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Abstract

Current Light Field (LF) cameras offer fixed resolution
in space, time and angle which is decided a-priori and is
independent of the scene. These cameras either trade-off
spatial resolution to capture single-shot LF [20, 27, 12] or
tradeoff temporal resolution by assuming a static scene to
capture high spatial resolution LF [18, 3]. Thus, captur-
ing high spatial resolution LF video for dynamic scenes re-
mains an open and challenging problem.

We present the concept, design and implementation of
a LF video camera that allows capturing high resolution
LF video. The spatial, angular and temporal resolution
are not fixed a-priori and we exploit the scene-specific re-
dundancy in space, time and angle. Our reconstruction is
motion-aware and offers a continuum of resolution trade-
off with increasing motion in the scene. The key idea is (a)
to design efficient multiplexing matrices that allow resolu-
tion tradeoffs, (b) use dictionary learning and sparse repre-
sentations for robust reconstruction, and (c) perform local
motion-aware adaptive reconstruction.

We perform extensive analysis and characterize the per-
formance of our motion-aware reconstruction algorithm.
We show realistic simulations using a graphics simulator
as well as real results using a LCoS based programmable
camera. We demonstrate novel results such as high resolu-
tion digital refocusing for dynamic moving objects.

1. Introduction
Traditionally cameras have required photographers to

make trade-offs in terms of depth of field (DOF), dynamic
range, shutter speed and ISO during the capture itself. With
the advent of computational photography, such decisions
are being shifted to post-processing. This paradigm enables
more user control over the captured photo. For example, LF
cameras such as Lytro [20], Raytrix [27] etc. allow digital
refocusing. However, even these computational cameras are
similar to conventional cameras in forcing a-priori choice in
space, time and angle resolution.

For example, a single-shot LF camera offers tradeoff be-
tween spatial and angular resolution and captures a low spa-

Figure 1. Current light field capture designs offer fixed, a-priori,
and scene independent space-time-angle resolution. They are un-
able to cross the resolution barrier required for capturing high spa-
tial resolution LF video. LF super-resolution techniques have re-
cently begun breaking this resolution barrier. Our approach over-
comes this barrier via motion-aware adaptive reconstruction using
a programmable aperture camera.

tial resolution LF. The Lytro camera uses a 11 megapixel
sensor but can acquire LF at ≈ 300 × 300 pixels spatial
resolution. The tradeoff is fixed and is scene independent.
This is a significant limitation of single-shot LF cameras.
Another approach to capture LF video is to use multiple
video cameras (e.g. ProFusion [26]), which is expensive and
requires very high bandwidth. In addition, it requires ac-
curate geometric and photometric calibration between the
cameras. To enable high resolution LF1, Liang et al. [18]
captured several multiplexed coded aperture images and de-
multiplexed them. However, this requires the scene to be
static, thereby trading off temporal resolution for high spa-
tial resolution. Thus, it is clear that there exists a resolution
barrier (Figure 1) for capturing high resolution LF video.
Recently, a series of approaches such as Plenoptic 2.0 cam-
era [12] and LF super-resolution techniques [4] have begun
breaking this resolution barrier.

1For the rest of the paper, high resolution LF refers to obtaining full
spatial sensor resolution in LF reconstruction.
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Figure 2. Simulated scene with moving butterfly and beetle and static grass. Notice the low spatial resolution refocusing of Lytro, as well
as artifacts on moving objects for Liang et al. [18]. A standard video camera can either focus in front or back, but cannot achieve digital
refocusing. Our approach allows capturing high spatial resolution LF for dynamic scenes. The final image on the right shows the distinct
window lengths computed using our motion aware algorithm for this scene

In this paper, we take a step towards capturing high
resolution LF video and present a computational approach
for overcoming the resolution barrier using programmable
aperture imaging. Our key concept is to overcome the fixed,
a-priori and scene independent resolution trade-offs offered
by previous cameras. Conceptually, we use several coded
aperture patterns (one per time frame), which would allow
reconstructing a high resolution LF if the scene was static.
We repeat the patterns, and handle dynamic scenes by a
motion-aware reconstruction; for each pixel, the number of
frames used for reconstructing LF depend on its motion.
While previous approaches have used Hadamard multiplex-
ing for designing the codes [18], we learn them using dic-
tionary learning (DL) and sparse representations. Thus, our
design is a synergy between near-optimal patterns used for
multiplexing and reconstruction algorithm.

Figures 2 and 3 show a motivating example of a dy-
namic scene with static grass and moving butterfly and bee-
tle. Single-shot LF cameras such as Lytro lose significant
spatial resolution. Liang et al. [18] can recover high spa-
tial resolution LF but only on the static parts (grass) and
show artifacts on moving objects (butterfly/beetle). Our ap-
proach provides high resolution LF for both moving and
static scene parts.

1.1. Contributions

• We present the concept, design and implementation of
a LF video camera and reconstruction algorithm that
allows capturing high resolution LF video by analysing
the spatial, temporal and angular resolution trade-offs.

• We propose a dictionary learning and sparse represen-
tation based algorithm for full resolution LF recon-
struction and show how to adapt the algorithm to ob-
ject/scene motion. We also show how to optimize the
programmable aperture patterns using the learned dic-
tionary.
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Figure 3. (Left) One of the angular LF ‘view’ using different ap-
proaches. Notice the low spatial resolution of Lytro, as well as
artifacts on moving objects for Liang et al. [18]. The horizontal
and vertical LF disparity is indicated for a row and column using
ground truth. (Right) Zoom in of four regions indicated by differ-
ent color outlines. Note that our approach results in high resolution
LF information without any artifacts.

2. Related Work
Camera Arrays: One approach to capture LF video is

to use a camera array [16, 17, 31]. Such approaches are
hardware intensive, costly and require extensive bandwidth,
storage and power consumption. As discussed, they require
accurate geometric and radiometric calibration between dif-
ferent cameras.

LF capture: Existing LF cameras can be divided into
two main categories: (a) single shot [24, 13, 30, 20, 27,
12, 22], and (b) multiple shot [18, 23, 3]. Most single shot
light field cameras multiplex the 4-D LF onto the 2D sensor,
losing spatial resolution to capture the angular information
in the LF. Such cameras employ either a lenslet array close
to the sensor [24, 12], a mask close to the sensor [30] or
an array of lens/prism outside the main lens [13]. Recently,
[22] extended the mask based method of [30] to exploit
sparse representations in order to recover full resolution LF.
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Method Number of Number of Max. Spatial LF Temporal Hardware Resolution Cost/
Cameras Images Resolution Resolution Design Loss Bandwidth

Single-Shot [24, 30] 1 1 N
M

× N
M

Per frame Mask/Lenslets Spatial Low
close to sensor

Liang et al. [18] 1 M2 N ×N Per M2 frames Programmable Aperture Temporal Low
Camera Array M2 M2 N ×N Per frame Multiple cameras None High

Ours 1 Scene N ×N Per frame Programmable Scene Low
Dependent Aperture Dependent

Figure 4. Comparison of different approaches to capture a M × M angular resolution LF using N × N spatial resolution sensor. Our
approach offers a scene dependent resolution loss in space, time and angle. For static pixels, we utilize M2 frames to get full resolution
LF. As the pixel motion increases, less number of frames are utilized to reconstruct LF in a motion-aware fashion.

Our method is similar in spirit but works to recover the loss
of temporal resolution in [18].

LF Super-resolution and Plenoptic2.0: Plenoptic cam-
eras suffer from low spatial resolution. Recently, several LF
super-resolution algorithms have been proposed to recover
the lost resolution [12, 4]. The Plenoptic2.0 camera [12]
recovers the lost resolution by placing the microlens array
at a different location compared to the original design [24].
Similarly, the Raytrix camera [27] uses a microlens array
with lenses of different focal length to improve spatial res-
olution. Thus, improving the spatial resolution of LF cam-
eras is an active area of research.

Programmable Aperture Imaging: Programmable
aperture imaging [18] allows capturing light fields at the
spatial resolution of the sensor. In principle, each coded
aperture can be a pin-hole placed at a different location in
the aperture. A set of M2 images are required to achieve
an angular resolution of M × M . To improve light effi-
ciency, [18] use Hadamard multiplexed patterns. However,
temporal resolution is sacrificed to achieve higher spatial
resolution in LF. Recently, Babacan et al. [3] showed how
to reduce the number of captured images by employing a
Bayesian approach and a total variation based prior. Our
approach is similar in spirit, but differ in following ways.
Firstly, we learn a sparse basis dictionary from real LF data
and use it along with the sparse reconstruction framework.
Secondly, unlike [3], we adapt our reconstruction algorithm
to the local motion of the scene, thereby preserving both
motion and disparity information. Finally, we also search
for near-optimal aperture codes so as to improve the recon-
struction performance.

Resolution Tradeoffs: The reinterpretable imager by
Agrawal et al. [1] has shown resolution tradeoffs in a single
image capture. The results in [1] are on stop-and-go dy-
namic scenes and continuous motion cannot be handled. In
contrast, our camera is a video LF camera running at 25 fps
and can handle smooth motions. Agrawal et al. [1] require
moving a slit/pinhole in the aperture and a static mask close
to the sensor. Our design is simpler using only a dynamic
coded aperture. More importantly, [1] can only achieve 1-
D parallax information for dynamic scenes, while our ap-
proach enables parallax in both dimensions.

Coded Aperture: Coded aperture imaging has been

widely used in astronomy [28] to overcome the limitations
imposed by a pinhole camera. The concept of placing a
coded mask close to the sensor for LF capture was proposed
by [30]. Coded masks have also been used for estimating
scene depth from single image [15],and for compressive LF
[22] and video acquisition [21].

Compressive Sensing (CS): CS achieves below Nyquist
rate sampling while enabling recovery of signals that admit
a sparse representation in some basis [6, 8]. CS has been
shown useful for light transport capture [25] and even LF
capture [3]. However, these techniques still assume scene
to be static for the duration of captured images and cannot
handle moving objects. Recently, adaptive methods for en-
hancing the fidelity of CS video reconstruction have also
been proposed [32].

3. Programmable Light Field Acquisition
Consider the two-plane parameterizations of the light-

field LF (u, v, s, t), where (u, v) represents co-ordinates on
the aperture plane and (s, t) represents co-ordinates on the
sensor plane. Let us assume that the aperture can be divided
into M ×M sub-apertures. The light field can then be ob-
tained by capturing M2 distinct photos, with only one of
the M2 distinct sub-apertures open in each of the images.
The spatial resolution of the captured LF is determined by
the sensor resolution, while the angular resolution is deter-
mined by the number of sub-apertures (and is equal to the
number of images acquired). This results in a high spatial
resolution, but the scene is assumed to be static for the en-
tire capture duration (of M2 photos). Any motion of scene
elements during the acquisition time results in significant
reconstruction artifacts (see Figures 2 and 3).

3.1. Dynamic Light Fields

Now we describe our approach to handle dynamic scenes
in LF acquisition. Conceptually, we also use several coded
aperture patterns (one per frame), which allows reconstruct-
ing a high resolution LF if the scene was static. However,
our approach differs from [18] in following ways.

Firstly, we learn optimized dictionaries and coded aper-
ture patterns that along with sparsity regularized reconstruc-
tion algorithms allow for the recovery of light fields from as
few as three captured frames. Secondly, we repeat the pat-
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terns and using overlapping windows of temporal frames to
perform reconstruction. This ensures that our approach can
handle continuous motion. Finally, we use a motion-aware
reconstruction; for each patch, the number of frames used
for reconstructing LF depend on its motion. Intuitively, if
the scene is static, one should use more images for recon-
struction. Our motion-aware reconstruction automatically
chooses the best window length for each patch. We learn
the mapping between the motion and window-length off-
line. At run time, we compute the optical flow in the scene,
and decide the window length using the above mapping.

4. Motion-Aware Adaptation for Light Field
We now describe the two key algorithmic aspects of our

approach: (a) compressive LF sensing, and (b) motion-
aware reconstruction.

4.1. Compressive LF Sensing
Consider a programmable LF camera with spatial reso-

lution N × N pixels and angular resolution M ×M . Let
ct(u, v) denote the coded aperture used at frame t. The cap-
tured frame It can be written as

It(s, t) =
∑
(u,v)

ct(u, v)× LF (u, v, s, t). (1)

The summation over u, v is representative of the integral
of 4-D LF along angular dimensions to form a 2-D image.
Since the above modulation is only in the angular dimen-
sions of the LF via the mask, the equation is valid for any
LF patch. Let us consider a P × P ×M ×M patch of the
LF and vectorize it into a vector xt of length P 2M2. Let
us also vectorize the corresponding captured image patch
of size P × P pixels into a vector yt of length P 2. Each
captured image results in a linear set of equations given by

yt = Ctxt, (2)

where Ct is a P 2×P 2M2 matrix that encodes the aperture
code used at time frame t. Taking F consecutive frames
(with different codes), and assuming that the patch remains
stationary during these F frames, the above linear system
can be concatenated as

⎡
⎢⎣

y1
...

yF

⎤
⎥⎦ =

⎡
⎢⎣
C1

...
CF

⎤
⎥⎦ xt (3)

y1:F = C1:F xt,

where C1:F is a FP 2 × P 2M2 matrix.
In [18], F = M2 frames were acquired so as to be

able to perform linear inversion for every pixel. In contrast,
our motion-aware algorithm chooses a different F for each
patch depending on its motion. However, when F < M2

(required to handle dynamic scenes), the above system of

linear equations is under-determined. Therefore, we need
to enforce regularization conditions on the LF patch xt in
order to invert the linear system.

4.2. Dictionary Learning based Prior

We assume that the LF patches xt are sparse in an
over-complete dictionary. Over-complete dictionaries that
are learned from data have been used successfully for a
wide variety of imaging applications including image de-
noising [11], video recovery [14], deblurring [7], super-
resolution [7] and image based classification [33].

It is important to learn a good dictionary that can faith-
fully represent the light fields we intend to capture. The
quality of a dictionary is decided by its ability to reliably
reconstruct light fields with varying amounts of (a) dispar-
ity, (b) texture, and (c) occlusion relationships. For learning
the dictionary, we render light fields in a graphics rendering
engine (Povray) with varying texture, disparity and oc-
clusions (e.g. foreground object obstructing a background
object). We first extract all 8 × 8 × 5 × 5 patches from
the set of rendered light fields. We then use the K-SVD [2]
algorithm to learn K = 10000 atoms from the 0.5 million
extracted patches.

As the patch size increases, the learned dictionary can
better capture the disparity dependent redundancies in the
LF, thereby improving the reconstruction performance.
However, a larger patch size also leads to a bigger dictio-
nary and slower reconstruction. Thus, we restrict ourselves
to using a patch size of 8× 8× 5× 5.

4.3. Reconstruction Algorithm

Let the P 2M2 × K matrix D represent the learned LF
dictionary containing K atoms. A LF patch x can be writ-
ten as x = Ds, where s is a sparse vector representing the
coefficients. We use the learned dictionary D as a sparse
regularizer for the under-determined system of linear equa-
tions and solve the following optimization problem:

P1 : min
xt
||y1:F − C1:F xt||2 + λ||s||0 (4)

subject to xt = Ds,

where λ is a constant. We use orthogonal matching pur-
suit algorithm [29] to solve the optimization problem P1

for each patch in the LF. We use 4 adjacent overlapping set
of patches shifted by 2 pixels, obtain individual reconstruc-
tions for each of the overlapping patches and average the
reconstructions to produce the final result. The quality of
the reconstructed LF depends upon the number of frames
(or the window length) of the reconstruction.

4.4. Motion-Aware Reconstruction

When the scene is static, increasing the number of
frames improves performance because each additional
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Figure 5. (Left) Plot of PSNR of reconstructed LF with number of frames F used with increasing object velocity. As the velocity increases,
PSNR peaks and then degrades. (Middle) Plot showing the optimal number of frames used in motion-aware reconstruction as a function of
the average patch velocity. (Right) Histogram of number of codes with PSNR for 10, 000 randomly generated codes. Our optimized code
(red) performs 4.08 dB better compared to the histogram average.

frame provides additional information for linear system in-
version (de-multiplexing). Figure 5 (left) shows the recon-
struction PSNR as a function of the number of frames F
(window length) used for reconstruction when the scene re-
mains static (red plot). Note that the reconstruction PSNR
is greater than 20 dB even when only 3 frames are used.

However, for moving objects, increasing the number of
frames also introduces modelling error in the linear system.
Figure 5 (left) shows the reconstruction PSNR for different
object velocities (3, 4.5 and 6 pixels per 25 frames). Notice
that the reconstruction performance varies as a function of
both object velocity and the window length(WL) used in re-
construction. In particular, the PSNR peaks for some WL
and then decreases. Figure 5 (middle) shows that the op-
timal window length (which provides maximum PSNR) is
an decreasing function of the velocity. We use this relation-
ship between velocity and optimal window length in order
to decide the number of frames used in reconstruction on a
patch-wise basis.

Patch Velocity Estimation: Optical flow based ap-
proaches are common for estimating pixel velocity in video
sequences. However, traditional flow estimation algorithms
assume the same viewpoint for all the frames. Since each
of our input frames is obtained using a different code in the
aperture, it results in slight shift in viewpoint, leading to
depth dependent disparity shifts between adjacent frames.
We found that this results in slightly incorrect optical flow.
We use the state-of-art optical flow technique by Liu [19]
and mitigate this effect as follows. Firstly, while select-
ing aperture codes, we ensure that the average disparity be-
tween adjacent aperture codes are minimized. This helps
in minimizing the viewpoint shift between the frames. Sec-
ondly, we blur the captured images before computing the
optical flow. The estimated optical flow is used to choose
the appropriate WL. The last image in fig.2 shows the com-
puted WLs for different patches in the butterfly scene. No-
tice that the outer edges of the butterfly uses fewer measure-
ments (3) for reconstruction(has a smaller WL) as compared

to the body of the butterfly which uses a WL of 9 since the
outer edges of the wing have more motion.

4.5. Optimizing Aperture Codes

Now we discuss how to optimize aperture codes to im-
prove the SNR. The problem of finding a set of M ×M op-
timal codes (equivalently, the mixing matrix C) for a given
dictionary D is non-trivial. Approaches such as [9] that si-
multaneously learn the dictionary and sensing matrix do not
take into account the inherent constraints imposed by the
hardware, such as code being binary and non-negative (due
to LCoS). Compressive sensing methods [5] utilize the Re-
stricted Isometry Principle (RIP) property to design mixing
matrix considering the worst-case performance. Instead, we
choose to optimize over the average performance.

Let E = CD be the effective multiplexing matrix. Sim-
ilar to [10], we minimize the average mutual coherence be-
tween elements of the effective mixing matrix E to find the
set of codes. This is defined as the average of all normalised
inner products over columns in E. However, this optimiza-
tion problem is non-convex. Therefore, we search over a
million randomly generated binary codes and choose the
one the minimizes the average mutual coherence. Figure 6
shows the 25 coded aperture masks that were found using
this approach.

To demonstrate that our optimized patterns indeed im-
prove performance, we compare it with the performance of
10, 000 randomly generated aperture codes. Figure 5 (right)
shows the histogram of the number of randomly generated
codes with PSNR. The performance of our optimized code
(red line) is better by 4.08 dB compared to the mean perfor-
mance of randomly generated codes.

5. Prototype
Our prototype system for motion-aware LF video cap-

ture uses a Liquid Crystal on Silica (LCoS) modulator as
the spatial light modulator (SLM). Figure 6 shows a graphic
illustration of the light path in our prototype and a photo of
the actual hardware. The system uses a 1024× 1280 pixel
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Figure 6. (a) Optical ray diagram of our setup. (b) Actual working
prototype. (c) All 25 coded aperture masks used in our approach.

LCoS reflective SLM (SXGA-3DM) developed by Forth
Dimension Displays. It can be controlled at a maximum
frame rate of ≈ 5000 fps. We follow the optical design
in [23]. The LCoS modulator is at the effective aperture
plane of the imaging system. While the size of LCoS is
17.4× 14.7 mm, we only use the central 10× 10 mm area
(since the maximum aperture size that our system can sup-
port is 10×10mm) and group it into 25 2×2 mm sized pin-
holes to obtain 5 × 5 angular resolution. The LCoS equiv-
alently acts like a mask with a pattern of zeros and ones,
transmitting light where the LCoS pattern is one and block-
ing light where it is zero. This enables us to capture multi-
plexed angular views of the light field at a very high rate by
simply changing the multiplexing pattern at the LCoS. The
frames are captured at 25Hz using a pointgrey DragonFly2
camera.

6. Results
In this section, we show real results on challenging

datasets captured using our prototype. Note that we cap-
ture a 25 fps video, where each captured frame is a coded
aperture multiplexed image of the scene and our angular LF
resolution is 5× 5.

Digital Refocusing on Dynamic Scene: Figure 7 shows
a real dataset consisting of several markers in front of a tex-
tured background. The orange colored EXPO marker is
moving in the scene from right to left2. Figure 7 shows
three captured multiplexed images at different time frames
(frames 13, 88 and 330), along with the refocused images
(front and back) for the entire scene. The object motion is
∼ 0.22 pixels per frame, leading to overall motion of 70
pixels between frame 13 and 330. Notice that there are no
artifacts in digital refocusing on the moving object. More
importantly, refocusing results are obtained at full sensor
resolution.

Reconstruction of Dynamic LF Views: However, the
true merit of a LF video camera is in obtaining artifact free
angular information for dynamic scenes. The angular LF

2Supplementary materials contain captured video for all data sets.

information is referred to as LF ‘views’. Each view is a
sub-aperture image of LF. Note that for each time instant t,
our approach reconstructs 5 × 5 = 25 LF views. The digi-
tal refocusing results combine information from all the LF
views and thus artifacts in LF views could get suppressed in
refocused images. Thus, LF views show the actual quality
of reconstructed LF.

Figure 8 shows another real dataset consisting of a cup
(black) moving from right to left and two static objects. In
Figure 8, we show the captured image for frames 162 and
242 along with reconstructed top-left LF view (L(1, 1, s, t)
at those time instant. We compare our motion-aware re-
construction with another reconstruction using fixed WL of
F = 25 frames for each pixel. Since our approach de-
cides the number of frames F to be used for each patch
adaptively, it produces significantly better LF views. No-
tice that this comparison uses the exact same dictionary and
sparse representation for both results. Thus, motion-aware
adaption enables handling dynamic objects for LF recon-
struction.

Figure 9 shows another scene with a moving toy in front
of complex textured background. The input image and
computed optical flow for frame 153 are shown along with
digital refocusing (front and back) using reconstructed LF.
Since the method of [18] completely ignores scene motion,
it shows severe artifacts on the moving toy. Further, even
in static regions, our sparse regularization results in bet-
ter noise handling and consequently sharper reconstruction.
The fixed window length reconstruction utilizes the same
learned dictionary and sparse reconstruction, but results in
low-resolution refocusing. Our motion-aware adaption en-
ables high-quality refocusing.

7. Discussions and Conclusions
We presented a novel programmable aperture light field

camera that exploits highly optimized coded aperture pat-
terns and a dictionary learning/sparse representations based
framework for high resolution LF reconstruction.

Most LF cameras suffer from a resolution trade-off re-
sulting in significant loss of spatial resolution. Our method
allows reconstruction of light-fields at the spatial resolution
of the image sensor. Compared to previous programmable
aperture based LF methods, we achieve a much higher
temporal resolution on account of the motion-aware sparse
regularized reconstruction algorithm. However, since our
codes are 50% and because transparent polarization based
LCOS modulators suffer from an additional 50% loss that
DMD implementations do not suffer from, we end up with
more than 75% light loss. Another demerit of our algorithm
is that the reconstruction is slow. (10min/frame on a intel i7
2600 CPU for 600× 800× 5× 5 LF ). Finally, the motion
aware reconstruction algorithm can only account for motion
up to 1 px/frame, larger motions result in reconstruction ar-
tifacts, due to inadequately modelled motion blur.
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Figure 7. Motion-aware digital refocusing on moving objects. (Top) Three frames of the captured video using our setup shows the or-
ange EXPO marker moving from right to left. The marker is moving continuously. (Bottom) Digital refocused images (front and back)
corresponding to each time-frame. Notice that there are no artifacts on the moving object.
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Figure 8. Comparison of our motion-aware reconstruction (using 25 frames) with reconstruction using fixed length window for each pixel
(W = 25). Here we show the reconstructed bottom left LF ‘view’ for two frames. A zoomed in view of moving object clearly demonstrates
that our motion-aware reconstruction successfully removes artifacts on the moving object.
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