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Abstract
This paper proposes a novel part-based representation

for modeling object categories. Our representation com-
bines the effectiveness of deformable part-based models
with the richness of geometric representation by defining
parts based on consistent underlying 3D geometry. Our key
hypothesis is that while the appearance and the arrange-
ment of parts might vary across the instances of object cat-
egories, the constituent parts will still have consistent un-
derlying 3D geometry. We propose to learn this geometry-
driven deformable part-based model (gDPM) from a set
of labeled RGBD images. We also demonstrate how the
geometric representation of gDPM can help us leverage
depth data during training and constrain the latent model
learning problem. But most importantly, a joint geometric
and appearance based representation not only allows us to
achieve state-of-the-art results on object detection but also
allows us to tackle the grand challenge of understanding 3D
objects from 2D images.

1. Introduction
While object detection remains one of the most stub-

bornly difficult problems in computer vision, substantial

progress has been made in the last decade, as evidenced

by steadily improving detection rates for common cate-

gories such as faces, cars, etc. However, there are reasons

to worry that current advancements might be reaching a

plateau. Consider the popular PASCAL object detection

benchmark [12]: after rapid gains early on, detection per-

formance has stagnated for most object classes at levels still

too low for practical use (e.g., bird, sofa and chair categories

are all below 20% AP). Interestingly, the standard trick of

boosting performance by increasing the size of the training

set does not seem to be working any longer: Zhu et al. [33]

report training a standard detector on 10 times more data

without seeing any improvement in performance. This in-

dicates the need for better models and learning approaches

to handle the intra-class variability of object categories.

At the forefront of detection research has been the de-

formable part-based model (DPM) [13] which has consis-

tently achieved state-of-the-art performance in object de-
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Figure 1. Examples of object detection and surface normal pre-

diction using the proposed gDPM model. Our gDPM not only

improves the state of the art performance in object detection but

it also predicts the surface normals with the detection. Legend for

normals: blue: X; green: Y; red: Z.

tection tasks. It models objects as a constellation of parts

where the parts are defined in an unsupervised manner

based on heuristics such as high gradient energy. This part-

based model is trained discriminatively; however, learning

this model is a complex task as it involves optimization of

a non-convex function over a set of latent variables (part lo-

cations and mixture memberships). In some cases, the parts

in the DPM have shown little or no improvement [10]. Due

to these reasons, recent work has focused on using strongly-

supervised part models [1] where semantically meaningful

part annotations are used to initialize the parts and improve

the learning process. However, using semantically mean-

ingful parts has two major problems: (1) manually labeling

these semantic parts can be quite cumbersome and requires
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a lot of human effort; (2) more importantly, unlike articu-

lated objects, for many object categories, such as beds, it is

not even clear what a semantic part corresponds to.

We propose a geometry-driven deformable part-based

model (gDPM) that can be learned from a set of labeled

RGBD images. In a gDPM, object parts are defined based

on their physical properties (i.e., their geometry) rather than

just their appearance. Our key hypothesis is that while the

arrangement of parts might vary across the instances of ob-

ject categories, the constituent parts will still have consis-

tent underlying 3D geometry. For example, every sofa has

a L-shaped part that is the intersection of a vertical surface

and a horizontal surface for sitting. Therefore, the under-

lying 3D geometry can provide weak supervision to define

and initialize the parts. While the learning objective in case

of gDPM is still non-convex (similar to [13]), we show how

the depth data can be used as weak supervision to impose

geometric constraints and guide latent updates at each step.

Empirically this leads to faster convergence, and a better

model in terms of detection performance. But more impor-

tantly, because our parts have a 3D geometrical representa-

tion they can be used to jointly detect objects and infer 3D

properties from a single 2D image. Figure 1 shows two ex-

amples of objects detected by our gDPM model and the pre-

dicted surface normal geometry by the gDPM. Notice how

our approach predicts nicely aligned flat horizontal surface

of the table within the bounding box and how the approach

predicts the horizontal and vertical surfaces of the couch.

Contributions: Our key contributions include: (1) We pro-

pose to marry deformable part-based model with the geo-

metric representation of objects by defining parts based on

consistent underlying 3D geometry. (2) We demonstrate

how the geometric representation can help us leverage depth

data during training and constrain the latent model learn-

ing problem. The underlying 3D geometry during training

helps us guide the latent steps in the right direction. (3)

Most importantly, a joint geometric and appearance based

representation not only allows us to achieve state-of-the re-

sults on object detection but also allows us to tackle the

grand challenge of understanding 3D objects from 2D im-

ages.

2. Related Work
The idea of using geometric and physical representation

for objects and their categories has a rich history in com-

puter vision [5, 23, 24]. While these approaches resulted

in some impressive demos such as ACRONYM [6], these

systems failed to generalize. That led us to the modern era

in computer vision where instead of representing objects in

3D, the focus changed to representing objects using low-

level image features such as HOG [9] and using machine

learning to learn an appearance model of the object. The

most successful approaches in this line of work are the de-

formable part-based models [13] that extend the rigid tem-

plate from [9] to a latent part-based model that is trained dis-

criminatively. While there has been a lot of progress made

over the last decade, the performance of these appearance

based approaches seems to have been stagnated.

Therefore, recent research has now focused on develop-

ing richer representations for objects and effective ways of

learning these representations. Most of the recent work on

improving deformable part models can be broadly divided

in two main categories:

(a) Better 2D Representations and Learning: The first

and the most common way is to design better representa-

tions using 2D image features. In this area, researchers have

looked into using strongly-supervised models for parts [1, 4,

11, 32], using key point annotations to search for parts [3]

or discovering mid-level parts in a completely unsupervised

manner [28]. Other directions include using sharing to

increase data-size across categories [22] or finding visual

subcategories based on appearances before learning a part-

based model [7, 10].

(b) Using 3D Geometry: The second direction that has

been explored is to bring back the flavor of the past and

develop rich models by representing 3D geometry explic-

itly. One of the most common ways to encode viewpoint

information is to train a mixture of templates for differ-

ent viewpoints [17]. An alternative approach is to explic-

itly consider the 3D nature of the problem and model ob-

jects as a collection of local parts that are connected across

views [16, 27, 29, 30]. Another way to account for 3D rep-

resentation is to explicitly model the 3D object in terms of

planes [8, 14, 27, 31] or parts [26], and use a rigid tem-

plate [18], spring model [14] or a CRF [8].

Our approach lies at the intersection of two these direc-

tions. Unlike other approaches which incorporate geome-

try in DPM via CAD models [26] or manually-labeled 3D

cuboids [14, 18], our approach uses noisy depth data for

training (similar to [15]). This allows us to access more and

diverse data (hundreds of images compared to 40 or so CAD

models). The scale at which we build 3D priors and do ge-

ometric reasoning during latent learning allows us to obtain

improvements of as much as 11% in some categories (previ-

ous approaches performed at-par or below DPM). We would

also like to point out that even though our approach uses

depth information during training, it is used as a weak su-

pervisory signal (and not as an extra input feature) to guide

the training in the right direction. The discriminative model

is only learned in the appearance space. Therefore, we do

not require depth at test time and can use gDPM to detect

objects in RGB images. Most other work in object detec-

tion/recognition using RGBD [2, 20, 21] uses depth as an

extra input feature to learn an object model and therefore,

also requires depth information at test time.
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3. Overview

As input to the system, at training, we use RGB images

of object instances along with their underlying geometry in

terms of depth data. We convert the depth data into surface

normals using the standard procedure from [25]. Our goal

is to learn a deformable part-based model where the parts

are defined based on their appearance and underlying ge-

ometry. We argue that using a geometric representation in

conjunction with appearance based deformable parts model

not only allows us to have a better initialization but also pro-

vides additional constraints during the latent update steps.

Specifically, our learning procedure ensures not only that

the latent updates are consistent in the appearance space but

also that the geometry predicted by underlying parts is con-

sistent with the ground truth geometry. Hence, the depth

data is not used as an extra feature, but instead provides

weak supervision during the latent update steps.

In this paper, we present a proof-of-concept system for

building gDPM. We limit our focus on man-made indoor

rigid objects, such as bed, sofa etc., for three reasons: (1)

These classes are primarily defined based on their phys-

ical properties, and therefore learning a geometric model

for these categories makes intuitive sense; (2) These classes

have high intra-class variation and are challenging for any

deformable parts model. We would like to demonstrate that

a joint geometric and appearance based representation gives

us a powerful tool to model intra-class variations; (3) Fi-

nally, due to the availability of Kinect, data collection for

these categories has become simpler and efficient. In our

case, we use the NYU v2 dataset [25], which has 1449

RGBD images.

4. Technical Approach

Given a large set of training object instances in the form

of RGBD data, our goal is to discover a set of candi-

date parts based on consistent underlying geometry, and

use these parts to learn a geometry-driven deformable part-

based model (gDPM). To obtain such a set of candidate

parts, we first discover a dictionary of geometric elements

based on their depth information (section 4.1) in a category-

free manner (pooling the data from all categories). A

category-free dictionary allows us to share the elements

across multiple object categories.

We use this dictionary to choose a set of parts for every

object category based on frequency of occurrence and con-

sistency in the relative location with respect to the object

bounding-boxes. Finally, we use these parts to initialize and

learn our gDPM using latent updates and hard mining. We

exploit the geometric nature of our parts and use them to en-

force additional geometrical constraints at the latent update

steps (section 4.3).

Figure 2. A few elements from the dictionary after the initialization

step. They are ordered to highlight the over-completeness of our

initial dictionary.

Figure 3. A few examples of resulting elements in dictionary after

the refinement procedure.

4.1. Geometry-driven Dictionary of 3D Elements
Given a set of labeled training images and their corre-

sponding surface normal data, our goal is to discover a dic-

tionary of elements capturing 3D information that can act

as parts in DPM. Our elements should be: 1) representa-

tive: frequent among the object categories in question; 2)

spatially consistent with respect to the object. (e.g., a hori-

zontal surface always occurs on the top of a table and bed,

while it occurs at center of a chair and a sofa). To obtain a

dictionary of candidate elements which satisfy these prop-

erties, we use a two step process: first we initialize our dic-

tionary by an over-complete set of elements, each satisfying

the representativeness property; and then we refine the dic-

tionary elements based on their relative spatial location with

respect to the object.

Initializing the dictionary: We sample hundreds of thou-

sands of patches, in 3 different aspect-ratios (AR), from the

object bounding boxes in the training images (100 − 500
patches per object bounding box). We represent these

patches in terms of their raw surface normal maps. To ex-

tract a representative set of elements for each AR, we per-

form clustering using simple k-means (with k ∼ 1000), in

raw surface normal space. This clustering process leads to
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Figure 4. Refinement: After creating an initial dictionary we do the refinement procedure where we find the set of elements that occur at a

consistently occur at same spatial location with respect to the object center.

Figure 5. An example of detection/localization of discovered dic-

tionary elements in surface normal space.

an over-complete set of geometric elements. We remove

any cluster with less thanN members, for not satisfying the

frequency property. We represent every remaining cluster

by an element which is the pixel-wise median of the near-

est N patches to the cluster center. A few examples of this

set of elements is shown in Figure 2. (See the website for

more elements and other AR clusters.) In practice, we use

N = 25. As one can notice from the figure, the dictio-

nary is over-complete. To reject the clusters with bad (non-

homogenous) members and to remove redundancy we fol-

low this clustering step with a refinement procedure.

Refinement: Given the clusters from the initialization step,

we first check each cluster for spatial consistency, i.e., how

consistent the cluster is with respect to the center of the ob-

ject. For this, we record the location of each member in

the cluster relative to the object center as: (dxi, dyi) =(
(pix−pox)

wo ,
(piy−poy)

ho

)
, where po, wo and ho are the object

center, width and height respectively, and pi is the center

of element i. Examples of this voting scheme are given in

Figure 4, where each blue dot represents a vote from the

cluster’s member, and red dot represents object center. To

capture consistency in relative locations, we sort the clus-

ters based on min(σ2
x(dx), σ

2
y(dy)) (minimum variance of

their relative x, y locations). Clusters like the legs of furni-

ture (consistently below the object and closer to the center)

and sides of a bed (consistently near the center of object)

rank much higher than noisy cluster shown at the right. Af-

ter pruning bad clusters by thresholding, we perform a step

of agglomerative clustering to merge good clusters which

are close in feature space (raw surface normals) as well as

have consistent distribution of (dx, dy). This gives us a dic-

tionary D of 3D elements. A few examples of resulting

(a) Sample Objects (b) Frequent Parts (c) Selected Consistent Parts 

Ta
bl

e 
B

ed
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fa

 

Figure 6. From 3D Parts to object hypothesis: (a) few examples

images in the cluster; (b) all the geometrically consistent candidate

parts selected (before greedy selection); (c) final part hypothesis

for initializing gDPM (after greedy selection)

elements are shown in Figure 3.

4.2. From 3D Parts to Object Hypothesis
Given a dictionary of geometric elements D, we would

like to discover which geometric elements can act as parts

for which object categories. Since our categories share the

geometric elements, every element in the dictionary can act

as a part for any number of object categories. We repre-

sent a part pj for an object category with three aspects:

(a) the geometric element ei ∈ D; (b) the relative location

lj : (dxj , dyj) of the part with respect to object center (in

normalized coordinates); (c) the spring model (or variance

in (dx, dy)) for the part, which defines how spatially consis-

tent a part is with respect to the object. Note that an object

part is different from the geometric element and a geomet-

ric element can act as different parts based on the location

(e.g., two armrests for the chair; an armrest is a geometric

element but two different parts). The goal is to find set of

parts (or an object hypothesis) p =
[
p1, . . . , pN

]
, where

pj : (ei, l
j), that occur consistently in the labeled images.

Similar to DPM [13], we represent each object category

as a mixture of components and each component is loosely

treated as a category of its own. Therefore, our goal is to

find a set of parts for each component of all object cate-

gories. Given a set of training images for a component, we

first localize each element e in the surface normal map. For
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example, Figure 5 shows the elements detected in the case

of a sofa. We then pool the element localizations from all

images and find the most frequent elements at different lo-

cations in an object. These frequent elements act as candi-

date parts for representing an object. Figure 6(b) shows the

candidate parts for one component of three categories: bed,

sofa and table.

We now use a greedy approach to select the final parts

with the constraints that we have 6-12 parts per object com-

ponent and that these parts cover at least 60% of the object

area. At each step, we select the top-most part hypothesis

based on the frequency of occurrence and consistency in the

relative location with respect to the object. Therefore, if a

geometric element occurs quite frequently at a particular lo-

cation, then it is selected as a part for the object. Once we

have selected a part, the next part is selected based on fre-

quency and consistency of occurrence, and its overlap with

the already selected parts (a part that overlaps a lot with al-

ready selected parts is rejected).

4.3. Learning gDPM

Once we have obtained a set of parts for a given object

category, we can now use it to initialize the learning of our

proposed gDPM model. Following the general framework

of deformable part models [1, 11, 13, 32], we model an ob-

ject by a mixture ofM components, each of which is a non-

rigid star-shaped constellation of parts. The key difference

between learning the gDPM and the original DPM lies in

the scoring function. Unlike the original model which only

captures appearance and location of parts, we explicitly in-

clude a geometric consistency term in the scoring function

used at the latent update step. This allows us to enforce ge-

ometric consistency across the latent update steps and guide

the latent updates in the right direction. We will now first

discuss a few preliminaries about DPM and then discuss

how we add the geometric consistency term to the scoring

function.

DPM Preliminaries For each mixture component, in-

dexed by c ∈ {1, . . . ,M}, the object hypothesis is specified

by z = (l0, l1, . . . , lnc), where li = (ui, vi, si) denotes the

(u, v)-position of i-th filter (every part acts a filter) at level

si in the feature pyramid (root is indexed at 0, and l0 cor-

responds to its bounding-box) and nc is number of parts in

component c. Following [13], we enforce that each part is

at twice the resolution of the root.
The score of a mixture component c, with model param-

eter βc, at any given z (root and part locations) in an image
I is given by

S(I, z, βc) =

nc∑
i=0

Fi · φ(I, li)−
nc∑
i=1

di · ψ(li − l0) + b (1)

where the first term scores appearance using image features

φ(I, li) (HOG features in this case) and model’s appearance

parameters (F0, . . . , Fnc). The second term enforces the

deformation penalty using ψ(li − l0) = {dx, dy, dx2, dy2}
where (dx, dy) = (lxi , l

y
i ) − (2(lx0 , l

y
0) − vi) and vi is the

anchor position of the part. Thus, each component’s model

parameter is βc = {F0, . . . , Fnc , d1, . . . , dnc , b}.
The final score of a DPM model for an object category

on an image I at any z is given by

S(I, z) = max
c∈{1...M}

S(I, z, βc), (2)

which is the maximum over scores of all the components.

Thus, the final object model parameter is β = (β1, . . . , βM )
which encapsulates allM mixture components.

4.3.1 Enforcing Geometric Constraints & Learning
Given the training data {(xi, yi)}1,...,N , we aim to learn a

discriminative gDPM. In our case, x = {I, IG, l}, where I
denotes an RGB image, IG denotes the surface normal map
and l is location of the bounding box, and y ∈ {−1, 1}.
Similar to [1, 11, 13, 32], we minimize the objective func-
tion:

LD(β) =
1

2
‖β‖2 + C

N∑
i=1

max(0, 1− yifβ(xi)), (3)

fβ(x) = max
z
S(I, z) = max

z,c
S(I, z, βc). (4)

The latent variables, z (root and part locations) and c (mix-

ture memberships), make (3) non-convex. [13] solves this

optimization problem using a coordinate-descent based ap-

proach, which iterates between a latent update step and a

parameter learning step. In the latent update step, they es-

timate the latent variables, z and c, by relabeling each pos-

itive example. In the parameter learning step, they fix the

latent variables and estimate the model parameter β using

stochastic gradient descent (SGD).
The latent updates in [13] are made based on image ap-

pearance only. However, in our case, we also have a geo-
metric representation of our parts and the underlying depth
data for training images. We exploit this and constrain the
latent update step such that the part geometry should match
the underlying depth data. Intuitively, depth data provides
part-level geometric supervision to the latent update step.
Thus, enforcing this constraint only affects the latent up-
date step in the above optimization. This is achieved by
augmenting the scoring function S(I, z, βc) with a geomet-
ric consistency term:

fβ(x) = max
c∈{1...M},z

[
S(I, z, βc) + λ

nc∑
i=1

SG(e
i, ω(IG, li))

]

(5)

where ei is the geometric element (raw surface normal) cor-

responding to i-th part, ω(IG, li) is the raw surface normal

map extracted at location li, SG(·) is the geometric similar-

ity function between two raw surface normal maps and λ is

the trade-off parameter, controlling how much we want the

optimization to focus on geometric consistency. We train

our gDPM models using a modified version of the Latent

SVM solver from [13]. In our coordinate-descent approach,
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Table gDPM Model 1 Table gDPM Model 2 
Table gDPM Model 3 

Bed gDPM Model 3 Bed gDPM Model 2 Bed gDPM Model 1 

Sofa gDPM Model 3 Sofa gDPM Model 2 Sofa gDPM Model 1 

Figure 7. Learned gDPM models for classes bed, sofa and table. The first visualization in each template represents the learned appearance

root filter, the second visualization contains learned part filters super-imposed on the root filter, the third visualization is the surface normal

map corresponding to each part and the fourth visualization is of the learned deformation penalty.

the latent update step on positives uses fβ from (5) to esti-

mate the latent variables; then we apply SGD to solve for β
by using standard fβ (4) and hard-negative mining. At test

time, we only use the standard scoring function (2) (which

is also equivalent to setting λ = 0 in (5)).

5. Experiments
We now present experimental results to demonstrate the

effectiveness of adding geometric representation and con-

straints to a deformable part-based model. We will show

how adding 3D parts and geometric constraints not only

help improve the performance of our object detector but also

help us to develop 3D understanding of the object (in terms

of surface normals). We perform our experimental evalua-

tion on the NYU Depth v2 dataset [25]. We learn a gDPM

model for five object categories: bed, chair, monitor+TV

(M.+TV), sofa and table. We use 3 components for each

object category and some of the learned models are shown

in Figure 7. This dataset has 1,449 images; we use the train-

test splits from [25] (795 training and 654 test images). We

convert the object instance segmentation masks (provided

by [25]) to bounding boxes for training and testing object

detectors. For surface normal prediction for the object, we

superimpose the surface normals corresponding to each part

and take the pixel-wise median. We also use colorization

from [25] to in-paint missing regions in the object for visu-

alization.

Qualitative: Figure 8 shows the performance of gDPM de-

tector on a few examples. Our gDPM model not only local-

izes the object better but is also able to predict the surface

normals for the detected objects. For example, in the first

row, gDPM not only predicts the flat sittable surface of the

couch but it also predicts the vertical backrest and the hori-

zontal surface on the top of it. Similarly, in the second row,

our approach is able to predict the horizontal surface of the

small table. Figure 9 shows one of the false positives of

our approach. In this case, a chair is predicted as a sofa by

gDPM but notice the predicted surface normals by gDPM.

Even in the case of wrong category prediction, gDPM does

Table 1. AP performance on the task of object detection.

Bed Chair M.+TV Sofa Table

DPM (No Parts) 20.94 10.69 6.38 5.51 2.73

DPM 22.39 14.44 8.10 7.16 3.53

DPM (Our Parts, No Latent) 26.59 5.71 2.35 6.82 3.41

DPM (Our Parts) 29.15 11.43 4.17 8.30 1.76

gDPM 33.39 13.72 9.28 11.04 4.05

a reasonable job on the task of predicting surface normals

including the horizontal support surface of the chair.

Quantitative: We now evaluate gDPM quantitatively on

the task of 2D object detection. As a baseline, we compare

our approach against the standard DPM model with and

without parts. We also evaluate the performance of DPM

by treating our initial part hypothesis as strong supervision

(ground truth parts) and not doing any latent updates. Fi-

nally, we also evaluate the performance of our parts with the

standard latent updates which do not consider the geometric

constraint based on depth data. Table 1 shows the average

precision (AP). Our approach improves over the standard

DPM by approximately 3.2% mean AP over 5 categories;

and for categories like bed and sofa, the improvement is as

much as 11% and 4% respectively. We also evaluate our

surface normal prediction accuracy in a small quantitative

experiment. Against Geometric Context [19], our surface

normal prediction is 2◦ better, in terms of median per-pixel

error.

6. Conclusions
We proposed a novel part-based representation,

geometry-driven deformable part-based model (gDPM),

where the parts are defined based on their 3D properties.

gDPM effectively leverages depth data to combine the

power of DPMs with the richness of geometric representa-

tion. We demonstrate how depth data can be used to define

parts and provide weak supervision during the latent update

steps. This leads to a better model in terms of detection

performance. But more importantly, a joint geometric and
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Figure 8. Qualitative Results: Our gDPM not only localizes the object but also predicts the surface normals of the objects.
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Input Image� DPM Detection� gDPM Detection� Predicted Geometry�
Figure 9. False Positives: Our sofa detector detecting chair. Notice that the geometry still looks plausible.

appearance based representation allows us to jointly tackle

the grand challenge of object detection and understanding

3D objects from 2D images.
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