entirely by DPM might trans-

late directly to classification errors. Note the difference in

classification accuracy between perfect detection and DPM

detection is 4.1%, which approaches the previous number.

7. Conclusion

This paper demonstrates the feasibility of data-driven de-

tection over diverse datasets, and the competitive results

it can obtain when enhanced with our two proposed con-

tributions: a task-aware similarity using learning, and a

task-aware representation, computed from patch-level ob-

ject classifiers. Since the proposed method still reduces to

finding nearest neighbors at test time using a single feature

vector per image, and the two contributions significantly

reduce the dimension of the representation, we avoid slid-

ing window search, and the retrieval process is fast (about

200ms per image). DDD compares favorably to a state-

of-the art sliding window approach in presence of non-

rigid objects. It compares less favorably for rigid objects

(as birds) but appears to be good enough as pre-cropping

method for fine-grained classification results.
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