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Abstract

Gathering accurate training data for recognizing a set of
attributes or tags on images or videos is a challenge. Ob-
taining labels via manual effort or from weakly-supervised
data typically results in noisy training labels. We develop
the FlipSVM, a novel algorithm for handling these noisy,
structured labels. The FlipSVM models label noise by “flip-
ping” labels on training examples. We show empirically
that the FlipSVM is effective on images-and-attributes and
video tagging datasets.

1. Introduction
We present a novel algorithm for predicting a set of tags

or attributes that describe an image or video. In recent years,

there has been a push to broaden the scope of visual recog-

nition – expanding the problem to consider describing im-

ages and videos rather than naming a single category. This

push has been led by landmark work such as the “attributes”

of Farhadi et al. [5] which framed the recognition problem

as one of describing an image with a large set of attributes

(e.g. shiny, red) in addition to a class label (apple).

A substantial body of related work falls into this vein,

consisting of recognition of attributes for objects or key-

words/tags for videos. Successfully describing images and

videos will not only help to more accurately recognize im-

age and video categories, but it will also provide a deeper

understanding of the classified content from different per-

spectives such as quantity, quality, color, shape, parts, etc.

This deeper understanding of images and videos can be

used in a wide range of applications such as automatic

description generation [10], face verification [11], image

search [20] and video search [26].
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Figure 1: Obtaining noise-free annotations is typically chal-

lenging. Attribute annotations for some images of people in

the a-Pascal attribute dataset are shown. Note how the la-

beling of “Leg” in c) and d) or the labeling of “Hand” in b)

and e) is inconsistent.

However, there are two important intrinsic problems in

tag-based recognition: (1) tag annotations are noisy and (2)

tags can be very difficult to observe from visual features.

The algorithm we propose aims to address these issues.

There are two standard approaches to obtain tag annota-

tions, either relying on human annotation or imputing them

from weakly labeled data. Both are noisy processes.

Human annotation is subjective and many tags corre-

spond to a very fine level of detail on a given image or video.

Hence, human annotators may have different opinions about

the presence of a tag. A typical solution to this problem is

to ask several annotators to tag content followed by a tag

aggregation approach. This process can reduce annotation

noise but it is costly and remains error-prone. Consider the

examples in Fig. 1 from the a-Pascal dataset [5].

Weakly labeled data are often used to obtain tag anno-

tations. For instance, social media or multimedia sharing

websites such as Flickr or YouTube can be used to extract

a large volume of weakly annotated visual data. These data

sources are often of poor quality, with many users entering

a small subset of tags or spam tags for a given image/video.
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Beyond this, many tags are very difficult to discern visu-

ally. Again, considering the examples in Fig. 1, it is difficult

to build classifiers from visual features to correctly predict

all the labeled tags. Different tags have different degrees

of difficulty and often there is a need to rely on contextual

information or high-level reasoning.

In this paper we attack the problem of image and video

classification based on uncertain tags. This is an essential

issue to allow the recovery of detailed image or video de-

scriptions from the typically ambiguous and noisy tag train-

ing data available. We present a novel structured tag pre-

diction learning algorithm that considers the uncertainty of

tags and their inter-relations.

We demonstrate the effectiveness of this algorithm via

two sets of experiments. We show that modeling label noise

improves performance in attribute-based image classifica-

tion on the a-Pascal and a-Yahoo datasets [5] – datasets

where ground truth is obtained from human annotations.

Second, we automatically extract tag annotations for the

TRECVID MED11 video dataset based on noisy, weakly

supervised video description data. We apply our algorithm

to learn tags from these data, and show they improve per-

formance for classifying complex events.

2. Related Work
A substantial body of recent work considers the problem

of labeling images with a set of tags or attributes. Farhadi

et al. [5] train discriminative attribute classifiers that can be

used to recognize different object classes, and further gen-

eralize to describe previously unseen categories of objects.

Russakovsky and Fei-Fei [19] use transfer learning for sim-

ilar recognition on large-scale object category datasets. Ku-

mar et al. [11] use both comparative attributes (a mouth

that looks like Barack Obama’s) along with appearance at-

tributes (gender, age, etc.) to improve face verification.

Parikh and Grauman [15] propose an approach to discover a

set of discriminative and nameable attributes with a human-

in-the-loop framework. This line of work was expanded to

relative attributes [16], recognizing the strength of an at-

tribute by learning a ranking function.

Related work also exists in the video analysis domain,

tagging videos with relevant keywords or concepts. Yang

and Toderici [26] propose a latent model to train classifiers

for sub-categories of tags. Qi et al. [17] use structural SVM

to predict multiple tags while considering their correlation.

Weakly labeled data are often used to extract tag or at-

tribute data for images or videos. Ferrari and Zisserman [7]

propose a generative probabilistic model to recognize low

level attributes such as “red” or “striped” from weakly la-

beled images obtained from the internet. Berg et al. [1] pro-

pose an approach to extract common attributes for certain

objects by mining the text associated with images. Simi-

larly, Leung et al. [12] have proposed to use Multiple In-

stance Boosting [23] to train video tag classifiers using

noisy web videos. All these methods consider the presence

of noise in the training data. However, they learn a classi-

fier for each attribute independently and ignore the fact that

tags are highly correlated. Our algorithm develops a prin-

cipled max-margin based criterion for learning with struc-

tured, noisy tags.

A wide range of machine learning tools has been used

for training tag classifiers. Structural SVM [21] is used in

Siddiquie et al [20] for multi-attribute image ranking and

retrieval. Latent SVM [6] is used for object and video clas-

sification respectively by Wang and Mori [25] and Izadinia

and Shah [8] in which tags are modeled as latent variables.

In the line of robust classifiers, RampSVM [3] has

been proposed to train SVM classifiers that are robust

against some amount of annotation noise. Ramp loss has

been extended recently to the structural prediction case by

McAllester and Keshet [13] and Chapelle et al. [2]. None

of these works have been explored on the problem of im-

age or video tagging. The objective function of Structural

RampSVM is similar to ours in the sense that the training

annotation is not assumed to be completely accurate. How-

ever, in Structural RampSVM the risk is still measured with

respect to the training annotation, while in our method we

compute the risk with respect to refined labels.

3. Flip Support Vector Machine
Our goal in this paper is to recognize a set of predefined

classes in images or videos. For this purpose, we are inter-

ested in considering tags which represent different aspects

of classes. Ultimately, recognition of these tags will provide

us with more description of visual content. In order to train

a classifier, we are going to use a training data set of images

and videos that are annotated with their class and tag labels.

In this section, our approach for training the classifier from

noisy tag labels is presented. Tag labels are often noisy,

due to the large-scale manual annotation effort required or

use of ad-hoc techniques on weakly labeled data to extract

tags. Here, tags may correspond to attributes of objects or

tags/key-words of videos.

For tag-based classification, we will use a structured

model similar to Wang and Mori [25] that considers the

interaction between tags and class labels. Interaction be-

tween tags helps us to recognize tags that are correlated.

For example, “has eye”, which is highly correlated with

“has head”, is very difficult to detect in isolation. But, eye

detection can be improved by considering the presence of

head. Similarly, classification can be enhanced considering

the interaction between tags and class labels. For example,

an object that has “clothes” and “skin” is more likely a hu-

man rather than a car.

In our model, a sample is represented with a triple

(x, t, y). x represents an image or a video, t = {ti}i=T
i=1 rep-
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resents the presence/absence of T tags with binary labels,

ti ∈ {−1, 1}. If the ith tag is present in the image x, we will

have ti = 1, otherwise ti = −1. Similarly, y ∈ {−1, 1} is a

binary variable that shows the presence/absence of a class.

The goal of training is to learn a scoring function that

can predict the class of an example in test time by consid-

ering both visual features and the presence/absence of tags.

Here, the scoring function is defined as F : X × Y → R
that scores an example and a class label, y ∈ Y where

Y = {−1, 1} for our binary case. In test time, an ex-

ample will be assigned to the class that has highest score,

y∗ = argmaxy∈Y F (x, y). Similar to Latent SVM frame-

work [6, 24] or Structural SVM [21], it is assumed that

F (x, y) = maxt w
TΦ(x, t, y) where wTΦ(x, t, y) is a lin-

ear potential function that scores a configuration of tag la-

bels and a class label for a sample considering their in-

teraction. The tag dependency is modeled using a a tree-

structured graph called tag interactions graph.

Next, our proposed learning framework for training pa-

rameters of a structured model from noisy tags is presented.

We defer comparisons to other learning criteria and model

details to Sec. 3.2 and Sec. 3.3 respectively.

3.1. Training a Flip SVM

The main contribution of our paper is to develop a novel

max-margin approach that enables us to train the model pa-

rameters from noisy labeled data. The idea of our approach

is that the learning algorithm is allowed to change training

tag labels while penalizing the number of changes. This

way the algorithm may be able to correct some tag label

mistakes but it is limited not to change all the labels arbi-

trarily. We call this training framework FlipSVM (FSVM)
as it flips some of the labels in the course of training.

Given a set of N examples, {(xn, tn, yn)}n=N
n=1 for train-

ing, we propose the optimization of FlipSVM as:

min
w,ξn,ξ′n,t′n

λ

2
||w||22 +

N∑
n=1

ξn + γ

N∑
n=1

ξ′n

s.t. ξ′n ≥ Δ′
t′n,tn

(1)

wTφ(xn, t
′
n, yn) ≥ wTφ(xn, t, y) + Δy,yn

t,t′n
− ξn ∀t, ∀y

that minimizes the norm of parameters (||w||22), structured

error ξn and the tag label change cost ξ′n computed over

training examples. Here the refined tag labels t′n =
{t′ni}i=T

i=1 are introduced for the nth training example in or-

der to measure the error respect to them instead of the noisy

ground truth labels. Therefore, the goal of training is to

find a w that produces a score for refined tag labels t′n and

ground truth class label yn greater than any other hypothe-

sized labeling with a margin re-scaled with the loss function

Δy,yn

t,t′n
that measures the badness of the hypothesized label-

ing.

y

1t 1t ′ t

ny

Most Violated Labeling Flipped Label Training Labels

2t
1t

3t
2nt ′

1nt

3nt ′
2nt

1nt

3nt

nx

Figure 2: Min-max optimization in FlipSVM for decom-

posable Δy,yn

t,t′n
and Δ′

t′n,tn
and a tree-structured tag inter-

action graph. Shaded variables represent observed vari-

ables and different colored links denote potential function

defined in different terms of Eq. 3: wTφ(xn, t, y), Δ
y,yn

t,t′n
,

wTφ(xn, t
′
n, yn), and Δ′

t′n,tn
. By simplifying the model

and ignoring pairwise terms (dashed lines) in most vio-

lated labeling inference, maximization over t decomposes

to maximization over each ti that depends on individual t′ni.

Δ′
t′n,tn

measures the cost of label flips, and similar to

Δy,yn

t,t′n
is assumed to be a function that can be decomposed

to a sum of losses measured on individual output variables.

γ and λ are the trade-off parameters that tune the impact

of model complexity and label flip cost. We can write an

unconstrained version of the optimization in Eq. 1 as:

min
λ

2
||w||22 +

N∑

n=1

Rn(w) (2)

where Rn(w) is the the risk function:

Rn(w) = min
t′n

max
y,t

(
wTφ(xn, t, y) + Δy,yn

t,t′n
(3)

− wTφ(xn, t
′
n, yn) + γΔ′

t′n,tn

)
Training of a FlipSVM consists of two parts. First, the

risk function should be computed for each example given

the model parameters, w. Second, the model parameters

should be updated given the risk values. The following ex-

plains these two steps in detail.

Risk Evaluation: The optimization problem in Eq. 3

is min-max optimization of a Markov network. The in-

ner maximization finds the most violated labeling and the

outer minimization refines the ground truth label such that

sum of the most violated labeling margin and the flip cost is

minimum. Even in our simple case shown in Fig. 2, where

wTφ(x, t, y) is defined on a tree structured tag interaction

graph, this optimization problem is an NP-hard problem.
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For solving this optimization problem, we propose a sim-

ple efficient heuristic. The idea of our heuristic is to form an

approximate version of the min-max optimization that can

be solved exactly. If the scoring function used for finding

the most violated labeling in Eq. 3 is simplified by omitting

its pairwise terms, the inner maximization can be solved

independently for each ti given t′ni. The optimum value of

the simplified maximization can be considered as a potential

term that depends on t′ni (unary term). Given these values,

our minimization becomes so-called loss augmented [21]

inference that can be solved exactly by dynamic program-

ming for a tree structured graph.

The relaxation approach to the inner maximization pro-

vides us with an approximated refined labeling, t∗n. But, the

value of the risk function at t∗n should also be computed. For

this purpose, the risk is evaluated by plugging t∗n in Eq. 3

and optimizing the inner maximization on the full model

with all terms using the same dynamic programming that

was used to produce t∗n.

In our risk computation, loss augmented inference is

solved twice, first for finding approximate t∗n and then for

solving the inner maximization. As the number of tags is

typically on the order of tens, and due to the structure of the

tag interaction graph, the inference problem can be solved

very efficiently.

Optimizing w: The optimization over w in Eq. 2 is a

non-convex optimization problem. Here, we use the NRBM

method proposed by Do and Artières [4] to optimize w.

NRBM is a non-convex extension of the Cutting Plane al-

gorithm, and is used for training latent SVM [25]. This

technique requires us to compute the value of the risk and

its gradient with respect to w. In a nutshell, this algorithm

creates an approximation of the original quadratic program-

ming in Eq. 2 by iteratively adding a cutting plane at the

current optimum and updating the optimum.

3.2. FSVM vs. Structural SVM and Latent SVM

Structural SVM (SSVM) [21] and Latent SVM

(LSVM) [27] are two commonly used max-margin ap-

proaches that could be deployed for training a tag-based

classifier. SSVM trains the parameters of model such that

both the class and tag labels of the training data can be pre-

dicted accurately. In the presence of noisy tags, SSVM does

not model the label noise and it may fit to noisy tag labels.

In contrast, noisy tag labels can be modeled as latent

variables using a Latent SVM model. This method does not

have any notion of loss on latent variables, and it ignores all

the information about the ground truth tags. In [25, 8], tag

information is injected into training by replacing the image

features with the score of pre-trained tag classifiers. Our

approach is different from the Latent SVM approach, as it

enables us to train the tag and label classifiers in an unified

approach.

3.3. Model

In order to be able to compare our training algorithm

with previous works on tag-based classification, we use a

model similar to Wang and Mori [25] for scoring the con-

figuration of tag labels and class label. Their work has been

later adopted by Izadinia and Shah [8] to recognize a set

of complex events in videos by considering noisy low-level

events. In this section, we briefly review our model focusing

on the differences with Wang and Mori’s [25].

In our model, the dependency of the tags is represented

using an undirected tag interaction graph G = (V, E) with

the vertex set V = {1, 2, 3, ..., T} for all tags, and the edge

set E in which (i, j) ∈ E indicates the inter-dependency of

the ith and jth tag. Our scoring function measures the com-

patibility of a class label y and tag labels t in an example x
by:

wTφ(x, t, y) = yθTφ(x) +
∑
i∈V

tiα
T
i φ(x) (4)

+
∑

(i,j)∈E
βT
ijϕ(ti, tj) +

∑
i∈V

νTi ϕ(ti, y)

where w = {θ, αi, βij , νi}i∈V,(i,j)∈E .

The scoring function has four parts: The potential terms

yθTφ(x) and tiα
T
i φ(x) measure the compatibility of a

global feature φ(x) extracted from example x with class

or tag labels. As we are considering a binary classi-

fier we learn θ and αi parameters that separate positive

class from the negative class by assigning them to pos-

itive values. βT
ijϕ(ti, tj) measures the compatibility be-

tween a pair of tags that is connected in our tag inter-

action graph E . ϕ(ti, tj) is a sparse vector of size four

that has only a 1 value indicating which of the cases in

{(0, 1), (1, 0), (0, 0), (1, 1)} is taken by (ti, tj). Similarly,

νTi ϕ(ti, y) measures the compatibility between a tag and a

class label.

In reality, only a small subset of tag pairs may show a

high amount of correlation. Therefore, considering all pairs

of tags will not be necessary, and would slow down infer-

ence significantly. Here, the same technique of [25, 17] is

used to extract a sparse set of dependencies. Normalized

mutual information is computed between each pair of tags,

and a maximum spanning tree of edges is selected. By em-

ploying this approach, inference of tags is done quickly us-

ing dynamic programming. Note that, even in our case that

tags are noisy, this approach considers statistics that are ro-

bust against noise when we are extracting tag dependencies.

Both [25] and [8] replace the long feature vector φ(x)
with the output of a binary tag/class SVM classifier. In our

case training tags are noisy, so pre-trained binary classifiers

will not be immune to noise. Therefore, we do not pretrain a

classifier, and we let our training algorithm train these mod-

els all together. Wang and Mori [25] have also an extra
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class specific tag model. For our binary classification, this

part has been excluded.

4. Experiments
We evaluated our approach on two different tasks. First,

we consider the problem of attribute-based object classifi-

cation in the a-Pascal and a-Yahoo datasets [5]. Second, we

examine the problem of tag-based video classification from

weakly supervised (and hence noisy) tags. We automati-

cally extract a set of video tags by processing the text de-

scription files provided in TRECVID MED11 [14] videos.

Evaluation Methodology: In all experiments, we will

train a binary classifier for recognizing classes (object

classes or video classes). We evaluate using Average Pre-

cision (AP), a standard performance measure based on area

under a precision-recall curve. Generating this curve re-

quires a score representing the confidence of our model in

assigning a sample to a class. Computing this score for

SSVM and FSVM is not trivial, as these models return a

configuration of labels that has highest score for a test ex-

ample. In order to extract the confidence score for labeling

an example, we apply a softmax function to best scoring la-

bel configurations for each class. First, the label score for

the example x is computed by:

s(y) = max
t

wTφ(x, t, y) ∀y ∈ Y (5)

Then, the probability of each class is defined as P (y) =
exp(s(y))

zp
where zp =

∑
y∈Y exp(s(y)). A similar approach

is used by [17] to compute tag indexing scores from SSVM.

4.1. Object Classification

In this section, we utilize our model for classifying ob-

jects from attributes in the a-Pascal and a-Yahoo image

datasets [5]. The a-Pascal dataset has 6340 training images

and 6355 test images (from PASCAL VOC 2008) annotated

with 64 binary attributes such as “2D Boxy”, “Shiny”, “Has

leg” etc. These attributes belong to three categories includ-

ing: shape, material, and part. Each image is assigned to

one of 20 object classes including: aeroplane, bicycle, bird,

boat, bottle, bus, car, cat, chair, cow, dining table, dog,

horse, motorbike, person, potted plant, sheep, sofa, train

and tv/monitor. The a-Yahoo dataset has 2644 images an-

notated with the same set of attributes. However, the ob-

ject classes are different, including: bag, building, carriage,

centaur, donkey, goat, jetski, monkey, mug, statue, wolf and

zebra. We use the global features provided by Farhadi et

al. [5]. Each image is represented with a 9751-dimensional

feature vector that contains information on color, texture,

visual words, and edges. In this section, we utilize object

attributes as tags for the object classification task.

Modeling Noisy Labels: In this experiment we measure

FlipSVM under the original (often noisy) tag labels, and

examine the performance of our proposed approach under

different amounts of additional noise. We run experiments

using the original a-Pascal and a-Yahoo tag annotations, and

further introduce different levels of synthetic noise to the

ground truth tag labels. In order to generate noise, we fol-

low the approach of Leung et al. [12] which generates noise

for positive tags by changing the label of some samples with

negative tag to positive. Leung et al. argue this is a good

model of label noise, basically since negative data are com-

mon and the noise level in them negligible.

We examine our approach under three different noise

levels: 0%, 16% and 33%. In X% noise, X% of the train-

ing samples with each positive tag are mislabeled samples

added from the negative set.

Dataset Split: We use the standard train/test split for the

a-Pascal dataset. We further sub-divide the training set to

create a validation set (25% of the training images) for tun-

ing the parameters of our model and all other baselines. As

a binary classification problem is considered here, parame-

ters are tuned for each class separately on the validation set.

A train/test split is not provided for the a-Yahoo dataset.

37.5%, 12.5% and 50% of images are selected for training,

validation and testing respectively for this dataset.

Loss Functions: We use re-scaled hamming loss for

both Δy,yn

t,t′n
and Δ′

t′n,tn
. For each tag or class, re-scaling

of the loss function is performed based on the number of

training samples that have that tag or class. Δy,yn

t,t′n
is de-

fined as:

Δy,yn

t,t′n
= δ(y, yn) +

∑
i∈V

δi(ti, t
′
ni) (6)

where

δ(y, yn) =

{
C
Ny

, y �= yn

0, y = yn
δi(ti, t

′
ni) =

{
1

N
(i)

t′
ni

, ti �= t′ni

0, ti = t′ni

Ny is the number of training examples that belongs to class

y ∈ Y . Similarly, N
(i)
t′ni

is the number of training images

whose ith tag is t′ni ∈ {−1, 1}. Since we are interested in

classifying images to object classes rather than tag classes,

we set C = 25 to have a loss function more sensitive to

class than tag error.

Δ′
t′,t is also defined as re-scaled hamming loss which

basically counts the number of label changes. We here re-

scale the hamming loss such that tags with a large number of

positive examples are penalized less. This way, we encour-

age our training algorithm to change frequent tags more.

We also prevent label flips from a negative tag to a positive

tag. The loss function becomes:

Δ′
t′n,tn

=
∑
i∈V

δ′i(t
′
ni, tni): δ′i(t

′
ni, tni) =

⎧⎪⎨
⎪⎩

∞ t′ni = 1, tni = −1
1

N
(i)
tni

t′ni = −1, tni = 1

0 t′ni = tni
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Note that the loss functions as well as the tag interaction

graph are formed from noisy training tags for each experi-

ment and noise level separately.

Baseline Methods: For each experiment, we compare

our method with three strong baselines: (1) Structural SVM

that uses the same model and loss function, Δ as ours. (2)

Latent SVM that uses our model equipped with a class-

specific tag model discussed in [25]. (3) SVM classifier

trained on global features ignoring all the information about

tag annotation. The Latent SVM baseline is the method in

[25], re-implemented for the binary classification version to

be examined under different noise levels.

Classification Results: Table 1 report mean AP (mAP)

of our method compared with three baselines on the a-

Pascal and a-Yahoo datasets. Mean AP is computed by

taking the average of AP over all object classes in these

datasets. Several observations can be made. First, it can be

easily seen that our proposed FlipSVM achieves better or

comparable results when there is no additional noise added

to the annotations – likely because it handles ambiguity and

noise inherent in the dataset labels. As we increase label

noise, the performance of both Latent SVM and Structural

SVM start to fall while FlipSVM shows robustness against

training data noise.

Label Flip Results: We further measure the quality of

the label flips that our algorithm produces on the training

data, as we have access to the ground truth tag labels be-

fore and after adding synthetic noise. We measured preci-

sion and recall of our algorithm’s label flips at the end of

learning. A true positive label flip is defined as a change

in label that changes a noisy tag label back to the original

ground truth label. On average, our algorithm’s flips have

73.30% precision and 19.20% recall for the a-Pascal dataset

and 69.72% precision and 19.99% recall for the a-Yahoo

dataset in the experiments at 33% noise level. These num-

bers show that our algorithm flips labels conservatively but

with high precision. Note that chance performance is 33%

precision for any recall.

4.2. Video Classification

In this experiment, we use our model to classify com-

plex events in web videos using the TRECVID MED11

dataset [14]. We follow the standard evaluation protocol.

The dataset contains 15 events that are divided across two

collections, DEV-T and DEV-O. The DEV-T dataset con-

sists of 10,723 videos including videos from five event

categories: board trick (E1), feeding animal (E2), land-
ing fish (E3), wedding ceremony (E4), and woodworking
project (E5). The DEV-O collection is significantly larger,

32,061 videos, and includes ten categories: birthday party
(E6), changing a tire (E7), flash mob (E8), getting a vehi-
cle unstuck (E9), grooming animal (E10), making sandwich
(E11), parade (E12), parkour (E13), repairing appliance

Table 1: Object classification results on a-Pascal and a-

Yahoo datasets. Number denote mean AP in %. Our method

is compared with three strong bases lines. Our training al-

gorithm shows robustness against noise in tag annotations.

a-Pascal
Noise 0% 16% 33%
SVM 37.05 37.05 37.05

Latent SVM [25] 37.65 37.22 36.19

Structural SVM 38.67 38.46 37.76

FlipSVM 40.17 40.41 39.53

a-Yahoo
Noise 0% 16% 33%
SVM 62.52 62.52 62.52

Latent SVM [25] 64.58 63.73 63.46

Structural SVM 67.14 66.78 65.27

FlipSVM 66.37 66.92 66.52

(E14), and sewing project (E15). Both DEV-T and DEV-

O are dominated by videos of the null category (i.e., back-

ground videos that do not contain the events of interest). For

training, an Event-Kit data collection, containing roughly

150 positive videos per category, is also provided.

Dataset Split and Feature: This experiment uses

HOG3D features, k-means quantized into a 1,000 word

codebook. For improving performance of all techniques,

the Histogram Intersection Kernel is approximated using

feature extension [22]. Similar to the experiments in

Sec. 4.1, a train/validation/test protocol is employed to tune

the parameters of our model and all the baselines. A bi-

nary classifier is trained using a randomly sampled 80%

of the Event Kit videos. For E1 to E5, test is done on

DEV-T dataset, while the parameters are validated on the

remaining 20% of Event Kit augmented with 10,000 ran-

domly selected background videos from the DEV-O dataset.

The same training data are used for experiments on E6 to

E15. However, DEV-T and the remaining 20% of Event Kit

videos are used for validation and DEV-O is used for test.

Collecting Video Tags: Obtaining tag-level annotation

for this huge number of videos is very costly. Instead of

manual labeling, we employ a simple technique to extract

tags on this dataset. The advantage of our approach is that

it is very fast, and it can be used to extract noisy tags on

the whole dataset with no manual interaction. Moreover,

the nature of the tags is similar to those tags that can be ex-

tracted by processing user-provided descriptions from so-

cial websites in the sense that a subset of present tags are

extracted by our method (e.g. Kennedy et al. [9] show that

50% of annotated tags are actually in the Flickr images).

The TRECVID MED11 dataset includes “judgment

files” that contain a short one-sentence description for each

video. An example description is: “A man and a little boy
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lie on the ground after the boy has fallen off his bike.”. This

sentence provides us with information about presence of ob-

jects such as “man”, “boy” and “bike” or actions such as

“lying” or “falling off” in the sequence. This is very limited

information as it does not provide an exhaustive tag set de-

noting the absence of all other tags, but it can still be used

to train a tag classifier for the present objects or actions.

We use a simple approach to extract tags focusing on the

objects in the videos. We use Topia [18], an open source

text analysis tool, to extract frequent nouns in the judgment

files. This software automatically performs part-of-speech

tagging for each sentence to detect nouns, adjectives, verbs,

etc. Then, a simple stemmer maps plural nouns to singular

ones. Finally, noun frequencies are collected and those that

are above a threshold are selected. This process results in

75 tags on the training dataset. Randomly selected exam-

ples of the tags are: dance, soccer, lake, river, road, snow-

board, girl, street, kitchen, boat, rally, egg, car, etc. We also

added 5 genres and 20 topic tags provided in judgment files

to create a 100-tag set for the TRECVID MED11 dataset1.

Comparison: For this dataset, we trained a tag-based

event classifier using the same model that we presented in

Sec. 3.3. This model has been used by Izadinia and Shah [8]

for the same task. Unfortunately, direct comparison to this

work is not possible as we do not have access to their fea-

tures and tag annotation. Moreover, we test on the full

dataset using the standard evaluation protocol, versus [8]

which experiments on Event Kit videos.

We compared our method to the same three baselines

that were used in Sec. 4.1. They are all trained with the

same HOG3D features. The loss functions are defined

slightly different to those in Sec. 4.1. In the TRECVID

MED dataset, annotation is done by expert annotators. We

assume that the annotators have not entered spam sentences

and sentences are actually representing the content of video.

So, the extracted tags are actually present in the video.

However, sentences may not have all the tags that are in

a video. Therefore, the label flip loss function is modified

to prevent label flips from a positive tag to a negative tag.

Table 2 report the performance on the DEV-T and DEV-

O datasets. Our model significantly outperforms the base-

line methods. We conducted paired t-tests on the AP values

across the two datasets to compare our FlipSVM against

each baseline for the null hypothesis that their mAP is bet-

ter than ours. The resulting p-values are 1.02%, 0.78% and

4.81%, all under 5% significance level for SVM, SSVM and

LSVM respectively. Qualitative visualization of our results

for three categories is also shown in Fig. 3.

5. Conclusion
Label noise is an inherent problem in learning for visual

recognition. The problem is especially acute for large-scale

1Tag annotations are available in authors’ website.

Table 2: Performance comparison against baselines on

DEV-T for E1-E5 and DEV-O for E6-E15. Numbers de-

note the average precision, in %. Best result for a particular

event category is shown in bold.

DEV-T dataset
Events SVM SSVM LSVM FSVM

E1 13.30 14.15 14.76 15.84
E2 3.90 3.49 3.49 3.28

E3 15.69 13.30 15.69 18.94
E4 29.79 36.49 37.26 38.27
E5 9.53 8.36 10.92 11.19

mAP 14.44 15.16 16.42 17.50

DEV-O dataset
Events SVM SSVM LSVM FSVM

E6 5.48 4.41 5.41 4.57

E7 3.85 0.86 3.87 2.33

E8 26.13 27.76 25.22 30.16
E9 3.58 3.64 4.72 3.54

E10 1.17 1.31 1.24 1.63
E11 2.62 3.29 2.52 2.82

E12 5.95 6.53 8.09 8.20
E13 9.37 13.77 10.95 13.26

E14 8.14 14.72 8.65 15.89
E15 2.04 1.67 1.87 1.40

mAP 6.83 7.80 7.25 8.38

datasets with multiple output tags or attributes – which is

becoming a common paradigm. With more complex labels

come challenges in accurate annotation and varying degrees

of difficulty in recognition. In this paper we presented the

FlipSVM, a learning framework designed to address these

challenges. We showed that the FlipSVM model for la-

bel noise can improve performance at image recognition

in the presence of noisy attribute data and video classifi-

cation from weakly supervised tag sets. Generating tags,

attributes, or descriptions of images and videos is a promis-

ing research direction, and novel learning frameworks will

be needed to make further progress.
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