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Abstract

Action recognition has often been posed as a classifi-
cation problem, which assumes that a video sequence only
have one action class label and different actions are inde-
pendent. However, a single human body can perform mul-
tiple concurrent actions at the same time, and different ac-
tions interact with each other. This paper proposes a con-
current action detection model where the action detection
is formulated as a structural prediction problem. In this
model, an interval in a video sequence can be described by
multiple action labels. An detected action interval is de-
termined both by the unary local detector and the relations
with other actions. We use a wavelet feature to represent
the action sequence, and design a composite temporal logic
descriptor to describe the action relations. The model pa-
rameters are trained by structural SVM learning. Given a
long video sequence, a sequential decision window search
algorithm is designed to detect the actions. Experiments
on our new collected concurrent action dataset demonstrate
the strength of our method.

1. Introduction
In the vision literature, action recognition is usually

posed as a classification problem, i.e, a classifier assigns

one action label to a video sequence [18]. However, action

recognition is more than a classification problem.

First, a single human body can perform more than one

actions at the same time. As Figure 1 shows, the person is

sitting on the chair, drinking with the right hand, and mak-
ing a call with the left hand, simultaneously. The three ac-

tions concurrently proceed forward in the time axis. In this

case, the video sequence in the concurrent time interval can

not be simply classified into one action class.

Second, multiple actions performed by one human body

are semantically and temporally related to each other, as is

shown in Figure 1. A person usually sits to type on key-
board, and rarely stand to type on keyboard. So the actions

sit and type on keyboard semantically advocate each other

while stand and type on keyboard are often exclusive. The

action turn on monitor occurs usually before the action type
on keyboard. Their locations and durations in the time ax-

is are closely related. We believe that such information of

action relations should play important roles in the action

recognition and localization.

We define the concurrent actions as the multiple actions

simultaneously performed by one human body. These ac-

tions can distribute in multiple intervals in a long video se-

quence, and they are semantically and temporally related to

each other. By concurrent action detection, we mean to rec-

ognize all the actions and localize their time intervals in the

long video sequence, as is shown in Figure 1.

In this paper, we propose a novel concurrent action de-

tection model (COA). Our model formulates the detection

of concurrent action as a structural prediction problem, sim-

ilar to the multi-class object layout in still image [5]. In this

formulation, the detected action instances are determined by

both the unary local detectors and the relations with other

actions. A multiple kernel learning method [2] is applied to

mining the informative body parts for different action class-

es. With the informative parts mining, the human body is

softly divided into the weighted parts which perform the

concurrent actions. The parameters of the COA model are

learned in the framework of structural SVM [17]. Given a

video sequence, we propose an online sequential decision

window search algorithm to detect the concurrent actions.

We collect a new concurrent action dataset for evalua-

tion. Our dataset contains 3D human pose sequences cap-

tured by the Kinect camera [14]. It includes 12 action class-

es, which are listed in Figure 1, and totally 61 long video

sequences. Each sequence contains many concurrent ac-

tions. The complex structures of the actions and the large

noise of the human pose data make the dataset challenging.

The experimental results on this dataset prove the strength

of our method.

2. Related Work
Our work is related to four streams of researches in the

literature.

(1) Action recognition and detection techniques have

achieved remarkable progress in recent years [6, 8, 18, 20].

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.389

3129

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.389

3136



drink
make a call

turn on monitor
type on keyboard

fetch water
pour water

press button
pick up trash

throw trash
bend down

sit
stand

video
sequence

drink

make a call

sit

make a call

stand

concurrent 
actions

time
Figure 1. The illustration of the concurrent actions. Each horizontal row corresponds to an action class. The small colorful blocks

correspond to the action intervals in the time axis.

Wang et al. [18] represented a 3D pose sequence by Fouri-

er features and mined the actionlet ensemble with multiple

kernel learning, which was then used to classify an new se-

quence. This method needs the video sequence to be pre-

segmented, and predicts one action class for each segment.

It is insufficient to interpret a video sequence with multi-

ple concurrent and dependent actions. Hoai and Torre [6]

trained an elaborate model to detect events in video before

the events ended. However, it is focused on the early de-

tection of an event and not applicable to detecting multiple

concurrent actions.

(2) Concurrent actions exist in the literatures of other

fields, like artificial intelligence [3, 12]. The work [12] rep-

resented the concurrent decision with a semi-Markov model

where plans were learned from concurrent actions. These

work are mainly for the robot planning, not for modeling

the visual concurrent actions as in computer vision.

(3) Temporal relations are used in some literatures to

facilitate the action modeling [1, 9, 10, 13, 16, 19]. The

work [9, 13] decomposed an high level activity into par-

tially ordered substructures which formed contexts of each

other. And the work [13] suggested the actions could occur

in parallel. However, they did not describe and learn the

relations between different actions in a unified framework.

Allen [1] introduced classical temporal logics to describe

the relations between actions, which were further applied

to representing the action structures and action detection in

[10]. These temporal logics are qualitative descriptions, like

before, meet, which are insufficient to describe complex re-

lations with different degrees of overlapping intervals.

(4) Structural prediction has been used for object de-

tection in still images. Desai et al. [5] modeled the multi-

class object layout (MCOL) as a structural prediction prob-

lem. They trained the model with the structural SVM learn-

ing (SSVM) [17]. Our model is inspired by the MCOL and

SSVM. But we modify and extend it to fit in with the motion

data. Actually, the problem of action detection in motion

data is more complex than the problem of object detection

in still image because the motion data always has more data

scales and more complex structures. Our COA model intro-

duces new formulations to overcome these challenges.

3. Concurrent Action Model
Suppose there are M overlapping action intervals in a

video sequence. These intervals are obtained by sliding the

local action detectors of all the 12 action classes along the

time axis in the video sequence, similar to the object de-

tection in image with sliding windows. The ith interval is

defined as di = [si, ei], where si and ei are respectively the

starting and ending time, as Figure 1 shows. xi is the feature

of the video clip in the interval di. yi ∈ Y is the action class

label of the interval di, whereY is the set of all action labels.

The entire video sequence is encoded as the M action inter-

vals, X = {xi|i = 1, ...,M}. Y = {yi|i = 1, ...,M} is

their label set. The score of interpreting the video sequence

X with labels Y is defined as

S(X,Y ) =
∑
i

ωT
yi
ρyi(xi) +

∑
(i,j)∈N

ωT
yi,yj

rij (1)

where i = 1, ..,M, j = 1, ...,M . ρyi(xi) is the local de-

tection model of the action yi. It is a 2-dimension vector

which encapsulates the local detection score and a constan-

t 1 to adjust the bias. ρyi
is related to the action class yi,

which suggests that different actions correspond to differ-

ent parts of the body. ωyi
is the parameter of the action yi.
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Figure 2. The wavelet feature of human action.

rij is the relation feature vector between the interval di
and the interval dj . ωyi,yj

is the relation parameter, which

encodes the location and semantic relations between action

classes yi and yj . (i, j) ∈ N means the interval di and

dj are neighbors. If the distance in the temporal axis be-

tween di and dj is smaller than a threshold, then di and dj
are neighbors of each other. The introduction of the neigh-

borhood system N indicates that an action in a sequence is

only related to the actions which are close to it. This is be-

cause a video sequence can be very long. With the increase

of the distance between two intervals, their dependent rela-

tions decrease.

The Eq.(1) is similar to the multi-class object layout

model (MCOL) [5] in still image. However, our Eq.(1) in-

troduces the neighborhood system into the structural predic-

tion and accommodates the motion sequence data. Actually,

our COA model is an extension of the MCOL model. If the

size of the neighborhood is infinite, the Eq.(1) becomes the

MCOL like in still image. If the size of the neighborhood is

infinitesimal, the Eq.(1) shrinks to a local classifier model.

The introduction of the neighborhood also raises the effi-

ciency of inference. We will elaborate it later.

3.1. Wavelet Feature and Local Detection ρyi
(xi)

In our work, the input human action data is the sequence

of 3D human poses which are estimated by the Kinect [14].

Each pose contains K 3D joint points of human body. A

human action sequence forms K trajectories, as is shown in

Figure 2. All the human poses are normalized by aligning

the torsos and the shoulders. The estimated pose data is ex-

tremely noisy, which makes it very hard to characterize the

action. It should be noted that though we use the 3D pose

sequence as input in this work, our COA model is applica-

ble in other sequence of human actions, like RGB video.

Wavelet was previously applied to representing the hu-

man motion feature [4, 11]. Inspired by them, we use

the wavelet to describe the trajectories of the difference

vectors between the 3D joints. These difference vectors

present strong discriminative ability for action recognition

[18]. Our objective is to extract robust and discriminative

features for the sequence clip in the interval [s, e]. At time

t, the relative location differences between the kth join-

t and all other joints are concatenated into a vector htk.

hk = {htk|t = s, ..., e} is the feature sequence of the kth

joint in the interval [s, e]. hk is a temporal signal in the in-

terval [s, e]. It is interpolated into 128 frames. We apply the

symlet wavelet transform to the interpolated hk, and keep

the first V wavelet coefficients as the action feature of the

kth joint, denoted as Hk. Then the sequence feature x of all

the joints on the human body is x = (H1, ..., HK).
With the wavelet feature x, the local action detection

model is ρyi
(xi) = (fyi

, 1), where fyi
is an action detector:

fyi
= βT

yi
x+ byi

(2)

The wavelet transform has the attribute of time-

frequency localization. It can extract the action’s tempo-

ral structure. Also, the wavelet transform is multiscale. It

can describe the action at different scales. Furthermore, by

keeping the first V wavelet coefficients, we can eliminate

the noise in the original pose data, which makes the action

description more robust.

3.2. Composite Temporal Logic Descriptor for rij

rij represents the temporal location of interval dj relative

to the interval di. In the famous work [1], Allen proposed 13

classical temporal relations between two intervals - before,
equal, meet, overlap, during, start, finish and their invers-

es. These relations are qualitative descriptions, which can-

not quantitatively describe the degree of temporal relations.

For example, the action press button and turn on monitor
both occur before the action type on keyboard. How do we

measure and distinguish these two before relations?

We design a novel quantitative descriptor - composite

temporal logic descriptor - to encode rij , as Figure 3 shows.

It is decomposed into three components rij = (rSij , r
C
ij , r

E
ij):

1) rSij , the location of dj relative to the start point of di;

2) rCij , the location of dj relative to the center point of di;

3) rEij , the location of dj relative to the end point of di.

The first component rSij encodes start relations between

two actions. For example, human usually bends down to

pick up trash. The action bend down and pick up trash al-

ways start simultaneously. So the action pick up trash is

closely related to the start of bend down. rCij encodes the

entire relative location of two intervals.

The third component rEij encodes the sequential relation

of two intervals. For example, the action throw trash always

occurs after the action pick up trash ends. So the action

throw trash is closely related to the end of pick up trash.

We define a histogram with 8 uniform bins to describe

the location of an interval relative to a time point. As Figure

3 shows, the 8 bins define 8 relations relative to the zero

point O in the center of the histogram, before-far, before-3,

before-2, before-1, after-1, after-2, after-3, after-far. The

length of the histogram is set as 4 times the length of the
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Figure 3. The composite temporal logic descriptor of dj relative

to di. The blue bar is the interval di. The red bar is the interval dj .

interval di, which normalizes the histograms corresponding

to different lengths of di.

To parameterize rSij , we align the zero point O of the

histogram to the start point of the interval di, as Figure 3

shows. We compute the duration of interval dj falling in

each bin of the histogram. The values of the bins before-
far and after-far are the durations of interval dj outside the

before-3 and after-3, respectively. These bin values are di-

vided by the length of interval dj to form the normalized

descriptor rSij . rCij and rEij are computed in a similar way

but by aligning the zero point O to the center and the end of

di, respectively.

Our descriptor decomposes the temporal relation into

three components, which makes it able to describe subtle

and complex temporal relations quantitatively. Because it

quantizes the duration of action interval, it also character-

izes the action’s duration information.

4. Learning

4.1. Mining Informative Parts with MKL

This subsection elaborates on how we learn the local ac-

tion detector fyi
= βT

yi
x + byi

by mining the informative

body parts for different actions. An action is usually re-

lated to some specific parts of human body. For example,

the action drink is mainly performed by the hand and arms.

The movements of other body parts, like legs and feet, are

less important to this action. So for a specific action, the

‘weight’ of each body part is different. We use a multiple

kernel learning (MKL) [2] method to automatically mine

the informative parts for each action class. For clarity, we

simplify yi, βyi , and byi as y, β, and b, respectively.

We introduce a weight vector α = (α1, ..., αK) for

each action class y, where K is the number of human

body joints, and αk ≥ 0 corresponds to the kth joint.

Each wavelet action feature x is decomposed into K blocks

x = (H1, ..., HK). The blockHk corresponds to the feature

of the kth joint. The parameter β is correspondingly decom-

posed into the same format blocks as x, β = (β1, ..., βK).
Such decomposition makes it possible to differentiate the

effects of different joints on the action y.

Suppose {(xl, zl)|l = 1, ..., L} are L training samples

for the action y, where zl is the label of xl. zl = 1 if xl is

the positive sample of y, otherwise zl = −1. Our goal is to

learn the parameters (α, β, b) of the action y. This problem

is formulated as a l1-norm multiple kernel learning [2]:

min
1

2
(
∑K

k=1
αk||βk||2)2 + C

∑L

l=1
ζl

w.s.t. αk ≥ 0, ζl ≥ 0, β, b

s.t. zl(β
Txl + b) ≥ 1− ζl, ∀l ∈ {1, ..., L}

(3)

This problem can be solved efficiently by the semi-infinite

linear program [15].

4.2. Learning with Max-Margin Optimization

Given N action sequences {Xn|n = 1, ..., N} and their

manually annotated structural labels {Yn|n = 1, ..., N}, the

goal is to learn the parameter ωyi and ωyi,yj in Eq.(1). Our

learning formulation is based on the max-margin structural

learning [5, 17]. We modify it to accommodate the sequen-

tial neighborhood-dependent data.

We rewrite the Eq. (1) as a compact form:

S(X,Y ) = ωTΦ(X,Y ) (4)

where

ω =

[
ωu

ωb

]
,Φ(X,Y ) =

[ ∑
i ϕ(ρyi(xi), yi)∑

(i,j)∈N ψ(rij , yi, yj)

]
(5)

ωu and ϕ(·) are unary parameter and feature mapping vec-

tors. ωb and ψ(·) are binary parameter and relation map-

ping vectors. ϕ(·) is a NuA dimension vector which en-

capsulates A blocks, where A is the number of all action

classes, and Nu is the dimension of feature ρyi
(xi). Each

Nu-dimension block of ωu corresponds to an action class.

The elements ofϕ(ρyi(xi), yi) are all zeros except the block

corresponding to the action class yi, where it is ρyi
(xi).

ψ(·) is a NbA
2 dimension vector which encapsulates A2

blocks, where Nb is the dimension of feature rij . Each Nb-

dimension block corresponds to a pair of action classes. The

elements of ψ(rij , yi, yj) are all zeros except the block cor-

responding to the action class pair (yi, yj), where it is rij .

We formulate the parameter learning as a max-margin

optimization [5, 17]:

min
ω,ξn≥0

||ω||2 + C
∑N

n=1
ξn

s.t. ∀n = 1, ..., N,∀Ŷn,
ωTΔ(Xn, Yn, Ŷn) ≥ δ(Yn, Ŷn)− ξn

(6)

where Ŷn is the false structural label of the sequence

Xn. δ(Yn, Ŷn) is a 0-1 loss function δ(Y, Ŷ ) =∑|Y |
i=1 1(yi �= ŷi), where |Y | is the dimension of Y .
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Δ(Xn, Yn, Ŷn) = Φ(Xn, Yn)−Φ(Xn, Ŷn) is the differ-

ence between compact features with the true label and the

false label. The inequation in model (6) means that in al-

l training sequences, the score of the true label should be

larger than all other false labels by a soft margin.

The problem (6) can be solved by a cutting-plane algo-

rithm [7]. Our model introduces the neighborhood to the

compact feature Φ(·) in Eq.(5). It reduces the search space

when solving the optimization problem.

5. Inference
Given a long temporal sequence X containing multiple

actions, our goal is to localize all the action intervals and

label them with the action classes. It is formulated as:

Y ∗ = argmax S(X,Y ) (7)

The work [5] adopted a greedy search algorithm to solve

the NP-hard problem (7). It demonstrated that though the

greedy search algorithm produced suboptimal solutions, it

was effective for object layout in the image. The detection

of multiple concurrent actions in temporal sequence is more

complex than the object layout in the still image. The image

plane is limited, which makes it possible to search the so-

lutions in a tolerable period. However, a temporal sequence

can be very long and contain large number of actions, which

makes the normal greedy search inapplicable. We propose

an sequential decision window search algorithm to solve

this problem (7), which extends the normal greedy search

algorithm [5] to the sequential data with large durations.

We introduce a temporal window W . It slides by a s-

maller step than the size of itself, from the start of the se-

quence to the end, which generates a series of overlapping

windows, {Wt|t = 1, 2, ...}. We call them decision win-

dows. In each decision window, we carry out the greedy

search algorithm based on the optimized results in the pre-

vious decision windows. With the decision window sliding

forward, the entire sequence is structurally labeled.

We first run the local detectors (Eq.(2)) of all the 12 ac-

tion classes on the temporal sequence in a sliding-window

manner. For each action class, we run multiple detectors

with multi-scales. Such local detection process produces

a large amount of action intervals, which are pruned by a

non-maxima suppression step to generate M ′ hypothesized

action intervals D = {di|i = 1, ...,M ′}.
Suppose Ds ⊆ D, and XDs

and YDs
are respective-

ly the feature set and the corresponding action label set

of the action intervals in Ds. We define the score of the

subset Ds as S(Ds) = S(XDs , YDs), and S(Ds) = 0
when Ds is empty. We want to select a subset Ds from

D that S(Ds) achieves the maximum value in all subsets

of D. We define Du = D − Ds is the set of unselect-

ed intervals, and Dw = Du ∧ Wt is the set of unselect-

Algorithm 1 Sequential Decision Window Search

Initialization:
t = 1, Ds = {}, Du = D, Dw = {};

Iteration:
1: Decision window forward

Dw = Du ∧Wt ;

2: Greedy search in decision window
(i) d∗ = argmaxd∈Dw

Δ(d);
(ii) if Δ(d∗) < 0, break and go to step 3;

else, Ds = Ds ∪ {d∗}
Du = Du − {d∗}
Dw = Dw − {d∗}

(iii) if Dw is empty, break and go to step 3;

else, go to step (i);

3: if Wt arrives at the sequence end, stop and output Ds;

else, t = t + 1, go to step 1.

ed intervals located in the decision window Wt. We de-

fine a score change after a new interval d is added to Ds:

Δ(d) = S(Ds∪{d})−S(Ds). With these notations, our se-

quential decision window search algorithm is summarized

in Algorithm 1.

Our sequential decision window search is the general

case of the normal greedy search algorithm [5]. If the size

of the decision window is set to be the duration of the entire

sequence, it becomes the global greedy search.

In general cases, our search algorithm is suboptimal

compared to the normal greedy search. But it is reason-

able in the human action sequence data because an action

is usually only related to other actions which are close to

it. Our experimental results also prove its effectiveness and

reasonability.

In our algorithm, the decision window slides from the se-

quence beginning to the end. This makes it possible to de-

tect the actions online. This advantage is especially useful

in the practical applications, like video surveillance, robot

navigation, and human-computer interactions.

6. Experiment
6.1. Dataset

To evaluate our method, we collect a new concurrent ac-

tion dataset with annotation. The dataset is captured us-

ing the Kinect camera [14], which estimates the 3D human

skeleton joints at each frame. Several volunteers are asked

to perform actions freely in the daily-life indoor scenes,

like office and living room. The action orders, poses, du-

rations, and numbers are all decided according to their per-

sonal habits. Totally, we collected 61 long video sequences.

Each sequence contains many actions which are concurrent

in the time axis and interact with others. The dataset in-

cludes 12 action classes: drink, make a call, turn on moni-
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Action SVM

-SKL

SVM

-WAV

ALE

[18]
MIP

Our

COA

drink 0.77 0.70 0.91 0.92 0.96
make a call 0.75 0.86 0.85 0.93 0.97

turn on monitor 0.40 0.34 0.55 0.42 0.43

type on keyboard 0.82 0.91 0.92 0.91 0.93
fetch water 0.40 0.23 0.58 0.59 0.60
pour water 0.66 0.70 0.71 0.58 0.71

press button 0.17 0.20 0.66 0.22 0.33

pick up trash 0.39 0.35 0.39 0.40 0.55
throw trash 0.11 0.33 0.21 0.29 0.59
bend down 0.32 0.65 0.47 0.58 0.67

sit 0.98 0.99 0.99 0.98 0.98

stand 0.86 0.90 0.95 0.96 0.97
Table 1. The average precision comparison on each action class.

tor, type on keyboard, fetch water, pour water, press button,
pick up trash, throw trash, bend down, sit, and stand.

Our dataset is new in two aspects: i) each sequence con-

tains multiple concurrent actions; ii) these actions semanti-

cally and temporally interacts with each other. Our dataset

is challenging. Firstly, the human skeleton estimated by the

Kinect is very noisy. Secondly, the duration of each se-

quence is very long. Thirdly, the instances of each action

class have large variances. For example, some instances of

the action sit last for less than thirty frames, but some may

last for more than one thousand frames. Finally, some dif-

ferent actions are very similar, like drink and make a call,
pick up trash and throw trash.

6.2. Concurrent Action Detection

Evaluation criterion. A detected action interval is tak-

en as correct if the overlapping length of the detected in-

terval and the ground truth interval is larger 60% than their

union length or the detected interval is totally covered by

the ground truth interval. The second condition is special in

action detection because part of an action is still described

with the same action label by human. We measure the per-

formance with the average precision (AP) of each class, and

the overall AP on the entire testing data.

Baseline. We compare our model (COA) with four base-

lines. (1) SVM-SKL. This method uses the original aligned

skeleton sequence as the action feature, and a SVM trained

detector to detect the action with sliding windows. (2)

SVM-WAV. This method is similar to the SVM-SKL excep-

t for that its action feature is our proposed wavelet feature.

(3) ALE. Actionlet ensemble [18] is the state-of-art method

in multiple action recognition with the 3D human pose data.

It achieves the highest performance on many dataset com-

pared to the previous best results. We train it as a binary

classifier and test it on our dataset under the sliding window

detection framework. (4) MIP. This is our local detector (E-

q. 2) with mining informative parts. It is part of our COA

Figure 4. The precision-recall curves on the entire test dataset.

SVM-SKL SVM-WAV ALE [18] MIP Our COA

0.69 0.80 0.84 0.86 0.88
Table 2. The overall average precision comparison.

model without using the temporal relations between action-

s. The originally detected intervals of the four methods are

processed with the non-maxima suppression to output the

final results.

The AP of each class. Table 1 shows the average preci-

sion of each action class. In most action classes, our method

outperforms the other methods, which proves its effective-

ness and advantage. Some actions are hard to be detected

just by the independent local detector. The temporal rela-

tion between them and other action classes can facilitate the

detection. For example, the action throw trash is usually

inconspicuous and hard to be detected. With the context

of pick up trash which usually occurs closely before throw
trash, the AP of throw trash is significantly boosted. Re-

ciprocally, the precision of pick up trash is also jointly im-

proved by the context of throw trash.

The overall AP. We also compute the overall average

precision, i.e., the results of all the testing sequences and

all the action classes are put together to compute the AP. It

measures the overall performance of each algorithm. Figure

4 shows the precision-recall curves of all the methods. Table

2 presents the overall average precision. Our model presents

better performance than the other methods.

The SVM-WAV and the SVM-SKL are different in the

action sequence feature. The better performance of the

SVM-WAV than the SVM-SKL proves that our wavelet fea-

ture is more descriptive than the 3D human pose feature.

The MIP and the SVM-WAV use the same wavelet feature

but different learning method. The better performance of

31343141



Ground
Truth

Our COA

ALE

MIP

video sequence 1 video sequence 2 video sequence 3 video sequence 4

0.9167

0.8885

0.8873

Figure 5. The concurrent action detection results in four sequences. Each horizontal row in an bar-image corresponds to an action class.

The small colorful blocks are the action intervals. The numerical values are the average overlapping rates of each method’s bar-images

with the ground truth images. The rates show that the results of our COA model are closer to the ground truth than other methods.

drink

make
a call

pick up
trash

stand

turn on
monitor

0.18 0.10

0.44

0.12

0.660.13

0.21 0.28

0.150.23

0.29 0.39
0.11 0.07

0.16

0.220.51

Figure 6. The informative body parts for some actions. The first

column is the learned informative body parts. The areas of the

joints correspond to the magnitude of the weight. Other poses are

the instances of the action. For clarity, we just label the joints with

larger weight. The joints on shoulder and torso are the reference

for the pose alignment, and therefore are not attached the weights.

the MIP than the SVM-WAV proves the strength of our in-

formative parts mining method. Our COA model achieves

better performance than MIP, which demonstrates the effect

of the temporal relations between actions.

The visualization of the detection. To intuitionally

shows the strength of our model, we visualize some action

detection results in Figure 5. We compare them with the re-

sults of the two best baselines, the ALE [18] and MIP. We

also compute the average overlapping rate of each method’s

results with the ground truth. From the comparison, we can

see that our COA model can remove many false positive

detections with the action relations.

6.3. Informative Body Parts

The informative body parts are weighted human body

parts for different action classes. We visualizes the learned

weights of human body joints (the normalized weights of

multiple kernels [15]) in Figure 6.

An action is usually related to some specific parts of hu-

man body. And other body parts are less relevant to this

action. Our multiple kernel learning method can automat-

ically learn these informative body parts. Figure 6 shows

that though the data of action instances is noisy and has

large variance, our algorithm can mine the reasonable body

parts for different action classes.

6.4. Temporal Relation Templates between Actions

The composite temporal logic descriptor represents the

co-occurrence and location relations between actions. We

learn these temporal relation parameter ωyi,yj
from our

manually labeled dataset. This parameter is like a template,

which encodes the weight of temporal relations between ac-

tions. We visualize the learned parameter in Figure 7.

From this figure, we can see that our composite temporal

logic descriptor and the learning method reasonably capture

the co-occurrence and temporal location relations between

actions. For example, the action throw trash usually occurs

after the action pick up trash. So the weights of the bins

encoding the after-far relations are larger than other bins.

The action type on keyboard usually co-occurs with the ac-

tion sit. So the weights of the middle bins are much larger

than the weights of the before or after parts. The uniform

blocks represents the independence or small dependence of

two actions, like the relation between fetch water and make
a call.

Another advantage of our descriptor is that it can char-

acterize the duration relations of actions, which is impor-

tant information of an action. This is displayed by that the

descriptor of action yj to yi and the descriptor of yi to yj
are unsymmetrical, as the relations between turn on mon-
itor and type on keyboard. This is because our descriptor

is related to the location of the start, center, and end of the

reference action, not only dependent on one location point.
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Figure 7. The learned temporal relation templates. The pairwise

relation between two actions is shown as a 3× 8 block. The three

rows correspond to rSij , rCij , and rEij , respectively. Each block de-

scribes the relation of the column action relative to the row action.

The brighter colors correspond to the larger values of the weight.

7. Conclusion

In this paper, we present a new problem of concurrent

action detection and proposes a structural prediction formu-

lation for this problem. This formulation extends the ac-

tion recognition from unary feature classification to mul-

tiple structural labeling. We describe the phenomenon of

the concurrent actions by introducing the informative body

parts, which are mined for each action class by multiple k-

ernel learning. To accommodate the sequential nature and

large duration of video sequence, we design a sequential

decision window search algorithm, which can online detect

actions in video sequence. We design two descriptors for

representing the local action feature and temporal relation-

s between actions, respectively. The experiment results on

our new concurrent action dataset demonstrate the benefit

of our model. The future work will focus on the multiple

action detection in real surveillance video of large scenes.
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