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Abstract

Representing the raw input of a data set by a set of rele-
vant codes is crucial to many computer vision applications.
Due to the intrinsic sparse property of real-world data, dic-
tionary learning, in which the linear decomposition of a
data point uses a set of learned dictionary bases, i.e., codes,
has demonstrated state-of-the-art performance. However,
traditional dictionary learning methods suffer from three
weaknesses: sensitivity to noisy and outlier samples, dif-
ficulty to determine the optimal dictionary size, and incapa-
bility to incorporate supervision information. In this paper,
we address these weaknesses by learning a Semi-Supervised
Robust Dictionary (SSR-D). Specifically, we use the ℓ2,0+ -
norm as the loss function to improve the robustness against
outliers, and develop a new structured sparse regularization
to incorporate the supervision information in dictionary
learning, without incurring additional parameters. More-
over, the optimal dictionary size is automatically learned
from the input data. Minimizing the derived objective func-
tion is challenging because it involves many non-smooth
ℓ2,0+ -norm terms. We present an efficient algorithm to solve
the problem with a rigorous proof of the convergence of the
algorithm. Extensive experiments are presented to show the
superior performance of the proposed method.

1. Introduction

A crucial part of many computer vision problems is rep-
resenting the raw input in terms of a set of codes, or refined
features, which can capture the aspects of the input exam-
ples that are relevant to the tasks of interest, such as classifi-
cation, ranking, tagging, etc. Compared to the raw features,
these refined features are often more representative and dis-
criminative with lower dimensionality, thus can potentially
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make the learning tasks easier to deal with and reduce the
computational cost. For example, in image tagging, instead
of using the raw pixel-wise features, semi-local or patch-
based features, such as SIFT and geometric blur, are usually
more desirable to achieve better performance. In practice,
finding a set of compact features bases, also referred to as
dictionary, with enhanced representative and discriminative
power, plays a significant role in building a successful com-
puter vision system. In this paper, we explore this impor-
tant problem by proposing a novel formulation and its solu-
tion for learning Semi-Supervised Robust Dictionary (SSR-
D), where we examine the challenges in dictionary learning,
and seek opportunities to overcome them and improve the
dictionary qualities.

1.1. Challenges in Dictionary Learning

Recent researches [1, 8] have shown that the linear de-
composition of a signal using a few atoms of a learned dic-
tionary, instead of a predefined one, usually leads to state-
of-the-art results in a number of computer vision applica-
tions, such as image annotation [3], face recognition [18],
texture classification [10, 9], and many other similar recog-
nition tasks. Although a variety of aspects of dictionary
learning have been studied by these prior studies, there still
remain three following challenges that hinder the further use
of dictionary learning to solve practical problems.

Robustness against outlier samples. Most, if not all, ex-
isting dictionary learning algorithms, e.g., [8, 10, 9], rou-
tinely used the squared ℓ2-norm as loss function to mea-
sure the reconstruction errors in their optimization objec-
tives. Same as other least square minimization based algo-
rithms in data mining and machine learning, such dictionary
learning methods are sensitive to noisy and outlier train-
ing samples. Due to the recent explosion of digital media
and insufficient human annotations, outliers are abundant in
real-world image and video data sets. Therefore, a dictio-
nary robust against noisy and outlier samples is important

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.146

1145

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.146

1145



for achieving good performance in contemporary real-world
applications.

Optimal size of a compact dictionary. In traditional sparse
learning, motivated by compressed sensing [6], dictionaries
are always designed to be over-complete [5]. However, the
number of the underlying patterns of most real world data
is usually small. Consequently, from information theory
perspective, many basis vectors in the dictionary are redun-
dant, which are detrimental to the subsequent sparse solver.
Moreover, existing methods usually pre-specify the dictio-
nary size using either heuristics or prior knowledge before
learning, whereas a principled way to determine the optimal
dictionary size with respect to a specific input data set is sel-
dom studied. Thus, learning a compact and efficient dictio-
nary with automatically determined optimal dictionary size
is highly desirable in practice.

Incorporating supervision information. Traditional
sparse learning [5] and dictionary learning [8] are designed
for a set of signals without human annotations, therefore
supervision information are not used even when it is avail-
able. In order to make use of the prior labeling knowledge
to improve the discriminativity of the learned dictionary,
several recent studies [18, 10, 9] have made attempts to
incorporate supervision information via additional regular-
ization terms to the original dictionary learning objectives.
Despite their successful empirical results, additional terms
introduce additional parameters, which inevitably make the
corresponding learning models less tractable and harder to
fine tune. Therefore, taking advantage of supervision in-
formation contained in the training data without incurring
extra parameters and keep the learning model compact is
another important practical issue in designing an effective
dictionary.

1.2. Our Contributions

Among the above three challenges in dictionary learning,
the first two are rarely addressed in the literature. Although
the third one has been studied in previous works, as pointed
out, drawbacks exist which hinder their practical applica-
bility. In this paper, we propose a novel Semi-Supervised
Robust Dictionary (SSR-D) learning method to simultane-
ously address these three challenges, which is interesting
from a number of aspects as following.

∙ We address the dictionary robustness problem by using
a new ℓ2,0+ -norm loss function, which is a generaliza-
tion of traditional ℓ2,1-norm loss function [11, 4], yet
more robust against noisy and outlier training samples.

∙ We design a data adaptive dictionary by imposing
structured sparsity on the data representation coeffi-
cients to automatically select prominent dictionary ba-
sis vectors, such that the optimal dictionary size is
learned from input data in a principled way and no

heuristic pre-specification is required. Mathematically,
instead of using the traditional ℓ2,1-norm regulariza-
tion to impose structured sparsity, we use the ℓ2,0+ -
norm regularization, which can more closely approxi-
mate ℓ2,0 constraint to better select dictionary bases.

∙ By further developing the structured sparse regulariza-
tion for data adaptation, the supervision information of
a classification task is gracefully incorporated without
incurring additional parameters. Moreover, our new
formulation can naturally exploit both labeled and un-
labeled data, which makes it a semi-supervised method
to achieve better classification performance.

∙ Because we use multiple terms of ℓ2,0+ -norms in both
the loss function and the regularization, the proposed
objective is highly non-smooth therefore difficult to
solve in general. We present an efficient algorithm
with a rigorous proof of its convergence.

∙ We conduct extensive empirical evaluations and ap-
ply the proposed SSR-D method in several real world
applications, where the promising results demonstrate
the effectiveness of the proposed method.

2. Learning a Semi-Supervised Robust Dictio-
nary

In this section, we gradually develop our objective to
learn a semi-supervised robust dictionary, followed by an
efficient algorithm to optimize the proposed objective with
a rigorous proof of its convergence. Finally, we describe the
classification rules using the learned dictionaries.

Notations and definitions. Throughout this paper, we write
matrices as bold uppercase letters and vectors as bold low-
ercase letters. Given a matrix M = [𝑚𝑖𝑗 ], its 𝑖-th row and
𝑗-th column are denoted as m𝑖 and m𝑗 , respectively.

Given 𝑝 > 0, the ℓ𝑝-norm1 of the vector v ∈ ℝ
𝑛 is de-

fined as ∥v∥𝑝 = (
∑𝑛

𝑖=1 ∣𝑣𝑖∣𝑝)
1
𝑝 . The ℓ0-norm of the vector

v ∈ ℝ
𝑛 is defined as ∥v∥0 =

∑𝑛
𝑖=1 ∣𝑣𝑖∣0, which counts the

non-zero entries of v.2

The Frobenius norm of the matrix M is denoted as
∥M∥F, and the ℓ2,1-norm (also called as ℓ1,2-norm in
some research papers) of M is defined as ∥M∥2,1 =∑

𝑖

√∑
𝑗 𝑚

2
𝑖𝑗 =

∑
𝑖

∥∥m𝑖
∥∥
2
. Given 𝑟 > 0 and 𝑝 > 0,

the ℓ2,1-norm can be generalized to ℓ𝑟,𝑝-norm as ∥M∥𝑟,𝑝 =(∑
𝑖

(∑
𝑗 ∣𝑚𝑖𝑗 ∣𝑟

) 𝑝
𝑟

) 1
𝑝

, which is a valid norm because it

1When 𝑝 ≥ 1, ∥v∥𝑝 =
(∑𝑛

𝑖=1 ∣𝑣𝑖∣𝑝
) 1

𝑝 strictly defines a norm that
satisfies the three norm conditions, while it defines a quasinorm when 0 <
𝑝 < 1. Because the mathematical formulations and derivations in this
paper equally apply to both norm and quasinorm, we do not differentiate
these two concepts for notation brevity.

2Strictly speaking, ℓ0-norm is not valid norm, the term “norm” used
here is for convenience.
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satisfies the three norm conditions [11]. Particularly, in this
paper, when 𝑟 = 2 and 𝑝 → 0, we refer to the ℓ𝑟,𝑝-norm of
an input matrix as its ℓ2,0+ -norm.

2.1. Sparse Coding via ℓ0+-norm Minimization

Traditional sparse coding tasks deal with the problem to
represent an input vector (e.g., the vector representation of
an input image) approximately as a weighted linear combi-
nation of a small number of “basis vectors” (also called as
“codewords” in some literature). Concretely, given an in-
put signal x ∈ ℝ

𝑑 and a fixed dictionary consisting of 𝑟
basis vectors D = [d1, . . . ,d𝑟] ∈ ℝ

𝑑×𝑟 (allowing 𝑟 > 𝑑
to make the dictionary over-complete), the task is to learn a
new representation a ∈ ℝ

𝑟 of the signal x by minimizing
the following objective [14, 1]:

𝐽0 (a) = ∥a∥0 , 𝑠.𝑡. x = Da . (1)

Because minimizing ℓ0-norm is a combinatorial integer op-
timization problem, solving the problem in Eq. (1) is NP-
hard in general. To tackle this, in practice a is often learned
by minimizing the following objective [14, 8, 10]:

𝐽1 (a) = ∥x−Da∥22 + 𝜆 ∥a∥1 , (2)

where 𝜆 > 0 is a tradeoff parameter to balance the rela-
tive importance of the reconstruction error and the sparsity
of the learned coefficients. When the input data satisfy the
restricted isometry property [5, 14], the ℓ1-norm regular-
ization in Eq. (2) approximates the ℓ0-norm constraint in
Eq. (1). As a result, the learned a is sparse with very few
non-zero coefficients [5, 14].

Although we can obtain the results by solving Eq. (2),
ideally a better approximation to the ℓ0-norm constraint in
Eq. (1) is to use the ℓ𝑝-norm regularization with a very small
𝑝 close to 0. Thus we minimize the following objective:

𝐽𝑝 (a) = ∥x−Da∥22 + 𝜆 ∥a∥𝑝𝑝 . (3)

Obviously, when 𝑝 = 1 Eq. (3) reduces to Eq. (2). It can
also be easily verified that, the smaller the value of 𝑝 is, the
closer ∥a∥𝑝 is to ∥a∥0. When 𝑝→ 0, ∥a∥𝑝 → ∥a∥0, there-
fore 𝐽𝑝 is able to better approximate 𝐽0 than 𝐽1 in terms of
objective value, and could lead to a more sparse a given the
same 𝜆. Note that, when 0 < 𝑝 < 1, 𝐽𝑝 is quasi-convex,
therefore seeking a global optimal solution is still feasible.
In this work, we use Eq. (3) for sparse coding and refer to
it as ℓ0+ -norm minimization problem because we set the
value of 𝑝 as a small constant that is very close to 0.

Given a data set X = [x1, . . . ,x𝑛] ∈ ℝ
𝑑×𝑛 of 𝑛 train-

ing samples
{
x𝑖 ∈ ℝ

𝑑
}𝑛

𝑖=1
, and its sparse coefficient matrix

A = [a1, . . . ,a𝑛] ∈ ℝ
𝑟×𝑛 where a𝑖 ∈ ℝ

𝑟 is the sparse rep-
resentation of x𝑖 with respect to a specific dictionary. We

can learn A by minimizing the following objective:

𝐽 ′
𝑝 (A) =

𝑛∑
𝑖=1

(
∥x𝑖 −Da𝑖∥22 + 𝜆 ∥a𝑖∥𝑝𝑝

)

= ∥X−DA∥2F + 𝜆 ∥A∥𝑝𝑝,𝑝 .

(4)

2.2. Learning Robust Dictionary via ℓ2,0+-norm
Loss Function

In Eqs. (1–4), the dictionary D and its basis vectors in
the learning objectives are assumed to be fixed. Recently,
the advances in sparse coding have shown that linearly de-
composing a signal using a few atoms of a learned dictio-
nary instead of a predefined one usually leads to state-of-
the-art performance for a number of practical computer vi-
sion applications [7, 13, 10, 15]. Specifically, we can jointly
learn the dictionary D and the sparse representations A
from the input signals by minimizing the following objec-
tive [8, 13, 10]:

𝐽 ′
D (D,A) = ∥X−DA∥2F + 𝜆 ∥A∥1,1 ,
𝑠.𝑡. ∥d𝑗∥2 ≤ 1, ∀ 1 ≤ 𝑗 ≤ 𝑟 ,

(5)

where the constraints on the ℓ2-norms of the basis vectors
are used to avoid degenerate solutions, because the recon-
struction errors in the first term of Eq. (5) are invariant
to simultaneously scaling D by a scalar and A by its in-
verse. For notation brevity, we denote the feasible domain
of ∥d𝑗∥2 ≤ 1, ∀ 1 ≤ 𝑗 ≤ 𝑟 as 𝒞 in the sequel of this paper.

Same as in Section 2.1, to achieve better sparsity, we
learn the dictionary by minimizing the following objective:

𝐽D (D,A)
D∈𝒞

= ∥X−DA∥2F + 𝜆 ∥A∥𝑝𝑝,𝑝 . (6)

Again, when 𝑝 = 1 Eq. (6) is reduced to Eq. (5).
In the first term of Eq. (6) the objective 𝐽D uses squared

ℓ2-norm to measure reconstruction errors, therefore same as
other least square optimization objectives in machine learn-
ing and data mining, 𝐽D is sensitive to noisy and outlier
training samples. Because dictionary learning is typically
performed on data sets with large sample sizes where out-
lier samples are inevitable by nature, the learned dictionary
could be seriously biased. Therefore, robustness against
outlier training samples needs to be taken into account in
dictionary learning for its practical use.

A widely used remedy in statistical learning to address
outliers is to use not-squared ℓ2-norm reconstruction error
[11, 16], which minimizes the following objective:

𝐽 ′
R-D (D,A)

D∈𝒞
=

𝑛∑
𝑖=1

(
∥x𝑖 −Da𝑖∥2 + 𝜆 ∥a𝑖∥𝑝𝑝

)
(7)

where the reconstruction error ∥x𝑖 −D𝜶𝑖∥2 is not squared,
thus outliers have less influence than those in Eq. (6). How-
ever, when the number of noisy data samples is big or some
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outlier data samples are deviated very far from the true data
distribution, a more robust loss function is desired. Mo-
tivated by the previous ℓ𝑝-norm regularization to impose
sparsity, we consider to use the ℓ𝑝-norm to measure the re-
construction errors, by which we minimize the following
objective:

𝐽R-D (D,A) =
𝑛∑

𝑖=1

(
∥x𝑖 −Da𝑖∥𝑞2 + 𝜆 ∥a𝑖∥𝑝𝑝

)

=
∥∥∥(X−DA)𝑇

∥∥∥𝑞

2,𝑞
+ 𝜆 ∥A∥𝑝𝑝,𝑝 , 𝑠.𝑡. D ∈ 𝒞 .

(8)

Obviously, the smaller the value of 𝑞 is, the less impact the
outlier samples have. Again, when 𝑞 = 1, 𝐽R-D degenerates
to 𝐽 ′R-D. Empirically, we select a small 𝑞 that is close to
0, therefore we call the measurement of the reconstruction
errors defined in the first term of Eq. (8) as ℓ2,0+ -norm loss
function, which is more robust to outliers than both squared
Frobenius norm loss function and ℓ2,1-norm loss function.

2.3. Learning Adaptive Dictionary

Compared to the standard dictionary learning objective
in Eq. (5), our new objective 𝐽R-D in Eq. (8) has better spar-
sity and improved robustness against noisy and outlier train-
ing samples. However, same as 𝐽 ′D in Eq. (5), 𝐽R-D in Eq. (8)
suffers from a critical problem that can hinder its practical
use. In standard dictionary learning settings, because we
usually do not know the optimal dictionary size in a priori
and the dictionary is typically designed to be over-complete,
many of the basis vectors in the learned dictionary D are
redundant, which makes the computation to obtain sparse
representation for subsequent unseen data computationally
inefficient. Therefore, selecting only the most relevant dic-
tionary bases by pruning the redundant ones is of essential
use to reduce the computational load for practical applica-
tions. To this end, we consider to learn a compact dictionary
that is adaptive to input data.

Due to the flat nature of the ℓ1,1-norm regularization in
Eq. (5) and the ℓ𝑝,𝑝-norm regularization in Eq. (8), all the
basis vectors in the learned dictionary D are evenly treated
and used in subsequent signal representations. However,
because the underlying high-level patterns of input signals
are not known beforehand, the dictionary may contain re-
dundancy. Moreover, the dictionary size has to be spec-
ified before learning, whereas how to determine the opti-
mal dictionary size in a principled way is rarely studied in
literature. To address the both issues, we propose to en-
force structured sparsity on A using ℓ2,1-norm regulariza-
tion [12, 2]. As a result, the dictionary size is automatically
determined by the learned A and irrelevant basis vectors are
pruned. Specifically, we learn D and A from X by mini-
mizing the following objective:

𝐽RA-D (D,A)
D∈𝒞

=
∥∥∥(X−DA)𝑇

∥∥∥𝑞

2,𝑞
+ 𝜆 ∥A∥2,1 . (9)

Following the same analysis before, when 0 < 𝑝 < 1, ℓ2,𝑝-
norm of a given input matrix is closer to its ℓ2,0-norm than
ℓ2,1-norm. As a result, ℓ2,𝑝-norm regularization could better
approximate ℓ2,0-norm constraint to select dictionary bases,
by which we minimize the following objective:

𝐽RA-D (D,A)
D∈𝒞

=
∥∥∥(X−DA)𝑇

∥∥∥𝑞

2,𝑞
+ 𝜆 ∥A∥𝑝2,𝑝 . (10)

In Eq. (10), the ℓ2,𝑝-norm regularization term ∥A∥2,𝑝
penalizes all 𝑛 representation coefficients (i.e., all en-
tries in a𝑖) corresponding to one single basis vector
of D as a whole, and compute the ℓ𝑝-norm of a =[∥∥a1∥∥

2
, . . . , ∥a𝑟∥2

]𝑇
. As a result, when 𝑝 < 2, sparsity is

conferred on a, and the basis vectors in D corresponding to
the non-zero entries of resulted a are automatically selected
for succeeding data representation. To be more precise, let

𝒟X =
{
d𝑖

∣∣∣ ∥∥∥a𝑖
∥∥∥
2
> 0

}
, (11)

we construct DX ∈ ℝ
𝑑×∣𝒟X∣ by using all d𝑖 ∈ 𝒟X as its

columns. Apparently, the dictionary size ∣𝒟X∣ is learned
from the input data X, but not by pre-specification as in
previous works. Because 𝒟X thereby DX is specific to in-
put data X, together with its robustness, we call DX as the
learned Robust and Adaptive Dictionary (RA-D).

Note that, because DX is a subset of D, we call D as
the super-dictionary, whose size has to be specified before-
hand, same as prior studies. However, as shown later in Sec-
tion 3.2, the performance of data representation and classifi-
cation using DX is considerably stable in a very large range
of the size of D.

2.4. Learning Semi-Supervised Dictionary

Because incorporating the supervision information to
learn a discriminative dictionary usually improves the per-
formance of subsequent classifications [10, 9, 3, 18], we
further develop the 𝐽RA-D in Eq. (9) to take advantage of la-
bel information of an input data set. Different from existing
works that incorporate label information by an additional
term, we make use of the structural sparsity on the repre-
sentation coefficient matrix A, such that no extra parameter
is required and our model is easier to fine tune.

Given a classification task with 𝐾 classes, besides the
input data {x𝑖}𝑛𝑖=1, we also have their associated class la-
bels. Let the binary vector y𝑖 ∈ {0, 1}𝐾 represent the la-
bels attached to x𝑖, we write Y = [y1, . . . ,y𝑛]

𝑇 , such that
𝑦𝑖𝑘 = 1 if x𝑖 belongs to the 𝑘-th class, and 0 otherwise. The
goal of the classification task is to learn from {x𝑖,y𝑖}𝑛𝑖=1 a
function that is able to predict labels for unseen data points.

For convenience, we write X𝑘 ∈ ℝ
𝑑×𝑛𝑘 as the data

matrix of the 𝑘-th class consisting all of its 𝑛𝑘 training
data points. We also write X0 as the unlabeled data ma-
trix, whose columns are the unlabeled data points. We
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denote X̃ = [X0, . . . ,X𝐾 ]. Similarly we denote Ã =

[A0, . . . ,A𝐾 ]. Thus, Ã is the sparse coefficient matrix cor-
responding to X̃, and A𝑘 is the coefficient matrix for the
data points belonging to the 𝑘-th class and A0 is that for
unlabeled data. We learn D and Ã from X̃ by minimizing
the following objective:

𝐽SSR-D

(
D, Ã

)
D∈𝒞

=

∥∥∥∥
(
X̃−DÃ

)𝑇
∥∥∥∥
𝑞

2,𝑞

+ 𝜆
𝐾∑

𝑘=0

∥A𝑘∥𝑝2,𝑝 , (12)

Upon solution, let 𝒟𝑘 =
{
d𝑖 ∣

∥∥a𝑖𝑘∥∥2 > 0
}

where a𝑖𝑘 is
the 𝑖-th row of A𝑘, we construct the 𝑘-th class specific dic-
tionary D𝑘 ∈ ℝ

𝑑×∣𝒟𝑘∣ using all d𝑖 ∈ 𝒟𝑘 as its columns.
Obviously, the resulted D𝑘 is adaptive to both input data
and class supervision information of the 𝑘-th class. Again,
the dictionary size of D𝑘 is automatically determined by
∣𝒟𝑘∣. Because we learn the dictionaries from both the la-
beled and unlabeled data, we call D𝑘 (1 ≤ 𝑘 ≤ 𝐾) learned
by Eq. (12) as the proposed Semi-Supervised Robust Dictio-
nary (SSR-D). Exploiting both unlabeled and labeled data
in a unified framework without incurring extra parameters
is an important advantage of the proposed method.

2.5. Optimization Algorithm

Because the ℓ2,𝑝-norm function is non-smooth, the ob-
jective 𝐽SSR-D in Eq. (12) is highly non-smooth due to in-
volving 𝐾 + 2 ℓ2,𝑝-norm terms. Thus, minimizing 𝐽SSR-D

is difficult in general by existing algorithms. To solve the
problem, we derive an efficient algorithm as summarized in
Algorithm 1 and its convergence is guaranteed by the fol-
lowing theorem (the proof is skipped due to space limit and
will be provided in the extended version of the paper).

Theorem 1 The algorithm decreases the objective value in
Eq. (12) in each iteration.

Because 𝐽SSR-D in Eq. (12) is obviously lower bounded by
0, Theorem 1 guarantees the convergence of Algorithm 1.

2.6. Classification Using Learned Dictionaries

Given an unlabeled data point x, and the learned dictio-
naries D𝑘 (1 ≤ 𝑘 ≤ 𝐾), we may compute the sparse repre-
sentation of x with respect to the 𝑘-th class, a(𝑘), by solving
the following problem:

min
a(𝑘)

∥∥∥x−D𝑘a
(𝑘)

∥∥∥2

2
+ 𝜆

∥∥∥a(𝑘)
∥∥∥
1

. (13)

Thus the reconstruction error of x with respect to the 𝑘-th
class is computed as:

e(𝑘) =
∥∥∥x−D𝑘a

(𝑘)
∥∥∥
2

. (14)

Sorting e(𝑘), we can easily assign labels to x to the class
with minimum reconstruction error:

𝑙 (x) = argmin
𝑘

e(𝑘) . (15)

Algorithm 1: An efficient iterative algorithm to minimize
the objective value of Eq.(12).
Input: X̃ = [X1, . . . ,X𝐾 ] ∈ ℝ

𝑑×𝑛̃.

1. Initialize diagonal matrices U(𝑡) ∈ ℝ
𝑛̃×𝑛̃ and

V
(𝑡)
𝑘 (1 ≤ 𝑘 ≤ 𝐾) ∈ ℝ

𝑟×𝑟 . Initialize Ã(𝑡) ∈ ℝ
𝑟×𝑛̃.

while not converge do

2. Calculate X̂ = X̃(U(𝑡))
1
2 and Â = Ã(𝑡)(U(𝑡))

1
2 , and compute:

D
(𝑡+1)

= arg min
D∈𝒞

∥∥∥(X̂−DÂ)
𝑇
∥∥∥2

𝐹
. (16)

3. For each 𝑘(1 ≤ 𝑘 ≤ 𝐾), calculate the 𝑖-th column of A(𝑡+1)
𝑘 by

(U𝑘)
(𝑡)
𝑖𝑖

[
(U𝑘)

(𝑡)
𝑖𝑖

(
D

(𝑡+1)
)𝑇

D
(𝑡+1)

+ 𝜆V
(𝑡)
𝑘

]−1

(D
(𝑡+1)

)
𝑇
(X𝑘)𝑖 ,

(17)

and construct Ã(𝑡+1) by A
(𝑡+1)
𝑘 (1 ≤ 𝑘 ≤ 𝐾).

4. Calculate the diagonal matrix U(𝑡+1), where the 𝑖-th diagonal element

is 𝑞
2

∥∥∥x̃𝑖 −D(𝑡+1)ã
(𝑡+1)
𝑖

∥∥∥𝑞−2

2
.

5. For each 𝑘(1 ≤ 𝑘 ≤ 𝐾), calculate the diagonal matrix V
(𝑡+1)
𝑘 , where

the 𝑖-th diagonal element is 𝑝
2

∥∥∥∥(A(𝑡+1)
𝑘

)𝑖
∥∥∥∥𝑝−2

2

.

Output: D ∈ ℝ
𝑝×𝑟 and Ã = [A1, . . . ,A𝐾 ] ∈ ℝ

𝑟×𝑛̃.

3. Experimental Results

In this section, we experimentally evaluate a variety of
aspects of the proposed methods, where we experiment with
following six benchmark data sets: AT&T data set, USPS
data set, BinAlpha data set, Reuters data set, TDT data
set, TRECVID 2005 data set, among which the first five
data sets are single-label data sets whilst the last one is a
multi-label data set.

3.1. Improved Data Representation Capability via
ℓ2,0+-norm Loss Function and Regularization

Because an important contribution of this paper is to use
the ℓ2,0+ -norm loss function and regularization in the dic-
tionary learning objectives to obtain a dictionary with better
sparsity and improved robustness against outlier data sam-
ples, we first evaluate its usefulness.

Experimental setups. We experiment with the AT&T face
data set. Our goal is to cluster the face images, by which
we examine the data representation capability of the learned
dictionary when 𝑝 and 𝑞 in the proposed dictionary learn-
ing objectives vary in the range of 0.1 to 2. For simplicity,
we set 𝑝 = 𝑞 in our experiments. We set the size of the
super-dictionary D as 400, which is the total number of the
images in the data set. In order to evaluate the data repre-
sentation capability of the learned dictionaries, we conduct
the experiment in an unsupervised way. Specifically, we do
not assign labels to the data points and conduct 𝐾-means
clustering on the learned data representations. We learn dic-
tionaries DX and the corresponding data representations A
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Figure 1. Clustering accuracy using the learned dictionary by the
proposed method vs. 𝑝 and 𝑞 (where 𝑝 = 𝑞) on the AT&T data set.

from an input data set by solving 𝐽RA-D in Eq. (9). For 𝐾-
means clustering, we set 𝐾 to be the true class numbers.
Through our preliminary studies, we fine tune the param-
eter 𝜆 of 𝐽RA-D method in Eq. (9) by searching the grid of{
10−5, 10−4, . . . , 104, 105

}
, and report the best results. We

vary the value of 𝑝 and 𝑞, and report the 𝐾-means clustering
accuracy using the learned representations A. We repeat the
experiment at each parameter setting for 50 times and report
the average clustering accuracy in Figure 1.

Experimental results. From Figure 1 we can see that,
smaller 𝑝 and 𝑞 lead to better clustering accuracy, i.e., the
dictionary learned with smaller 𝑝 and 𝑞 has better data rep-
resentation capability, which clearly confirms the correct-
ness to use ℓ2,0+ -norm loss function and regularization in
dictionary learning. Upon the results in Figure 1, we set
𝑝 = 𝑞 = 0.1 in all our following experiments.

3.2. Improved Data Representation Capability of
the Learned Adaptive Dictionary

Now we further evaluate the data representation capa-
bility of the learned adaptive dictionaries by the proposed
method on the three single-label image data sets: the AT&T
data set, the USPS data set and the BinAlpha data set.

Experimental setups. We use the same experimental set-
tings as in the previous subsection. We vary the size of the
super-dictionary, denoted as ∣D∣, and examine the learned
data adaptive dictionary size, denoted as ∣DX∣, and re-
port the 𝐾-means clustering accuracy using the learned
representations A. We also report the 𝐾-means cluster-
ing accuracy on the learned representations by the efficient
sparse coding (ESC) method [8], a baseline sparse learning
method, in which the dictionary size is specified as that of
∣D∣. The ESC method also has a parameter 𝛽 that acts same
as 𝜆 in our method, we thus fine tune it in the same range as
that for 𝜆, and report the best performance. We choose the
ESC method for comparison, because it is an unsupervised
dictionary learning method by directly solving its optimiza-
tion objective, similar to our 𝐽RA-D method but not robustify-
ing the reconstruction errors. The experimental results are
reported in Table 1, in which the accuracies of 𝐾-means

Table 1. 𝐾-means clustering accuracy using the sparse represen-
tations learned by the proposed 𝐽RA-D method and ECS method on
the three benchmark data sets.

∣D∣ ∣DX∣ Clustering Accuracy

Our method ESC 𝐾-means

AT&T
(40
classes)

400 77 0.782 0.776 0.691
300 76 0.771 0.737 –
100 73 0.768 0.705 –
50 47 0.715 0.658 –

USPS
(10
classes)

1000 38 0.656 0.631 0.605
500 37 0.651 0.622 –
100 33 0.643 0.591 –
50 30 0.630 0.526 –

BinAlpha
(26
classes)

500 67 0.496 0.477 0.421
200 63 0.488 0.442 –
100 61 0.472 0.401 –
50 44 0.431 0.367 –

clustering on the original data are also listed.

Experimental results. A first glance at the results in Ta-
ble 1 show that, the clustering accuracies using the sparse
representations learned by our method are consistently bet-
ter than those by ESC method, which validate the effective-
ness of the proposed method in terms of data representation.

Upon a more careful examination on the results, we
can see that, although the sizes of the pre-specified super-
dictionary D vary in a very large range, the sizes of the
learned data adaptive dictionaries DX remain considerably
stable. From this observation, we can draw a number of
interesting conclusions in the following.

First, when the size of the super-dictionary varies in a
rather big range, the clustering performance on the learned
representations of the data by our method does not fluctuate
too much. This confirms that the data representation power
of the learned dictionary is not heavily dependent on the
pre-specified size of the super-dictionary. In other words,
our method is able to automatically determine the optimal
compact dictionary bases.

Second, although the sample size of a real world data set
is large, the number of its underlying patterns may be small,
as revealed by ∣DX∣. This is consistent with the basic statis-
tical assumption and provides another evidence to support
the correctness of our model.

Third, our 𝐽RA-D method is able to capture the essential
patterns of an input data set. As can be seen, the sizes of the
learned data adaptive dictionaries ∣DX∣ are comparable to
the ground truth class numbers of all the three data sets.

Fourth, because our method automatically picks up the
most representative basis vectors from the learned super-
dictionary D and uses them to represent input data, as
long as the pre-specified super-dictionary size ∣D∣ is not
very small, clustering on the learned representations us-
ing the data adaptive dictionary DX by our method can
always achieve satisfactory accuracy. However, the clus-
tering accuracy on the data representations learned by the
ESC method degrades very quickly when the dictionary
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size decreases. This is because the representation power
of its learned dictionary generally depends on the number
of available basis vectors, which is also the reason why dic-
tionaries are usually designed to be over-complete in tradi-
tional sparse learning.

Finally, when the pre-specified size of the super-
dictionary is too small, e.g., 50 in either the AT&T data
set or the BinAlpha data set, the representation capability
of our method is also degraded. This again confirms that
real world data have certain inherent patterns and in sparse
learning the dictionary size should be greater than this in-
herent pattern number.

In summary, our method has demonstrated superior data
representation capability through data adaptation, which is
generally satisfactory in a variety of data conditions. Em-
pirically, when ∣D∣ ≥ 2𝐾, the subsequent classification ac-
curacy is generally satisfactory. Thus, in all our following
experiments, we set ∣D∣ = min {1000, 𝑛}.
3.3. Improved Classification Performance

Because making use of supervision information via en-
hanced data adaptation is an important advantage of the pro-
posed method, we evaluate it in classification tasks.

Experimental setups. We compare our methods against the
following most recent dictionary learning methods. For un-
supervised dictionary learning methods, we compare to the
two baseline methods including the K-SVD [1] method and
the efficient sparse coding (ESC) method [8]. For super-
vised dictionary methods, we compare to the discriminative
K-SVD (D-K-SVD) method [9], the supervised dictionary
learning (SDC) [10] method, and the group sparse coding
(GSC) [3] method. We implement these methods following
the details in their original papers and reference the algo-
rithms published by the authors. The parameters are fined
tuned according to their original papers. Once the sparse
representations of the input data are learned by these meth-
ods, support vector machine (SVM) is used for classifica-
tion. We use the LIBSVM3 package. Gaussian kernel is

employed, i.e., 𝒦 (x𝑖,x𝑗) = exp
(
−𝛾 ∥x𝑖 − x𝑗∥2

)
, where

the parameters 𝛾 and 𝐶 are fine tuned by searching the grid
of

{
10−5, 10−4, . . . , 104, 105

}
.

In order to evaluate the different components of the
proposed method, we implement two versions of our
method, i.e., unsupervised RA-D method in Eq. (9)
and semi-supervised SSR-D method in Eq. (12). The
parameter 𝜆 are again fine tuned in the range of{
10−5, 10−4, . . . , 104, 105

}
. Note that, our methods nat-

urally provide classification rules via reconstruction errors
as introduced in Section 2.6.

We conduct standard five-fold cross-validation on each
data set by compared methods, and report the average clas-

3http://www.csie.ntu.edu.tw/˜cjlin/libsvm/

Table 2. Comparison of the classification accuracies of the com-
pared methods on the five data sets. The results in the top part are
for classifications on the original data, while those in the bottom
part are for classification on noisy data (20% training samples are
incorrectly labeled to emulate noise).

Method AT&T USPS BinAlpha Reuters TDT2

K-SVD 0.748 0.636 0.481 0.701 0.715
ESC 0.779 0.658 0.491 0.746 0.726
D-K-SVD 0.773 0.679 0.502 0.751 0.764
SDL 0.784 0.706 0.511 0.880 0.861
GSC 0.797 0.715 0.505 0.878 0.864
RA-D 0.807 0.720 0.511 0.879 0.868
SSR-D 0.815 0.734 0.519 0.883 0.879

K-SVD 0.706 0.587 0.412 0.635 0.671
ESC 0.716 0.603 0.442 0.703 0.684
D-K-SVD 0.731 0.642 0.453 0.715 0.718
SDL 0.740 0.691 0.477 0.824 0.807
GSC 0.743 0.694 0.476 0.837 0.813
RA-D 0.793 0.707 0.503 0.861 0.854
SSR-D 0.803 0.715 0.507 0.861 0.856

sification accuracy of the five single-label data sets in the
top half of Table 2 and the average performances of the
multi-label TRECVID data set in the top half of Table 3.

In order to verify the robustness of our methods, for each
of the 5 trials we randomly select 20% training samples and
assign them with incorrect labels to emulate outliers. The
classification results on the noisy data are reported in the
bottom halves of Table 2 and Table 3.

Experimental results. From the results in Table 2 and Ta-
ble 3, our methods generally outperform other compared
methods, sometimes by a significant margin, providing con-
crete evidence of the effectiveness of our methods in classi-
fication. Moreover, our SSR-D method is consistently bet-
ter than its degenerated version of RA-D method, which is
consistent with their mathematical formulations, i.e. the for-
mer is unsupervised without incorporating label informa-
tion, while the latter is supervised and exploits the prior
training knowledge. This also confirms that our enhanced
data adaptation can improve the classification performance
by taking advantage of supervision information. Finally, the
classification performance of all the compared methods on
the noisy data is decreased compared to those on the orig-
inal clean data. However, the performance degradations of
our methods are rather small, or even nonexistent, firmly
supporting the usefulness of using the ℓ2,0+ -norm as the
loss function as in our optimization objectives. That is, our
methods are robust against noisy and outlier samples.

4. Conclusions

In this paper, we presented a novel dictionary learning
method to address two important seldom studied issues in
conventional sparse learning, i.e., dictionary robustness and
data adaptation. Different from existing dictionary learning
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Table 3. Classification performance (definitions of the performance metrics can be found in [17]) comparison on TRECVID 2005 data.
Top: on original clean data, bottom: on data with 20% noise added to training samples.

Methods Hamming loss ↓ One-error ↓ Coverage ↓ Rank loss ↓ Average precision ↑
K-SVD 0.183± 0.020 0.346± 0.034 1.034± 0.075 0.189± 0.016 0.472± 0.023
ESC 0.180± 0.018 0.349± 0.029 1.064± 0.084 0.181± 0.014 0.479± 0.026
D-K-SVD 0.146± 0.012 0.307± 0.024 0.942± 0.064 0.167± 0.013 0.501± 0.031
SDL 0.139± 0.011 0.308± 0.022 0.951± 0.058 0.162± 0.011 0.504± 0.029
GSC 0.145± 0.010 0.301± 0.019 0.966± 0.035 0.160± 0.017 0.509± 0.016
RA-D 0.137± 0.011 0.305± 0.018 0.971± 0.036 0.167± 0.016 0.511± 0.015
SSR-D 0.119± 0.009 0.275± 0.018 0.843± 0.013 0.141± 0.010 0.548± 0.032

K-SVD 0.201± 0.021 0.379± 0.031 1.312± 0.075 0.206± 0.019 0.437± 0.021
ESC 0.196± 0.019 0.368± 0.023 1.217± 0.091 0.206± 0.017 0.441± 0.022
D-K-SVD 0.181± 0.014 0.349± 0.028 1.173± 0.044 0.198± 0.017 0.462± 0.033
SDL 0.164± 0.012 0.334± 0.023 1.096± 0.061 0.187± 0.014 0.474± 0.022
GSC 0.168± 0.011 0.335± 0.020 1.048± 0.032 0.191± 0.018 0.481± 0.019
RA-D 0.148± 0.012 0.316± 0.017 1.001± 0.035 0.171± 0.015 0.503± 0.012
SSR-D 0.123± 0.008 0.281± 0.017 0.851± 0.013 0.169± 0.012 0.537± 0.030

methods that use squared ℓ2 loss function, we employed a
new ℓ2,0+ -norm loss function to measure the reconstruction
errors in our objectives, such that outlier samples have less
importance and our objectives are more robust. In addition,
instead of using additional terms to incorporate supervision
information, we exploited such information by data adapta-
tion via structural sparse regularization. This method does
not incur extra parameters, such that our learning model is
more stable and easier to fine tune. Due to the data adap-
tation nature, the dictionaries learned by our methods are
adaptive to not only the input data but also their class la-
bels, which improves the discriminativity of the learned dic-
tionaries and makes them more suitable for classification
tasks. Because we use ℓ2,0+ regularization to adaptively
select prominent basis vectors from a super-dictionary, the
optimal dictionary size is automatically learned from the in-
put data. An efficient algorithm to solve the objective was
described, together with the rigorous proof of its conver-
gence. We have evaluated several important aspects of the
proposed methods. Significantly improved experimental re-
sults in extensive empirical studies demonstrated the useful-
ness of the proposed methods.
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