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Abstract

Gathering accurate training data for recognizing a set of
attributes or tags on images or videos is a challenge. Ob-
taining labels via manual effort or from weakly-supervised
data typically results in noisy training labels. We develop
the FlipSVM, a novel algorithm for handling these noisy,
structured labels. The FlipSVM models label noise by “flip-
ping” labels on training examples. We show empirically
that the FlipSVM is effective on images-and-attributes and
video tagging datasets.

1. Introduction

We present a novel algorithm for predicting a set of tags
or attributes that describe an image or video. In recent years,
there has been a push to broaden the scope of visual recog-
nition — expanding the problem to consider describing im-
ages and videos rather than naming a single category. This
push has been led by landmark work such as the “attributes”
of Farhadi et al. [5] which framed the recognition problem
as one of describing an image with a large set of attributes
(e.g. shiny, red) in addition to a class label (apple).

A substantial body of related work falls into this vein,
consisting of recognition of attributes for objects or key-
words/tags for videos. Successfully describing images and
videos will not only help to more accurately recognize im-
age and video categories, but it will also provide a deeper
understanding of the classified content from different per-
spectives such as quantity, quality, color, shape, parts, etc.
This deeper understanding of images and videos can be
used in a wide range of applications such as automatic
description generation [10], face verification [I1], image
search [20] and video search [26].
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Figure 1: Obtaining noise-free annotations is typically chal-
lenging. Attribute annotations for some images of people in
the a-Pascal attribute dataset are shown. Note how the la-
beling of “Leg” in ¢) and d) or the labeling of “Hand” in b)
and e) is inconsistent.

However, there are two important intrinsic problems in
tag-based recognition: (1) tag annotations are noisy and (2)
tags can be very difficult to observe from visual features.
The algorithm we propose aims to address these issues.

There are two standard approaches to obtain tag annota-
tions, either relying on human annotation or imputing them
from weakly labeled data. Both are noisy processes.

Human annotation is subjective and many tags corre-
spond to a very fine level of detail on a given image or video.
Hence, human annotators may have different opinions about
the presence of a tag. A typical solution to this problem is
to ask several annotators to tag content followed by a tag
aggregation approach. This process can reduce annotation
noise but it is costly and remains error-prone. Consider the
examples in Fig. 1 from the a-Pascal dataset [5].

Weakly labeled data are often used to obtain tag anno-
tations. For instance, social media or multimedia sharing
websites such as Flickr or YouTube can be used to extract
a large volume of weakly annotated visual data. These data
sources are often of poor quality, with many users entering
a small subset of tags or spam tags for a given image/video.



Beyond this, many tags are very difficult to discern visu-
ally. Again, considering the examples in Fig. 1, it is difficult
to build classifiers from visual features to correctly predict
all the labeled tags. Different tags have different degrees
of difficulty and often there is a need to rely on contextual
information or high-level reasoning.

In this paper we attack the problem of image and video
classification based on uncertain tags. This is an essential
issue to allow the recovery of detailed image or video de-
scriptions from the typically ambiguous and noisy tag train-
ing data available. We present a novel structured tag pre-
diction learning algorithm that considers the uncertainty of
tags and their inter-relations.

We demonstrate the effectiveness of this algorithm via
two sets of experiments. We show that modeling label noise
improves performance in attribute-based image classifica-
tion on the a-Pascal and a-Yahoo datasets [5] — datasets
where ground truth is obtained from human annotations.
Second, we automatically extract tag annotations for the
TRECVID MEDI1 video dataset based on noisy, weakly
supervised video description data. We apply our algorithm
to learn tags from these data, and show they improve per-
formance for classifying complex events.

2. Related Work

A substantial body of recent work considers the problem
of labeling images with a set of tags or attributes. Farhadi
et al. [5] train discriminative attribute classifiers that can be
used to recognize different object classes, and further gen-
eralize to describe previously unseen categories of objects.
Russakovsky and Fei-Fei [19] use transfer learning for sim-
ilar recognition on large-scale object category datasets. Ku-
mar et al. [11] use both comparative attributes (a mouth
that looks like Barack Obama’s) along with appearance at-
tributes (gender, age, etc.) to improve face verification.
Parikh and Grauman [15] propose an approach to discover a
set of discriminative and nameable attributes with a human-
in-the-loop framework. This line of work was expanded to
relative attributes [16], recognizing the strength of an at-
tribute by learning a ranking function.

Related work also exists in the video analysis domain,
tagging videos with relevant keywords or concepts. Yang
and Toderici [26] propose a latent model to train classifiers
for sub-categories of tags. Qi et al. [17] use structural SVM
to predict multiple tags while considering their correlation.

Weakly labeled data are often used to extract tag or at-
tribute data for images or videos. Ferrari and Zisserman [7]
propose a generative probabilistic model to recognize low
level attributes such as “red” or “striped” from weakly la-
beled images obtained from the internet. Berg et al. [ 1] pro-
pose an approach to extract common attributes for certain
objects by mining the text associated with images. Simi-
larly, Leung et al. [12] have proposed to use Multiple In-

738

stance Boosting [23] to train video tag classifiers using
noisy web videos. All these methods consider the presence
of noise in the training data. However, they learn a classi-
fier for each attribute independently and ignore the fact that
tags are highly correlated. Our algorithm develops a prin-
cipled max-margin based criterion for learning with struc-
tured, noisy tags.

A wide range of machine learning tools has been used
for training tag classifiers. Structural SVM [21] is used in
Siddiquie et al [20] for multi-attribute image ranking and
retrieval. Latent SVM [6] is used for object and video clas-
sification respectively by Wang and Mori [25] and Izadinia
and Shah [8] in which tags are modeled as latent variables.

In the line of robust classifiers, RampSVM [3] has
been proposed to train SVM classifiers that are robust
against some amount of annotation noise. Ramp loss has
been extended recently to the structural prediction case by
McAllester and Keshet [13] and Chapelle et al. [2]. None
of these works have been explored on the problem of im-
age or video tagging. The objective function of Structural
RampSVM is similar to ours in the sense that the training
annotation is not assumed to be completely accurate. How-
ever, in Structural RampSVM the risk is still measured with
respect to the training annotation, while in our method we
compute the risk with respect to refined labels.

3. Flip Support Vector Machine

Our goal in this paper is to recognize a set of predefined
classes in images or videos. For this purpose, we are inter-
ested in considering tags which represent different aspects
of classes. Ultimately, recognition of these tags will provide
us with more description of visual content. In order to train
a classifier, we are going to use a training data set of images
and videos that are annotated with their class and tag labels.
In this section, our approach for training the classifier from
noisy tag labels is presented. Tag labels are often noisy,
due to the large-scale manual annotation effort required or
use of ad-hoc techniques on weakly labeled data to extract
tags. Here, tags may correspond to attributes of objects or
tags/key-words of videos.

For tag-based classification, we will use a structured
model similar to Wang and Mori [25] that considers the
interaction between tags and class labels. Interaction be-
tween tags helps us to recognize tags that are correlated.
For example, “has eye”, which is highly correlated with
“has head”, is very difficult to detect in isolation. But, eye
detection can be improved by considering the presence of
head. Similarly, classification can be enhanced considering
the interaction between tags and class labels. For example,
an object that has “clothes” and “skin” is more likely a hu-
man rather than a car.

In our model, a sample is represented with a triple
(z,t,y). = represents an image or a video, t = {t;}{=7 rep-



resents the presence/absence of 7' tags with binary labels,
t; € {—1,1}. If the i*" tag is present in the image =, we will
have t; = 1, otherwise t; = —1. Similarly, y € {—1,1}isa
binary variable that shows the presence/absence of a class.

The goal of training is to learn a scoring function that
can predict the class of an example in test time by consid-
ering both visual features and the presence/absence of tags.
Here, the scoring function is defined as F' : X x )V = R
that scores an example and a class label, y € ) where
Y = {-1,1} for our binary case. In test time, an ex-
ample will be assigned to the class that has highest score,
y* = argmaxycy F(z,y). Similar to Latent SVM frame-
work [6, 24] or Structural SVM [21], it is assumed that
F(x,y) = max; wT ®(x,t,y) where w! ®(z,t,y) is a lin-
ear potential function that scores a configuration of tag la-
bels and a class label for a sample considering their in-
teraction. The tag dependency is modeled using a a tree-
structured graph called fag interactions graph.

Next, our proposed learning framework for training pa-
rameters of a structured model from noisy tags is presented.
We defer comparisons to other learning criteria and model
details to Sec. 3.2 and Sec. 3.3 respectively.

3.1. Training a Flip SVM

The main contribution of our paper is to develop a novel
max-margin approach that enables us to train the model pa-
rameters from noisy labeled data. The idea of our approach
is that the learning algorithm is allowed to change training
tag labels while penalizing the number of changes. This
way the algorithm may be able to correct some tag label
mistakes but it is limited not to change all the labels arbi-
trarily. We call this training framework FlipSVM (FSVM)
as it flips some of the labels in the course of training.

Given a set of N examples, { (2, tn, yn) }?=Y for train-
ing, we propose the optimization of FlipSVM as:

A N N
,f||w\|§+Z§n+vZ£;
n=1 n=1

min

w,€n,80,
€ =AY, M)
wT¢(I71; t;m yn) > ngf)(JZn, t, y) + Aty:é//: - gn Vt7Vy

that minimizes the norm of parameters (||w||3), structured
error &, and the tag label change cost &/, computed over
training examples. Here the refined tag labels t],
{t V=T are introduced for the n'” training example in or-
der to measure the error respect to them instead of the noisy
ground truth labels. Therefore, the goal of training is to
find a w that produces a score for refined tag labels t], and
ground truth class label y,, greater than any other hypothe-
sized labeling with a margin re-scaled with the loss function
Ai’ff,: that measures the badness of the hypothesized label-
ing.
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Figure 2: Min-max optimization in FlipSVM for decom-
posable A’y and Ag, ¢ and a tree-structured tag inter-
action graphn Shaded " variables represent observed vari-
ables and different colored links denote potential function
defined in different terms of Eq. 3: w” ¢(z,,, t,y), A

wlé(x,,,t!, y,), and At,_ . By simplifying the model
and ignoring pairwise terms (dashed lines) in most vio-
lated labeling inference, maximization over t decomposes
to maximization over each ¢; that depends on individual ¢/,;

Ay, 4, measures the cost of label flips, and similar to
AYYr is assumed to be a function that can be decomposed
to a sum of losses measured on individual output variables.
~v and A\ are the trade-off parameters that tune the impact
of model complexity and label flip cost. We can write an
unconstrained version of the optimization in Eq. 1 as:

A N
min 2 [lwlff + 37 Ru(w)

2
n=1
where R,,(w) is the the risk function:
Ro(w) = minmax (W oenty) ALY G
no Yt n

- wT¢(xna t;w yn) + 'VA;;,,tn)

Training of a FlipSVM consists of two parts. First, the
risk function should be computed for each example given
the model parameters, w. Second, the model parameters
should be updated given the risk values. The following ex-
plains these two steps in detail.

Risk Evaluation: The optimization problem in Eq. 3
is min-max optimization of a Markov network. The in-
ner maximization finds the most violated labeling and the
outer minimization refines the ground truth label such that
sum of the most violated labeling margin and the flip cost is
minimum. Even in our simple case shown in Fig. 2, where
wTl ¢(x,t,y) is defined on a tree structured tag interaction
graph, this optimization problem is an NP-hard problem.



For solving this optimization problem, we propose a sim-
ple efficient heuristic. The idea of our heuristic is to form an
approximate version of the min-max optimization that can
be solved exactly. If the scoring function used for finding
the most violated labeling in Eq. 3 is simplified by omitting
its pairwise terms, the inner maximization can be solved
independently for each ¢; given ¢/,;. The optimum value of
the simplified maximization can be considered as a potential
term that depends on ¢t/ ; (unary term). Given these values,
our minimization becomes so-called loss augmented [21]
inference that can be solved exactly by dynamic program-
ming for a tree structured graph.

The relaxation approach to the inner maximization pro-
vides us with an approximated refined labeling, ). But, the
value of the risk function at ¢}, should also be computed. For
this purpose, the risk is evaluated by plugging ¢ in Eq. 3
and optimizing the inner maximization on the full model
with all terms using the same dynamic programming that
was used to produce ¢;;.

In our risk computation, loss augmented inference is
solved twice, first for finding approximate t;, and then for
solving the inner maximization. As the number of tags is
typically on the order of tens, and due to the structure of the
tag interaction graph, the inference problem can be solved
very efficiently.

Optimizing w: The optimization over w in Eq. 2 is a
non-convex optimization problem. Here, we use the NRBM
method proposed by Do and Artieres [4] to optimize w.
NRBM is a non-convex extension of the Cutting Plane al-
gorithm, and is used for training latent SVM [25]. This
technique requires us to compute the value of the risk and
its gradient with respect to w. In a nutshell, this algorithm
creates an approximation of the original quadratic program-
ming in Eq. 2 by iteratively adding a cutting plane at the
current optimum and updating the optimum.

3.2. FSVM vs. Structural SVM and Latent SVM

Structural SVM (SSVM) [21] and Latent SVM
(LSVM) [27] are two commonly used max-margin ap-
proaches that could be deployed for training a tag-based
classifier. SSVM trains the parameters of model such that
both the class and tag labels of the training data can be pre-
dicted accurately. In the presence of noisy tags, SSVM does
not model the label noise and it may fit to noisy tag labels.

In contrast, noisy tag labels can be modeled as latent
variables using a Latent SVM model. This method does not
have any notion of loss on latent variables, and it ignores all
the information about the ground truth tags. In [25, 8], tag
information is injected into training by replacing the image
features with the score of pre-trained tag classifiers. Our
approach is different from the Latent SVM approach, as it
enables us to train the tag and label classifiers in an unified
approach.
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3.3. Model

In order to be able to compare our training algorithm
with previous works on tag-based classification, we use a
model similar to Wang and Mori [25] for scoring the con-
figuration of tag labels and class label. Their work has been
later adopted by Izadinia and Shah [&] to recognize a set
of complex events in videos by considering noisy low-level
events. In this section, we briefly review our model focusing
on the differences with Wang and Mori’s [25].

In our model, the dependency of the tags is represented
using an undirected tag interaction graph G = (V, £) with
the vertex set V = {1, 2,3, ..., T} for all tags, and the edge
set F in which (7, j) € £ indicates the inter-dependency of
the i*" and j** tag. Our scoring function measures the com-
patibility of a class label y and tag labels t in an example x
by:

who(z,t,y) =y d(x) + Y tia] ¢() )
€V
+ > Bheltity) + Y vieltiy)
(i,j)€E icy

where w = {9, (67N Bq;j, Vi}iev,(i,j)efl-

The scoring function has four parts: The potential terms
y9T¢(x) and t;af ¢(xr) measure the compatibility of a
global feature ¢(z) extracted from example = with class
or tag labels. As we are considering a binary classi-
fier we learn 6 and «; parameters that separate positive
class from the negative class by assigning them to pos-
itive values. ngo(ti,tj) measures the compatibility be-
tween a pair of tags that is connected in our tag inter-
action graph €. ¢(t;,t;) is a sparse vector of size four
that has only a 1 value indicating which of the cases in
{(0,1),(1,0),(0,0), (1,1)} is taken by (¢;,¢;). Similarly,
v ¢(t:,y) measures the compatibility between a tag and a
class label.

In reality, only a small subset of tag pairs may show a
high amount of correlation. Therefore, considering all pairs
of tags will not be necessary, and would slow down infer-
ence significantly. Here, the same technique of [25, 17] is
used to extract a sparse set of dependencies. Normalized
mutual information is computed between each pair of tags,
and a maximum spanning tree of edges is selected. By em-
ploying this approach, inference of tags is done quickly us-
ing dynamic programming. Note that, even in our case that
tags are noisy, this approach considers statistics that are ro-
bust against noise when we are extracting tag dependencies.

Both [25] and [8] replace the long feature vector ¢(x)
with the output of a binary tag/class SVM classifier. In our
case training tags are noisy, so pre-trained binary classifiers
will not be immune to noise. Therefore, we do not pretrain a
classifier, and we let our training algorithm train these mod-
els all together. Wang and Mori [25] have also an extra



class specific tag model. For our binary classification, this
part has been excluded.

4. Experiments

We evaluated our approach on two different tasks. First,
we consider the problem of attribute-based object classifi-
cation in the a-Pascal and a-Yahoo datasets [5]. Second, we
examine the problem of tag-based video classification from
weakly supervised (and hence noisy) tags. We automati-
cally extract a set of video tags by processing the text de-
scription files provided in TRECVID MEDI11 [14] videos.

Evaluation Methodology: In all experiments, we will
train a binary classifier for recognizing classes (object
classes or video classes). We evaluate using Average Pre-
cision (AP), a standard performance measure based on area
under a precision-recall curve. Generating this curve re-
quires a score representing the confidence of our model in
assigning a sample to a class. Computing this score for
SSVM and FSVM is not trivial, as these models return a
configuration of labels that has highest score for a test ex-
ample. In order to extract the confidence score for labeling
an example, we apply a softmax function to best scoring la-
bel configurations for each class. First, the label score for
the example z is computed by:

Vyey )

Then, the probability of each class is defined as P(y) =
ezp( W) where zp = ),y exp(s(y)). A similar approach
is used by [17] to compute tag indexing scores from SSVM.

4.1. Object Classification

s(y) = maxw’ ¢(, t,y)

In this section, we utilize our model for classifying ob-
jects from attributes in the a-Pascal and a-Yahoo image
datasets [5]. The a-Pascal dataset has 6340 training images
and 6355 test images (from PASCAL VOC 2008) annotated
with 64 binary attributes such as “2D Boxy”, “Shiny”, “Has
leg” etc. These attributes belong to three categories includ-
ing: shape, material, and part. Each image is assigned to
one of 20 object classes including: aeroplane, bicycle, bird,
boat, bottle, bus, car, cat, chair, cow, dining table, dog,
horse, motorbike, person, potted plant, sheep, sofa, train
and tv/monitor. The a-Yahoo dataset has 2644 images an-
notated with the same set of attributes. However, the ob-
ject classes are different, including: bag, building, carriage,
centaur, donkey, goat, jetski, monkey, mug, statue, wolf and
zebra. We use the global features provided by Farhadi et
al. [5]. Each image is represented with a 9751-dimensional
feature vector that contains information on color, texture,
visual words, and edges. In this section, we utilize object
attributes as tags for the object classification task.

Modeling Noisy Labels: In this experiment we measure
FlipSVM under the original (often noisy) tag labels, and
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examine the performance of our proposed approach under
different amounts of additional noise. We run experiments
using the original a-Pascal and a-Yahoo tag annotations, and
further introduce different levels of synthetic noise to the
ground truth tag labels. In order to generate noise, we fol-
low the approach of Leung et al. [12] which generates noise
for positive tags by changing the label of some samples with
negative tag to positive. Leung et al. argue this is a good
model of label noise, basically since negative data are com-
mon and the noise level in them negligible.

We examine our approach under three different noise
levels: 0%, 16% and 33%. In X % noise, X % of the train-
ing samples with each positive tag are mislabeled samples
added from the negative set.

Dataset Split: We use the standard train/test split for the
a-Pascal dataset. We further sub-divide the training set to
create a validation set (25% of the training images) for tun-
ing the parameters of our model and all other baselines. As
a binary classification problem is considered here, parame-
ters are tuned for each class separately on the validation set.
A train/test split is not provided for the a-Yahoo dataset.
37.5%, 12.5% and 50% of images are selected for training,
validation and testing respectively for this dataset.

Loss Functions: We use re-scaled hamming loss for
both AY ’t”," and A}, ; . For each tag or class, re-scaling
of the los$ function'is performed based on the number of
training samples that have that tag or class. A{{" is de-
fined as: !

AVl =6y, yn) + Y Siltis ;) (6)
ey
where
c —L At
~ YFYn (i) ? g ni
6(yayn> = {(J)Vy _ 5i(tiatf/ni) = {Nt;ui
) Y=1Yn 0, =1,

N, is the number of training examples that belongs to class
y € ). Similarly, N, "(Z ) is the number of training images
whose it" tag is ¢/, € {—1,1}. Since we are interested in
classifying images to object classes rather than tag classes,
we set C' = 25 to have a loss function more sensitive to
class than tag error.

A ¢ is also defined as re-scaled hamming loss which
basically counts the number of label changes. We here re-
scale the hamming loss such that tags with a large number of
positive examples are penalized less. This way, we encour-
age our training algorithm to change frequent tags more.
We also prevent label flips from a negative tag to a positive
tag. The loss function becomes:

o

_ 14t e L =1t =1

- Z 61‘ (tnw t’f”) 0; ( n'w ) - Nf;)i bni rni
i€V 0 =t

t'lni =1,tp; =—1



Note that the loss functions as well as the tag interaction
graph are formed from noisy training tags for each experi-
ment and noise level separately.

Baseline Methods: For each experiment, we compare
our method with three strong baselines: (1) Structural SVM
that uses the same model and loss function, A as ours. (2)
Latent SVM that uses our model equipped with a class-
specific tag model discussed in [25]. (3) SVM classifier
trained on global features ignoring all the information about
tag annotation. The Latent SVM baseline is the method in
[25], re-implemented for the binary classification version to
be examined under different noise levels.

Classification Results: Table 1 report mean AP (mAP)
of our method compared with three baselines on the a-
Pascal and a-Yahoo datasets. Mean AP is computed by
taking the average of AP over all object classes in these
datasets. Several observations can be made. First, it can be
easily seen that our proposed FlipSVM achieves better or
comparable results when there is no additional noise added
to the annotations — likely because it handles ambiguity and
noise inherent in the dataset labels. As we increase label
noise, the performance of both Latent SVM and Structural
SVM start to fall while FlipSVM shows robustness against
training data noise.

Label Flip Results: We further measure the quality of
the label flips that our algorithm produces on the training
data, as we have access to the ground truth tag labels be-
fore and after adding synthetic noise. We measured preci-
sion and recall of our algorithm’s label flips at the end of
learning. A true positive label flip is defined as a change
in label that changes a noisy tag label back to the original
ground truth label. On average, our algorithm’s flips have
73.30% precision and 19.20% recall for the a-Pascal dataset
and 69.72% precision and 19.99% recall for the a-Yahoo
dataset in the experiments at 33% noise level. These num-
bers show that our algorithm flips labels conservatively but
with high precision. Note that chance performance is 33%
precision for any recall.

4.2. Video Classification

In this experiment, we use our model to classify com-
plex events in web videos using the TRECVID MEDI1
dataset [14]. We follow the standard evaluation protocol.
The dataset contains 15 events that are divided across two
collections, DEV-T and DEV-O. The DEV-T dataset con-
sists of 10,723 videos including videos from five event
categories: board trick (El), feeding animal (E2), land-
ing fish (E3), wedding ceremony (E4), and woodworking
project (E5). The DEV-O collection is significantly larger,
32,061 videos, and includes ten categories: birthday party
(EG6), changing a tire (E7), flash mob (ES8), getting a vehi-
cle unstuck (E9), grooming animal (E10), making sandwich
(El11), parade (E12), parkour (E13), repairing appliance
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Table 1: Object classification results on a-Pascal and a-
Yahoo datasets. Number denote mean AP in %. Our method
is compared with three strong bases lines. Our training al-
gorithm shows robustness against noise in tag annotations.

a-Pascal
Noise 0% 16% | 33%
SVM 37.05 | 37.05 | 37.05
Latent SVM [25] | 37.65 | 37.22 | 36.19
Structural SVM | 38.67 | 38.46 | 37.76
FlipSVM 40.17 | 40.41 | 39.53
a-Yahoo
Noise 0% 16% | 33%
SVM 62.52 | 62.52 | 62.52
Latent SVM [25] | 64.58 | 63.73 | 63.46
Structural SVM | 67.14 | 66.78 | 65.27
FlipSVM 66.37 | 66.92 | 66.52

(E14), and sewing project (E15). Both DEV-T and DEV-
O are dominated by videos of the null category (i.e., back-
ground videos that do not contain the events of interest). For
training, an Event-Kit data collection, containing roughly
150 positive videos per category, is also provided.

Dataset Split and Feature: This experiment uses
HOG3D features, k-means quantized into a 1,000 word
codebook. For improving performance of all techniques,
the Histogram Intersection Kernel is approximated using
feature extension [22]. Similar to the experiments in
Sec. 4.1, a train/validation/test protocol is employed to tune
the parameters of our model and all the baselines. A bi-
nary classifier is trained using a randomly sampled 80%
of the Event Kit videos. For E1 to ES, test is done on
DEV-T dataset, while the parameters are validated on the
remaining 20% of Event Kit augmented with 10,000 ran-
domly selected background videos from the DEV-O dataset.
The same training data are used for experiments on E6 to
E15. However, DEV-T and the remaining 20% of Event Kit
videos are used for validation and DEV-O is used for test.

Collecting Video Tags: Obtaining tag-level annotation
for this huge number of videos is very costly. Instead of
manual labeling, we employ a simple technique to extract
tags on this dataset. The advantage of our approach is that
it is very fast, and it can be used to extract noisy tags on
the whole dataset with no manual interaction. Moreover,
the nature of the tags is similar to those tags that can be ex-
tracted by processing user-provided descriptions from so-
cial websites in the sense that a subset of present tags are
extracted by our method (e.g. Kennedy et al. [9] show that
50% of annotated tags are actually in the Flickr images).

The TRECVID MEDI1 dataset includes “judgment
files” that contain a short one-sentence description for each
video. An example description is: “A man and a little boy



lie on the ground after the boy has fallen off his bike.”. This
sentence provides us with information about presence of ob-
jects such as “man”, “boy” and “bike” or actions such as
“lying” or “falling off™ in the sequence. This is very limited
information as it does not provide an exhaustive tag set de-
noting the absence of all other tags, but it can still be used
to train a tag classifier for the present objects or actions.

We use a simple approach to extract tags focusing on the
objects in the videos. We use Topia [18], an open source
text analysis tool, to extract frequent nouns in the judgment
files. This software automatically performs part-of-speech
tagging for each sentence to detect nouns, adjectives, verbs,
etc. Then, a simple stemmer maps plural nouns to singular
ones. Finally, noun frequencies are collected and those that
are above a threshold are selected. This process results in
75 tags on the training dataset. Randomly selected exam-
ples of the tags are: dance, soccer, lake, river, road, snow-
board, girl, street, kitchen, boat, rally, egg, car, etc. We also
added 5 genres and 20 topic tags provided in judgment files
to create a 100-tag set for the TRECVID MEDI11 dataset'.

Comparison: For this dataset, we trained a tag-based
event classifier using the same model that we presented in
Sec. 3.3. This model has been used by Izadinia and Shah [§]
for the same task. Unfortunately, direct comparison to this
work is not possible as we do not have access to their fea-
tures and tag annotation. Moreover, we test on the full
dataset using the standard evaluation protocol, versus [8]
which experiments on Event Kit videos.

We compared our method to the same three baselines
that were used in Sec. 4.1. They are all trained with the
same HOG3D features. The loss functions are defined
slightly different to those in Sec. 4.1. In the TRECVID
MED dataset, annotation is done by expert annotators. We
assume that the annotators have not entered spam sentences
and sentences are actually representing the content of video.
So, the extracted tags are actually present in the video.
However, sentences may not have all the tags that are in
a video. Therefore, the label flip loss function is modified
to prevent label flips from a positive tag to a negative tag.

Table 2 report the performance on the DEV-T and DEV-
O datasets. Our model significantly outperforms the base-
line methods. We conducted paired t-tests on the AP values
across the two datasets to compare our FlipSVM against
each baseline for the null hypothesis that their mAP is bet-
ter than ours. The resulting p-values are 1.02%, 0.78% and
4.81%, all under 5% significance level for SVM, SSVM and
LSVM respectively. Qualitative visualization of our results
for three categories is also shown in Fig. 3.

5. Conclusion

Label noise is an inherent problem in learning for visual
recognition. The problem is especially acute for large-scale

ITag annotations are available in authors” website.
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Table 2: Performance comparison against baselines on
DEV-T for E1-E5 and DEV-O for E6-E15. Numbers de-
note the average precision, in %. Best result for a particular
event category is shown in bold.

DEV-T dataset
Events | SVM | SSVM | LSVM | FSVM
El 13.30 | 14.15 14.76 15.84
E2 3.90 3.49 3.49 3.28
E3 15.69 | 13.30 15.69 18.94
E4 29.79 | 36.49 37.26 | 38.27
E5 9.53 8.36 10.92 11.19
mAP | 14.44 | 15.16 16.42 17.50
DEV-O dataset
Events | SVM | SSVM | LSVM | FSVM
E6 5.48 4.41 5.41 4.57
E7 3.85 0.86 3.87 2.33
ES8 26.13 | 27.76 2522 | 30.16
E9 3.58 3.64 4.72 3.54
E10 1.17 1.31 1.24 1.63
Ell 2.62 3.29 2.52 2.82
El12 5.95 6.53 8.09 8.20
El13 9.37 13.77 10.95 13.26
El4 8.14 14.72 8.65 15.89
El15 2.04 1.67 1.87 1.40
mAP 6.83 7.80 7.25 8.38

datasets with multiple output tags or attributes — which is
becoming a common paradigm. With more complex labels
come challenges in accurate annotation and varying degrees
of difficulty in recognition. In this paper we presented the
FlipSVM, a learning framework designed to address these
challenges. We showed that the FlipSVM model for la-
bel noise can improve performance at image recognition
in the presence of noisy attribute data and video classifi-
cation from weakly supervised tag sets. Generating tags,
attributes, or descriptions of images and videos is a promis-
ing research direction, and novel learning frameworks will
be needed to make further progress.
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