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Abstract

Superpixel and objectness algorithms are broadly used
as a pre-processing step to generate support regions and
to speed-up further computations. Recently, many algo-
rithms have been extended to video in order to exploit the
temporal consistency between frames. However, most meth-
ods are computationally too expensive for real-time appli-
cations. We introduce an online, real-time video superpixel
algorithm based on the recently proposed SEEDS superpix-
els. A new capability is incorporated which delivers multi-
ple diverse samples (hypotheses) of superpixels in the same
image or video sequence. The multiple samples are shown
to provide a strong cue to efficiently measure the object-
ness of image windows, and we introduce the novel concept
of objectness in temporal windows. Experiments show that
the video superpixels achieve comparable performance to
state-of-the-art offline methods while running at 30 fps on
a single 2.8 GHz i7 CPU. State-of-the-art performance on
objectness is also demonstrated, yet orders of magnitude
faster and extended to temporal windows in video.

1. Introduction
Many algorithms use superpixels or objectness scores to

efficiently select areas which to analyze further. With an

increasing number of papers on the analysis of videos, the

interest in having similar concepts extracted from time se-

quences is increasing as well. The exploitation of temporal

continuity can indeed help boost several types of applica-

tions. Yet, most current solutions are computationally ex-

pensive and non-causal (i.e. need to see the whole video

first). We propose a novel method for the online extraction

of video superpixels. In terms of its still counterparts, it

comes closest to the recently introduced SEEDS superpix-

els [15].

Similar to SEEDS, we define an objective function that

prefers video superpixels to have a homogeneous color, and

our video superpixels can be extracted efficiently. Their op-

timization is based on iteratively refining the partition, by
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Figure 1. Top: Video SEEDS provide temporal superpixel tubes.

Bottom: Randomized SEEDS efficiently produce multiple label

hypotheses per frame. Based on these, a Video Objectness mea-

sure is introduced to propose temporal windows (tubes of bound-

ing boxes) that are likely to contain objects.

exchanging blocks of pixels between superpixels. When

starting off the partition of a new video frame, we ex-

ploit the hierarchical superpixel organization of the previous

frame, the coarser levels of which serve as initialization.

Moreover, we propose a method to extract multiple su-

perpixel partitions with a value of the objective function

close to that of the optimum. Typically the overlapping su-

perpixels differ in non-essential parts of their contours, but

those segments that correspond to a genuine object contour

are shared. This allows us to introduce a new and highly ef-

ficient objectness measure, together with its natural exten-

sion to videos (a tube of bounding boxes spanning a time

interval). Fig. 1 depicts a summary of the contributions of

the paper.

We experimentally validate the video superpixel and ob-

jectness algorithms, where we use standard benchmarks

where possible. Both methods achieve state-of-the-art re-
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sults but at much higher speeds than available methods.

2. Related Work

In this section, we review previous work related to su-

perpixels and objectness in videos, the two tasks tackled in

this paper.

Video Superpixels. Most methods are approaches for still

images that have been extended to video. They either

progressively add cuts or grow superpixels from centers.

Adding cuts are the graph-based method [5] and its hier-

archical extensions [8, 17], segmentation by weighted ag-

gregation (SWA) [12], and normalized cuts with Nystrom

optimization [7]. Methods that grow centers are based on

mean shift [10, 9]. Our method also starts from a still-

oriented method, i.e. the recently introduced SEEDS ap-

proach [15]. Thus, our approach can be seen to add a third

strand to video superpixel extraction, namely one that that

moves the boundaries in an initial superpixel partition.

Recently, Xu et al. [16, 17] proposed a benchmark to

evaluate video superpixels and a framework for streaming

video segmentation using the graph-based superpixel ap-

proach of [5]. They achieved state-of-the-art results, but

only at 4 seconds/frame, i.e. 2 orders of magnitude from

real-time.

Temporal Window Objectness. The objectness measure

was introduced by Alexe et al. [1] for still images, where-

after [11] and [6] introduced new cues to boost perfor-

mance. To the best of our knowledge, objectness throughout

video shots has not been introduced before. It should not

be confused with the recently introduced dynamic object-

ness [13], which extracts objectness within a frame by in-

cluding instantaneous motion. In contrast, we deliver tubes

of bounding boxes throughout extended time intervals.

3. Video SEEDS

In this section, we first review the SEEDS algorithm [15]

for the extraction of superpixels in stills. Subsequently, we

discuss the extension of this concept for videos, the corre-

sponding energy function, and how to optimize it.

3.1. SEEDS for stills

Let s represent the superpixel partition of an image, such

that s : {1, . . . , N} → {1, . . . ,K}, in which N represents

the number of pixels in the image, and K the number of

superpixels. Superpixels are constrained to be contiguous

blobs, which is indicated by s ∈ S , where S is the set of

valid superpixel partitions. The SEEDS approach [15] for

extracting superpixels in stills serves as starting point for

our video extension. Yet, we propose important refinements

on which the algorithm’s efficiency critically depends.

frame 0 frame 1 frame 2

initialization

pixel-updates

 
frame

block-updates
propagation

Figure 2. Overview of the Video SEEDS algorithm: The super-

pixel labels are propagated at an intermediary step of block-level

updates. The result is fine-tuned for each frame individually.

SEEDS extracts superpixels by maximizing an objective

function, thus enforcing the color histograms of superpixels

to be each concentrated in a single bin. The hill climbing

optimization starts from a grid of square superpixels, which

it iteratively refines by swapping blocks of pixels at their

boundaries. We chose SEEDS as they are extracted in real-

time on a single CPU.

3.2. SEEDS for videos

Our video approach propagates superpixels over multi-

ple frames to build 3D spatio-temporal constructs. As time

goes on, new video superpixels can appear and others may

terminate. In the literature, this is controlled by constraining

the number of superpixel tubes in the sequence. For online

applications this is not possible however, since the upcom-

ing length and content of the sequence are unknown. Thus,

we use alternative constraints defined through 2 parameters:

• Superpixels per frame: number of superpixels in which

each single frame is partitioned.

• Superpixel rate: the rate of creating/terminating super-

pixels over time.

In order to fulfill both constraints, the termination of a su-

perpixel implies the creation of a new one in the same

frame. In the experiments, we discuss how we select these

parameters.

Let S be the set of valid partitions of a video. These

are the partitions for which the superpixels are contiguous

blobs in all frames and that exhibit the correct superpixel-

per-frame and superpixel-rate behavior. Let At
k denote the
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layer 1 (pixels) layer 2 (blocks) layer 3 (blocks) layer 4 (superpixels)

Figure 3. Hierarchy of blocks of pixels of 4 layers.

set of pixels that belong to superpixel k, at frame t. To

indicate all pixels of the video superpixel up to frame t, we

use At:0
k .

Similarly to [15], the energy function encourages color

homogeneity within the 3D superpixels. We use a color

histogram of each superpixel to evaluate this. The color

histogram of At:0
k is written as cAt:0

k
. Let Hj be a subset of

the color space which determines the colors in a bin of the

histogram. Then the energy function is

H(s) =
∑

k

∑

{Hj}
(cAt:0

k
(j))2, (1)

which is maximal when the histograms have only one non-

zero bin for each video superpixel.

3.3. Online Optimization via Hill Climbing

The optimization algorithm is designed to maximize the

energy function in an online fashion (i.e. only using past

frames and at video rate). It computes the partition of the

current frame, starting from an approximation of the last

partition. Once the partition of the current frame is deliv-

ered, it remains fixed. We introduce a hill climbing algo-

rithm that runs in real-time. It maximizes the energy by

exchanging pixels between superpixels at their boundaries.

This section describes the optimization in more detail. See

Fig. 2 for an overview of the algorithm.

Hierarchy of blocks of pixels. Both the pixel exchange

between superpixels and their temporal propagation are reg-

ulated through blocks of pixels. The SEEDS algorithm [15]

started by dividing a still image into a regular grid of blocks.

An important difference with our algorithm is that we con-

sider a hierarchy of blocks at different sizes. Starting from

pixels as the most detailed scale, 2× 2 or 3× 3 pixel blocks

are formed (how that choice is made is to be clarified soon)

for the second layer. Further layers each time combine 2×2
blocks of the previous one. The block size at the second

layer (2 × 2 or 3 × 3) and the number of layers are cho-

sen such that the image subdivision at the highest layer ap-

proximately yields the prescribed number of superpixels per

frame. In Fig. 3 we illustrate an example of the hierarchy of

4 layers of block sizes.

Pixel and block-level updates. An initial partition of the

current frame is provided by the previous frame. This prop-

agation process will be described shortly. In case of the first

initialization layer 3 (blocks) layer 2 (blocks) layer 1 (pixels)

initialization layer 2 (blocks) layer 1 (pixels)

t 
= 

0

t 
= 

1

Figure 4. Efficient updating at different block sizes.

frame, the initial partition corresponds to the highest block

layer as just described, i.e. a regular grid. The hill climb-

ing optimization starts from the initialization to then itera-

tively propose local changes in the partition. Multiple pixel

block exchanges between superpixels are considered, one

after the other. If such an exchange increases the objective

function, it is accepted and the partition is updated; else, the

exchange is discarded. The exchanged pixel blocks are ad-

jacent to the superpixel boundaries. The algorithm starts by

exchanging bigger blocks, and then it descends in the block

hierarchy until it reaches the pixel level. Thus, in the first

iterations larger blocks are exchanged to quickly arrive at a

coarse partition that captures the global structure. Later, the

partition is refined through smaller blocks and pixels that

capture more details. This process is shown in Fig. 4.

Let Bt
n be a block of pixels of the current frame that be-

longs to the superpixel n, i.e. Bt
n ⊂ At

n ⊂ At:0
n . To evaluate

whether exchanging the block Bt
n from superpixel n to m

increases the objective function, we can use one histogram

intersection computation, rather than evaluating the com-

plete energy function. This is

int(cBt
n
, cAt:0

m
) ≥ int(cBt

n
, cAt:0

n \Bt
n
), (2)

in which int(·, ·) denotes the intersection between two his-

tograms, and \ the exclusion of a set. Thus, if the inter-

section of Bt
n to the video superpixel At:0

m is higher than

the intersection to the superpixel it currently belongs to, the

exchange is accepted, otherwise it is discarded. The speed

of the hill climbing optimization stems from Eq. (2), since

it can evaluate a block exchange with a single intersection

distance computation.

In the supplementary material we show that using Eq. (2)

maximizes the energy under the assumptions that |At:0
m | ≈

|At:0
n |, |Bt

n| � |At:0
n |, where | · | is the cardinality of the set.

Also, it assumes that the histogram of Bt
n is concentrated in

a single bin. The first one is that video superpixels are of

similar size and that the blocks are much smaller than the

video superpixels. This holds most of the time, since super-

pixels indeed tend to be of the same size, and the blocks are
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defined to be at most one fourth of a superpixel in a frame,

and hence, are much smaller than superpixels extending on

multiple frames in the video. The second assumption is that

the block of pixels have a homogeneous color histograms.

This was empirically shown to hold in practice by [15] (in

more than 90% of the cases), and we observed the same.

Creating and terminating video superpixels. Accord-

ing to the superpixel rate, some frames are selected to termi-

nate and create superpixels. When a frame is selected, we

first terminate a superpixel, and then we create a new one.

To this aim, we introduce similar inequalities as in Eq. (2).

They allow to evaluate which termination and creation of

superpixels yield higher energy using efficient intersection

distances, as well.

In Fig. 5 there is an illustration of the creation and termi-

nation of superpixels with the notation used. When a super-

pixel is terminated, its pixels at frame t are incorporated to

a neighbor superpixel. Let At
n ⊂ At:0

n and At
m ⊂ At:0

m be

two candidates of superpixels to terminate at frame t. Let

At:0
p and At:0

q be the superpixel candidate to incorporate At
n

and At
m, respectively. The superpixel with larger intersec-

tion with its neighbor is the one selected to terminate, i.e.

int(cAt
n
, cAt:0

p
) ≥ int(cAt

m
, cAt:0

q
). (3)

We terminate the superpixel with higher intersection to its

neighbor among all superpixels in the frame. In the supple-

mentary material, we show that Eq. (3) leads to the highest

energy state, under the assumptions that |At:0
p | ≈ |At:0

q |,
|At

n| � |At:0
p |, |At

m| � |At:0
q |, and that both At

n and At
m

have histograms concentrated into one bin. These are sim-

ilar to the assumptions for Eq. (2). Additionally, it is also

assumed that cAt:0
n

≈ cA(t−1):0
n

and cAt:0
m

≈ cA(t−1):0
m

. This

is that the color histogram of the temporal superpixel re-

mains approximately the same including and excluding the

pixels at the current frame. This holds most of the time,

given the fact that |At
n| � |At:0

n |.
If a superpixel is terminated, a new one should be created

to fulfill the constraint of number of superpixels per frame

(Sec. 3.2). The candidates to form a new superpixel are

blocks of pixels that belong to an existing video superpixel.

Let Bt
n ⊂ At:0

n and Bt
m ⊂ At:0

m be blocks of superpixels

candidates to create a new superpixel. We select the block

of pixels which histogram minimally intersects with its cur-

rent superpixel. This is,

int(cBt
m
, cAt:0

m \Bt
m
) ≤ int(cBt

n
, cAt:0

n \Bt
n
). (4)

We select the block of pixels with minimum intersection in

the frame. We show in the supplementary material, that this

yields the highest energy, assuming that |At:0
m | ≈ |At:0

n |,
|Bt

n| � |At:0
n |, |Bt

m| � |At:0
m |, and that both Bt

n and Bt
m

have histograms concentrated into one bin. These assump-

tions are similar to the ones of Eq. (3).

Termination

At
n

At:0
p

At-1:0
n

timecurrent
frame

Creation
t
m

At:0
m

timecurrent
frame

B

Figure 5. Termination and creation of superpixels.

Iterations. We can stop the optimization for a frame at

any time and obtain a valid partition. We expect a higher

value of the energy function if we let the hill-climbing do

more iterations, until convergence. We can fix the allowed

time to run per frame, or set it on-the-fly, depending on the

application. In principle, the algorithm can run for an in-

finitely long video, since it generates the partition online,

and in memory we only need the histograms of the video

superpixels that propagate to the current frame.

Initialization and Propagation. In the first frame of the

video, the superpixels are initialized along a grid using the

hierarchy of blocks. In the subsequent frames, the block

hierarchy is exploited to initialize the superpixels. Rather

than re-initializing along a grid, the new frame is initialized

by taking an intermediary block-level result from the previ-

ous frame (Fig. 2). Like this, the superpixel structure can be

propagated from the previous frame while discarding small

details. In practice, we use 4 block layers and propagate at

the 2nd layer, as shown in Fig. 4.

4. Randomized SEEDS
Some superpixel methods offer extra capabilities, such

as the extraction of a hierarchy of superpixels [17]. In this

section, we introduce a new capability of superpixels that,

to the best of our knowledge, has never been explored so

far. In the next section we exploit it to design an object-

ness measure of temporal windows, though we expect that

applications may not be limited to that one.

Superpixels are over-segmentations with many more re-

gions than objects in the image. A region that is uniform in

color can be over-segmented in many different correct ways,

and thus, more than one partition can be valid. In Fig. 6, we

give an example of different partitions with the same num-

ber of superpixels, with similar energy value and which so-

lutions have very similar accuracy according to the super-

pixel benchmarks. This shows that we can extract multiple

samples of superpixel partitions from the same video, all of

them of comparable quality.

Since there may be a considerable amount of those par-

titions, we aim at extracting samples that differ as much as

possible between themselves. We found a heuristic way,

yet effective and fast to compute, that consists on injecting
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multiple SEEDS samples

Randomized
SEEDS

objectness scorelabels

Figure 6. Different samples of randomized SEEDS segmentations of the same frame and with the same accuracy are combined. In the

randomized SEEDS, we show the average of the different samples. The objectness score is computed as the sum of the distances to the

common superpixel boundaries.

noise to the evaluation of the exchanges of pixels in the hill-

climbing, i.e. in Eq. (2). This is,

int(cBt
n
, cAt:0

m
) + aξ ≥ int(cBt

n
, cAt:0

n \Bt
n
), (5)

where ξ is the variable for the uniform random noise in the

interval [−1, 1] and a is a scale factor. Note that if a is

small, the noise only affects the block exchanges which do

not produce a large change in the energy value. In the ex-

periments section, we analyze the effect of injecting noise

by changing its scale a and show that up to a certain level,

the performance is not degraded compared to the sample

obtained without adding noise, i.e. a = 0. This corrobo-

rates that there exists a diversity of over-segmentations with

energy very close to the maximum that are equally valid.

Injecting noise may not be the only way for extracting

samples, but is by far the most efficient to compute that we

found. For example, changing the order in which we pro-

pose the exchanges of blocks of pixels in the hill-climbing,

turned to be successful but slower in our implementation.

5. Video Objectness
In this section, we introduce an application of random-

ized SEEDS to video objectness. It is based on the ob-

servation that the coincidences among multiple superpixel

partitions, reveal the true boundaries of objects. Fig. 6

shows that when superimposing a diverse set of superpixel

samples obtained with randomized SEEDS, the boundaries

of the objects are preserved, and the boundaries due to

over-segmentation fade away. This is because the over-

segmentation coincides where there are true region bound-

aries, and does not in regions with a similar uniform color.

In the following, we first define the measure of the ob-

jectness in a still image, and then we introduce how to ex-

tend it to temporal windows (tubes of bounding boxes).

Objectness Measure for Still Images. We use O to rep-

resent the intersection of several superpixel samples of ran-

domized SEEDS. O(i) takes value 1 if all samples have a

superpixel boundary at pixel i, and 0 otherwise. Thus, O is

an image that indicates in which pixels the samples of ran-

domized SEEDS agree that there is a superpixel boundary.

We define the objectness score for a still image using O.

It measures the closed boundary characteristic of objects.

A bounding box is more likely to contain an object when

there is a closed line in O that fits tightly the bounding box.

Specifically, we compute the distance from each pixel on

the perimeter of the bounding box to the nearest pixel that

fulfills O(i) = 1. Thus, in case we are in the bottom or

the top of the bounding box, the distance is computed to the

closest pixel in the same column, and in case we are in one

of the sides, in the same row. See Fig. 6 for an illustration.

Let X be the set of pixels inside the bounding box, Per(X )

the set of pixels in the perimeter of the bounding box, and

XR,C(p) the pixels that are inside the bounding box and in the

same row or column as pixel p. Thus, the objectness score

is:

1

A

∑

p∈Per(X )

min
i∈XR,C(p)

O(i)=1

d(p, i), (6)

where d(·, ·) is the Euclidean distance, and A normalizes the

score using the area of the bounding box. In the supplemen-

tary material, we show that the score can be computed very

efficiently using two levels of integral images, with only 8

additions, allowing for the evaluation of over 100 million

bounding boxes per second. To the best of our knowledge,

no earlier work has used multiple superpixel hypotheses to

build an objectness score. In the experiments, we show that

using multiple hypothesis has an important impact on the

performance.
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Figure 7. Comparison of our online video superpixels method to the state-of-the-art (s-o-a). For the first plot, lower is better, and for the

second and third, higher is better.

Objectness Measure for Temporal Windows. We de-

fine a temporal window as a sequence of temporally con-

nected bounding boxes, one per frame, which aim to sur-

round an object in video. It can be thought as a rectangular-

shaped tube in the time axis (illustrated in Fig. 1 bottom).

The video is divided into overlapping shots of a predefined

length, and for each shot all temporal windows are consid-

ered inside. They do not aim at replacing object tracking

systems, but to assist them. The temporal windows in shots

allow for incorporating features and classifiers that exploit

the spatio-temporal regions, and can easily be incorporated

in any video application that uses bounding boxes.

Note that there are many more temporal windows than

bounding boxes in a still image. Say that in each frame

there are 106 possible bounding boxes. If each bounding

box could move to 100 nearby positions in each subsequent

frame, it leaves around 1050 possible temporal windows in

a 25-frame sequence. The aim of video objectness is to re-

duce these 1050 temporal windows to the 100-1000 most

likely to contain an object.

The video objectness score is proposed as a volumetric

extension of Eq. (6) in the time dimension, normalized by

the tube volume (we denoted as 3D edge score in the exper-

iments). In the first frame, all possible bounding boxes are

extracted densely and ranked based on the objectness score

for still images. In the subsequent frames, each bounding

box is propagated in time by propagating the video super-

pixels that are completely inside the bounding box in the

first frame. The score is updated online as each new frame

is added until the shot is finished, and accordingly, the rank-

ing of the temporal windows is updated online as well.

6. Experiments
In this section we report experimental evaluation of the

introduced online video superpixel method. We also report

results for the new application of video objectness. For all

experiments we use a single 2.8 GHz i7 CPU. The source

code of our methods will be made available online1.

1http://www.vision.ee.ethz.ch/software/

6.1. Evaluation of Online Video SEEDS

We report results of the online video superpixels on

the Chen Xiph.org benchmark [3] using the metrics pro-

posed by [16]. The videos contain moving objects and are

recorded with an uncontrolled camera. We use the stan-

dard metrics for evaluating temporal superpixels.2 The 3D

Under-segmentation Error penalizes temporal superpixels

that contain more than one object, the 3D Boundary Recall

is the standard recall for temporal object boundaries, and

the Explained Variation is a human-independent metric that

considers how well the superpixel means represent the in-

formation in the video. The benchmark evaluates these met-

rics varying the number of temporal superpixels. To achieve

the desired amount of temporal superpixels, we select the

number of superpixels per frame from a range between 200

and 600, and the superpixel rate from a range between 0

and 6. This results in a total number of video superpixels

between 200 and 1086. For a detailed explanation of the

metrics and these 2 parameters we refer to the supplemen-

tary material.

We compare the results of the online video SEEDS to the

state-of-the-art (s-o-a) methods. We compare to the Graph-

based method (GB) [5], when processing the entire videos

offline, denoted as GB t = ∞, its streaming version with

10 frames in the stream, (StreamGB t = 10), and its on-

line version (StreamGB t = 1). We report the Hierarchical

Graph-based method (GBH) [17], also when processing the

entire video offline (t = ∞), with 10 frames in the stream

(StreamGBH t = 10), and the online version (StreamGBH

t = 1). We also compare it to the streaming meanshift [9]

with 10 frames in the stream. To reproduce the results we

use the code and parameters provided by the authors of [16].

In Fig. 7 we show that our method obtains comparable

performance to s-o-a methods, even to GBH when process-

ing the entire videos offline. Our algorithm obtains higher

performance than the online (t = 1) version of GBH and

GB. It is also orders of magnitude faster than all previous

2Evaluation code and dataset available at

http://www.cse.buffalo.edu/∼jcorso/r/supervoxels/
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Figure 8. Evolution of superpixel metrics as a function of the

amount of randomization introduced in Eq. 5.

methods, being able to run at 30 frames per second on a

single CPU, in contrast to StreamGBH t = 10, which takes

4 seconds per image.

6.2. Evaluation of Randomized SEEDS

We evaluate the accuracy of the randomized superpixel

samples by analyzing the effect of different levels of ran-

domization added in Eq. (5). We use the BSD bench-

mark [2] for evaluating Randomized SEEDS on still im-

ages, and the Chen benchmark [3] on video. We use the

standard metrics, which are 2D Undersegmentation Error,

2D Boundary Recall, and 2D Segmentation Accuracy for

still images, and 3D Undersegmentation Error, 3D Bound-

ary Recall and Explained Variation for video. For details

about these metrics we refer to the supplementary material.

We evaluate how the accuracy changes with different lev-

els of randomization. We evaluate the amount of variation

from a SEEDS sample without randomization. The amount

of variation is computed by matching each superpixel with

its closest counterpart, and summing the areas that do not

overlap, normalized by the image size. The result of this

experiment is shown in Fig. 8.

In both cases (still images and video), a variation be-

tween samples of about 20-30% per frame can be induced

without significantly affecting the accuracy of the superpix-

els. Note that the amount of variation grows faster in videos

because it is propagated from the first frame of the video

until the end.

6.3. Evaluation of Video Objectness

We report results of the video objectness measure on

temporal windows to showcase the advantages of random-

ized SEEDS on video. We also report results of objectness

on still images using our objectness measure without tem-

poral propagation. This allows for comparison to the s-o-a

objectness methods in still images. In all the experiments,

we use 5 samples of the randomized SEEDS, and a 4-out-

of-5 criterion to define a valid intersection of the boundaries

to make O(i) = 1, which we observed it is a good compro-

mise between accuracy and efficiency.

Objectness in still images. We report results of the ob-

jectness measure on PASCAL VOC07 [4]. We use all the

4952 images of the test split, including all the objects (also

the ones considered ’difficult’). We report the detection rate

versus number of windows, using the PASCAL criteria of

50% overlap. We use NMS sampling to select the best 1000

bounding boxes according to the score, following the same

procedure as in [1]. We use our score with the randomized

SEEDS to measure the objectness in still images, without

temporal propagation. In this way, we are able to compare

it to s-o-a objectness measures [1, 11, 6, 14].

As baselines, we use the output of boundary detectors,

instead of using randomized SEEDS, to compute our ob-

jectness score in still images. We use the Canny boundary

detector, which is very fast to compute, and the gPb bound-

ary detector [2], which is computationally very expensive,

but is the s-o-a in boundary detection. We also show the

result when only using only 1 sample of SEEDS.

The results for these baselines are shown in Fig. 9a. The

objectness measure based on randomised SEEDS with 5
samples outperforms the one computed using only one sam-

ple, which emphasises the usefulness of using Randomized

SEEDS. Also, it outperforms Canny edge detector in the

same score. It has comparable performance to using gPb

boundary detector, while being orders of magnitude faster.

In Fig. 9b there are the results compared to s-o-a object-

ness measures in still images. It shows that our objectness

method is competitive with the s-o-a, while being an order

of magnitude faster. Also note that the presented objectness

measure only uses superpixels, while the others rely on ad-

ditional cues (e.g. saliency). The presented method takes

0.39 seconds per image using a single CPU, while the s-o-

a, i.e. [1], takes 4 seconds for a similar performance.

Video Objectness. We report results for our video object-

ness score using the Chen dataset [3] where we manually

annotated object bounding boxes in the video sequences. In

the video case, a stricter 50% criterion is used over the en-

tire bounding box tube: the temporal window must overlap

at least 50% with the ground truth over the entire shot of the

video. In the experiments the shot length is set to 25 frames.

As these temporal objectness windows are presented as

a novel concept, we compare our method to some baselines.

To show the usefulness of Randomized SEEDS in video, we

compare the result with using only 1 sample. Additionally,

to show the usefulness of the video objectness score (noted

as 3D edge in the figure), we compare with a method that

uses only propagation. This baseline computes the object-

ness score in the first frame and then propagates the win-

dow using the video superpixels. This means the ranking of

the windows is static through the entire sequence. This is

equivalent to taking the method for static images followed

by label propagation. In Fig. 9c we show that using the
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Figure 9. Comparison of the objectness measure with sampling superpixels on PASCAL VOC07 to (a) baselines, (b) s-o-a, and (c) evalua-

tion of video objectness on the Chen dataset.

Figure 10. Example of the highest ranked temporal window ren-

dered at different frames in the video.

video objectness score (3D edge) there is an improvement

in accuracy because the score is updated over time. Also,

we can see that using multiple samples has a clear advan-

tage, at more than double the performance. It is interesting

to note that the 1-sample-version benefits much more from

the video objectness score than the 5-sample-version. The

reason why is that the video objectness score can be seen

as a form of multiple samples as well: the score is the sum

over 25 samples in time.

In the case of 5 samples and 1000 temporal windows,

the presented method is able run at 0.17 seconds per frame:

5 × 0.03s for the superpixel samples, 10−5s for the score

computation (0.01 in the first frame), and 0.02s for the

bounding box propagation. Some example of temporal win-

dows are shown in Fig. 10.

7. Conclusions
In this paper we have introduced a novel online video

superpixel algorithm that is able to run in real-time, with

accuracy comparable to offline methods. To achieve this,

we have introduced novel concepts for temporal propaga-

tion, termination and creation of superpixels in time, using

hierarchical block sizes and temporal histograms. We have

demonstrated a new capability of our superpixel algorithm

by efficiently extracting multiple diverse samples of super-

pixels. This allowed us to introduce a new, highly efficient

objectness measure, together with its extension to video ob-

jectness. It enables an efficient online selection of tempo-

ral windows (tubes of bounding boxes) that contain object

candidates. Finally, our experiments have shown that both

the video superpixel and objectness algorithms match s-o-

a offline methods in terms of accuracy, but at much higher

speeds.
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