
Network Principles for SfM:
Disambiguating Repeated Structures with Local Context

Kyle Wilson Noah Snavely
Cornell University

{klw229,snavely}@cornell.edu

Abstract

Repeated features are common in urban scenes. Many
objects, such as clock towers with nearly identical sides, or
domes with strong radial symmetries, pose challenges for
structure from motion. When similar but distinct features
are mistakenly equated, the resulting 3D reconstructions can
have errors ranging from phantom walls and superimposed
structures to a complete failure to reconstruct. We present a
new approach to solving such problems by considering the
local visibility structure of such repeated features. Draw-
ing upon network theory, we present a new way of scoring
features using a measure of local clustering. Our model
leads to a simple, fast, and highly scalable technique for
disambiguating repeated features based on an analysis of
an underlying visibility graph, without relying on explicit
geometric reasoning. We demonstrate our method on several
very large datasets drawn from Internet photo collections,
and compare it to a more traditional geometry-based disam-
biguation technique.

1. Introduction

The structure from motion (SfM) problem is to infer 3D

camera poses and scene geometry from a set of 2D images

with correspondence. While great strides have been made

in automatic SfM methods, one continuing challenge is to

handle scenes containing distinct objects that look similar.

For example, consider a symmetric four-sided tower with

a similar appearance from each side (e.g., Big Ben). In-

correctly inferring correspondence between, say, the north

and south faces can cause major problems for SfM meth-

ods. For instance, two or more distinct faces may be “glued”

together, causing other objects in the surrounding scene to

be incorrectly superimposed on top of each other in the re-

construction. In such cases, the resulting geometry can be

hopelessly ensnarled, with no easy way to disentangle it.

These problems commonly occur when local feature corre-

spondence methods incorrectly associate distinct 3D points.

Figure 1. (a) A SfM model of the Sacre Coeur Basilica in Paris con-

taining structural ambiguities. Prominent errors in the reconstruc-

tion, including repeated and phantom structures, are highlighted.

(b) The same model, correctly disambiguated using our proposed

method. (c) A Google Earth rendering of the cathedral.

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.69

513

For a more complex example, consider the reconstruction

of the Sacre Coeur Basilica in Paris shown in Figure 1. The

radially symmetric main dome and four nearly-identical sur-

rounding spires form a complicated ambiguity structure. As

parts of the model get reconstructed in the wrong position

around the dome, sparse “phantom” domes and towers ap-

pear, as highlighted in blue. Furthermore, the four spires

themselves look similar on each side, and the scalloped north

and south sides of the rear apse also look the same, causing

multiple copies of several more key features to appear. This

problem is highlighted in red.

The SfM disambiguation problem seeks to produce a cor-

rect reconstruction in the presence of similar looking ob-

jects [12, 13, 8, 4]. Disambiguation methods often rely on

additional assumptions. For instance, if the images are from

a time sequence, then we have stronger priors on the camera

configuration [8]. In scenes with relatively few occlusions,

reasoning about unseen features can reveal differences be-

tween similar objects [4]. In this paper, we consider the

problem of disambiguating large, unstructured Internet photo

collections, which pose significant challenges. These collec-

tions rarely come in sequence and often capture scenes with

a complicated occlusion structure. They also represent very

uneven distributions of views—popular viewpoints will be

heavily represented, while side streets may only be captured

a few times. Finally, large datasets with thousands of images

and millions of points require scalable methods.

We address this problem through the intuition that incor-

rect feature correspondences result in anomalous structures

in a visibility graph representing images and the features

they see. We describe a model of an incorrect, ambiguous

feature track, based on the local structure of a visibility graph

around such a track. Based on this model, we propose a sim-

ple, local, measure of track “goodness” inspired by local

clustering coefficients used in social networks analysis. This

measure is a graph-topological one distinct from geometric

measures used in prior work, and is very efficient to com-

pute. This new measure gives us a signal that we then use in

scene disambiguation technique that is scalable and which

works surprisingly well in practice. We demonstrate our

technique on several large-scale Internet photo collections,

and compare to an existing geometric method.

In summary, our contributions are (1) a simple, efficient

new measure of anomalous behavior in feature correspon-

dence, and (2) a scalable method for disambiguating and

reconstructing scenes based on this measure. Our code

and datasets are available are online at our project page,

www.cs.cornell.edu/projects/disambig.

2. Related Work
Much of the recent work in scene disambiguation has

focused on analysis of geometry. Zach et al. [12] use a

Bayesian belief network based on positive belief for feature

A

B

C

Figure 2. Six images from the Seville dataset. Tracks A and C, in

green and blue respectively, each correctly correspond to a single

3D point, while track B (in red) mistakenly refers to both the front

and back faces of a bell tower (making it a bad track).

matches, negative belief for missing features, and consis-

tency of triplets of epipolar geometry (EG) constraints be-

tween images. In [13], reasoning over triplets of images

[5] is expanded to looking for consistent EGs over larger

loops. In [3], EGs are added to a maximal spanning tree and

discarded if their cycle error is high. Roberts et al. [8] find

local reasoning insufficient, instead detecting bad EGs with

global expectation maximization. Time-sequence informa-

tion is used when available. Jiang et al. [4] propose a novel

optimization function that reprojects 3D points into images

to find missing correspondences. Given suitable background

context, they provably find the global minimum. Finally,

Cohen et al. [2] detect symmetries while reconstructing,

exploiting them to improve reconstruction accuracy.

These prior methods have been applied exclusively to

relatively small datasets of 20-200 images, often labora-

tory scenes specifically designed to be difficult. In contrast,

our method is designed for much larger, more unstructured

collections of photos, such as those downloaded from the

Internet. While our method generally cannot disambiguate

prior laboratory datasets, we find it performs well for the

ambiguities typical of large Internet photo collections, sug-

gesting that the difficult constructions in prior work (for

instance, moving objects between shots) are not necessarily

representative of those in Internet datasets.

As with our method, many previous approaches are based

on analysis of an underlying graph, including graphs encod-

ing matches or EGs between images, performing explicit

geometric reasoning over these graphs. Our work reasons

about a different graph, a bipartite visibility graph encoding

relations between cameras and points, and performs a purely

topological, local analysis over this graph.

514

3. Overview

We first describe our problem setting. A typical struc-

ture from motion (SfM) pipeline begins by detecting local

features in each input image (e.g., using SIFT [6]), then

matching these features across images. Following [9], we

refer to a set of matched features across several images—

often found through transitive closure of pairwise feature

matches—as a track. The set of tracks can be naturally de-

scribed in terms of a bipartite graph, G = (I, T, E), where

nodes are images I and tracks T , and edges (i, t) ∈ E exist

when a feature in image i is a member of track t. We call G
the visibility graph. G (along with locations of features in

each image) is the input to an SfM reconstruction procedure.

Ideally, each track t ∈ T represents a single 3D point,

in which case G has a natural interpretation: the visibility

graph encodes which 3D points are visible in which images.

However, in the presence of structural ambiguity, some of

these tracks (which we call bad tracks) refer to more than

one 3D point. Figure 2 illustrates three tracks. A and C
correctly correspond to a single 3D point, but B is a bad

track comprised of points on both the north and south sides

of a tower. While a single bad track may not break a sub-

sequent SfM algorithm, an ambiguous scene can contain

many such tracks that form geometrically consistent sets.

We address the disambiguation problem by finding a new set

of tracks that is as correct as possible; we realize this goal

by attempting to identify and remove bad tracks.

Our method has two main elements: (1) a model and

corresponding score function for bad tracks based on a local

visibility analysis, and (2) an SfM procedure that uses this

model and score to produce a disambiguated reconstruction.

We now describe each of these elements in turn.

4. Modeling Bad Tracks using Visibility

Our model for a bad track is based on background context.
Whether or not images see the same background objects

is useful information for detecting bad tracks. In previous

work, such as [4], such reasoning is geometric. In our case,

we consider the weaker condition of visibility, as encoded

topologically in the visibility graph G. We reason that even

if objects look the same, they will often have different back-

grounds. Figure 3(a) shows a simplified geometric view

of the Seville scene in Figure 2, depicting cameras and the

tracks they observe. Here B represents a feature on a win-

dow of the bell tower. Because the tower is symmetric, the

windows on the left and right sides of the tower look the

same, and so there are two distinct 3D points represented by

B. Tracks A and C represent neighbors of B from the left or

right views—other points in the world that are seen with B.

These are our background context. Suppose for discussion

that A and C are not close to each other (i.e., they cannot

both be seen in a single photograph). In Figure 3(b) we see

the visibility graph for this scene. In network terms, if A
and C aren’t seen together, then B is a bridge between them.

This bridging property provides evidence that B is a bad

track, as one would expect visibility to be, roughly speaking,

“transitive” (e.g., if A is seen with B, and B with C, it would

be surprising to never see A and C together).

This suspicion is heightened in Figure 3 (c), a more com-

plex visibility graph where additional context is present. In

this case, the neighboring tracks of B (i.e., other tracks seen

in images that see B) form two clusters, and B bridges these

two clusters. This leads to an intuition about local neigh-

borhoods of tracks: bad tracks are those that are most like

a bridge between two or more clusters of other “context”

tracks in the visibility graph. To make this intuition quan-

tifiable, we turn to network theory, which provides a useful

measurement: the bipartite local clustering coefficient.
To explain this measure, we begin with single-mode (not

necessarily bipartite) graphs. In [11], Strogatz introduces the

local clustering coefficient. For a node v, this is defined as

lcc(v) =
triangles centered at v

2-paths centered at v
, (1)

where a 2-path is any choice of two distinct neighbors of v.

This can be phrased as the ratio of closed 2-paths (triangles)

to possible 2-paths centered at v. The lcc score measures

local transitivity: in social network parlance, it is the fraction

of my pairs of friends (pairs of neighbors of v) who are

themselves friends with each other. This can be computed

per node; when a network divides roughly into clusters, this

score will be low for vertices that bridge clusters.

In our case, G is a bipartite graph, over which the lcc
score is identically zero, because there are no triangles by

definition. However, Opsahl [7] proposes a natural extension

of the lcc score to bipartite graphs, using four-paths instead

of triangles. This is the bipartite local clustering coefficient:

blcc(t) =
closed 4-paths centered at t

4-paths centered at t
(2)

This function is exactly the fraction of the time that local

transitivity holds at track t. In the language of the visibility

graph, it answers the question, “if I’m seen with neighbor

tracks A and C, how often are they seen together, over all

such neighbors?” A typical 4-path rooted at B is shown in

bold red in Figure 3(c). For this path, local transitivity fails

(i.e., the path is not closed), since tracks A and C are never

both seen in the same image.

As a measure of local transitivity, we argue that the blcc
tends to identify bad tracks that look like track B in Figure

3. By modeling bad tracks in this way, we assume that the

different parts of a bad track have context and are not co-

visible. Certainly scenes can be imagined where images

tend to see all 3D points which comprise a bad track. For

example, consider a sign with repeated letters and shapes;

515

Tracks

Images

A B C
1 1 0.90.90.70.51 1 1

(a) (b) (c)

Figure 3. (a) A geometric interpretation of the Seville scene in Figure 2. The grey square represents the tower, while the blue and green

objects are 3D points seen as tracks A and C. (b) The resultant bipartite image-track visibility graph. (c) A graph representing a larger

problem. A sample 4-path rooted at bad track B, for which local transitivity fails, is shown in bold red. The blcc scores are above each track.

two points several meters apart might be confused, yet have

nearly the same set of neighbor tracks. In practice, these bad

tracks are not the sort of structural ambiguity which breaks

reconstructions. The many correct neighbors are enough

context for the bad track to be rejected on epipolar constraints

earlier in a SfM pipeline. However, we acknowledge that

this score is not a universal solution to SfM disambiguation;

it relies on the separated context often present in natural

scenes, which we find to be a very useful cue in practice.

5. Algorithm for Disambiguating a Model
We now have a score (the blcc) that captures our intuition

about what makes a track good or bad. However, in real

visibility graphs, an additional issue arises. Looking more

closely at a bad track tb that has n neighbor images in k
clusters, blcc(tb) will be lowest when each cluster has n

k
images. However, if at our bad track some of these clusters

are much larger than others, blcc(tb) will be inflated and

thus less sensitive. Unfortunately, Internet photo collections

often represent very non-uniform samplings of viewpoint,

with a large disparity in the number of images that capture

different parts of a scene. For example, in the Sacre Coeur
dataset, over 75% of all images are taken on the front steps

of the basilica. In Notre Dame (Figure 6), over 85% of

the images are of the front facade. As a result, on real-

world datasets the blcc computed on the full visibility graph

G can be skewed depending on local density. We instead

compute the blcc on a subgraph of G that spans G but is

more uniform. Our SfM disambiguation procedure thus

has two main steps: (1) compute a more uniform subgraph,

then (2) remove bad tracks from that subgraph based on an

analysis of blcc scores.

Step 1: Computing a covering subgraph. To address the

issue of uneven sampling of views in Internet datasets, we

propose to find a subgraph G′ = (I ′, T ′, E′) ⊂ G by choos-

ing a subset of images I ′ ⊂ I and of tracks T ′ ⊂ T that is

better behaved. In particular, this subgraph G′ should have

the following properties:

Uniformity: Tracks should be seen similarly often.

Reconstructability: Most tracks should be seen often

enough to be reconstructed.

Field of View Heuristic: I ′ should be made up of images

with wide field of view, since these often see more

context than telephoto pictures.

Our basic approach is to compute a subset of images I ′ such

that each track is covered a certain minimum number of

times by images in I ′. We begin by restricting the subset of

tracks we consider to long tracks (i.e., tracks visible in many

images), based on the intuition that long tracks are the most

important for connecting up the graph, and because the blcc
score is less stable for tracks with few neighbors.

To formalize, let δG(t) denote the degree of a track node

t in G. We define long tracks as the set TL = {t ∈ T :
δG(t) ≥ Nlong}. We will compute a covering graph G′

where almost all t ∈ TL have at least k neighbors: |{t ∈
TL : δG′(t) < k}|/|TL| < ε. We allow a fraction ε to not

be covered based on our observation that real datasets often

have a few outlier tracks that correspond to unusual objects

not of interest to the reconstruction, and are difficult to cover.

We approach this as a graph covering problem. Our algo-

rithm for selecting the subset of images I ′ greedily selects

images that cover the most remaining not-yet-fully-covered

tracks, according to a score function that also considers the

field of view of that image. We define the score of an image i
as fov(i) · δ(i)αGR

, where fov(i) is the field of view of image

i, and δ(i)GR
is the degree of i in the graph G restricted to

uncovered tracks. This favors images with high degree and

high field of view. This is summarized in Algorithm 1. The

parameters k, ε, Nlong , and α are discussed with our results.

Note that we restrict the covering to images for which the

field of view can be estimated from Exif metadata.

Figure 4 shows two ROC curves demonstrating the benefit

of computing the blcc score on the covering subgraph rather

than the full graph. For these plots, we manually created a

ground truth classification of tracks as good or bad for the

Seville dataset by identifying the structural ambiguities in

the data, then manually classifying images into geographic

groups. Any track spanning two disjoint groups of images

is labeled as bad. Inspecting 1000 randomly sampled tracks

confirmed that this labeling of bad tracks was nearly com-

plete. Each ROC curve is created by thresholding tracks on

516

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fraction of true positives removed

fr
ac

ti
on

 o
f

tr
ue

 n
eg

at
iv

es
 r

em
ov

ed

Figure 4. ROC curve comparing of effectiveness of the bad track

score: computed over the whole visibility graph (solid line) or the

covering subgraph (dashed line) of the Seville dataset.

Algorithm 1: (1− ε) complete k-cover

Input: visibility graph G, fields of view fov(i), i ∈ I
Assemble G′ = (I ′, T ′, E), where

Initialize T ′ = {t ∈ T : δG(t) ≥ Nlong}, I ′ = ∅
while |{t ∈ T ′ : δG′(t) < k}|/|T ′| > ε: do

define remaining tracks:

TR = {t ∈ T ′ : δG′(t) < k}
define remainder graph: GR = (I−I ′, TR, E)
select i ∈ I−I ′ that maximizes fov(i) · δGR

(i)α

add i to I ′
Let E′ be the restriction of E to vertices I ′, T ′.
Output G′ = (I ′, T ′, E′).

the blcc score. The scores computed on the subgraph G′

(dotted curve) distinguish good and bad tracks more effec-

tively than those computed on the full graph G (solid curve);

in particular, we can remove 80% of the bad tracks while dis-

carding only a small fraction of good ones. In all cases, we

found that disambiguating tracks using the subgraph yields

superior results to using the original graph.

Step 2: Disambiguation process. We now describe our full

pipeline. We begin by running a standard feature matching

procedure [1] to generate a set of tracks, with one modifica-

tion. While generating matches, our pipeline finds pairwise

epipolar geometries (EGs). We observed that these can some-

times include very wide-baseline image matches (e.g., where

cameras are far apart, possibly even on opposite sides of the

points they view). Since SIFT (our feature detector) is only

stable for rotations of up to about 60 degrees [6], we discard

all EGs with relative rotation larger than 90 degrees. We

have observed that these pairs are almost always erroneous

(but removing them was insufficient to fix our models).

Given the complete visibility graph G, we compute a

covering subgraph G′ as described above. To disambiguate

the scene, we then compute blcc(t) for each long track in

the covering subgraph G′. We delete all tracks with score

less than a threshold τ from G and G′. Since this often

results in G being nearly disconnected, we split G and G′

into the components induced by the partition of all images

in G which share at least Nconn tracks, for some parameter

Nconn. Thus, our approach can break a scene up into several

components. This is often desired behavior, as many of our

scenes have physically separated pieces.

We have explored several ways to select τ . One was to

set it directly; however, we found that the distribution of

blcc values varies from scene to scene, and values that work

for one scene may not transfer directly to others. We also

considered parameterizing τ by removing some set percent-

age of low-scoring tracks. However, some datasets have just

a few, egregiously bad tracks, while others (such as Sacre
Coeur) are riddled with large numbers of bad tracks (though

we always found some threshold to result in a correct model).

Instead, we propose setting in advance an expected number

of components that the model will separate into, and then

choosing the lowest τ that achieves this number of compo-

nents. We call this parameter Ncomp. By choosing Ncomp

conservatively large we ensure that our primary failure mode

is oversegmentation—splitting into too many components.

From the standpoint of using SfM results, we believe this is

a useful system design; it is much easier, on inspection, to

see how components ought to fit together than to understand

and tease apart a hopelessly broken model. We found this

approach to give good results across all our datasets.

In order to validate that thresholding on our track scores

is important to separating a graph into components, we also

tried a simpler baseline approach of removing all EGs with

fewer than a certain number of inliers. This did not improve

the models—all ambiguities remained.

Given the new components and tracks, we reconstruct

each component using an incremental SfM algorithm [1],

first with the images and tracks in G′, then adding the re-

maining images and tracks in G. By doing the reconstruction

in this order, we first make a sparse skeleton reconstruction

of the whole scene that ideally is disambiguated and error

free. Then we the rest of the images, hanging them on this

correct skeleton. Note that this skeleton is related to the one

in [10], but is computed using our disambiguation process.

(The broken reconstructions presented in the results section

are computed with the prior skeletonization algorithm [10].)

6. Results
In this section we show results of our method on four

large Internet datasets, Seville, Louvre, Sacre Coeur, and

Notre Dame. (Reconstructions are shown in Figure 6.)

The disambiguation method defined in Section 5 has sev-

eral parameters. In all cases, we found the values k = 10,

α = 0.3, ε = 0.02, Nlong = 15, Nconn = 200, and

Ncomp = 4 to produce correct and satisfactory results.

Table 1 summarizes our four datasets, and Figure 6 shows

their original and disambiguated reconstructions. These

datasets are large, containing as many as 8000 images and

517

Name Images Tracks time (s)

Seville 916 299837 76

Louvre 839 229260 53

Sacre Coeur 4416 1296632 253

Notre Dame 8032 3702932 2718

Table 1. Results datasets: original size and time to disambiguate

3.7 million tracks. Nevertheless, computing the score blcc(t)
and disambiguating the model took under 45 minutes in all

cases. The time shown is only the time required for the

disambiguation; subsequent reconstruction takes no longer

than reconstructing without disambiguation. Disambiguation

was performed on 8 cores of a 2.40 GHz Xeon machine.

In each case the disambiguated models are in several

components which correspond to distinct clusters of views.

Often this is because the original model connected clusters

of images that did not belong together. When false corre-

spondences are removed by deleting the bad tracks the result

is a model in several components. In other cases there may

be enough information in principle to join two components,

but the disambiguation process was over-conservative and

did not connect them. We now discuss each dataset in detail.

In Seville (Figure 6 (a)), the original confusion was a

symmetry around the tower. One of the two large (similar

looking) doorways (3) floated in the middle of a plaza (cir-

cled in red). The disambiguation removes the tracks which

incorrectly equate opposite faces of the tower. This splits

the scene. However, enough good tracks were removed to

also disconnect a doorway (1) from the rest (2). Finally, a

few images (4) were from a back alley. These mostly see the

back of the tower and also were originally reconstructed in

the plaza. Disambiguation correctly removes the connection

to the tower, which separates these into a fourth component.

The results for Louvre (Figure 6 (b)) are particularly

interesting. The Louvre has a small inner courtyard (1)

and a larger outer one (2,3). There are repeating walls and

gateways around each. Originally the two courtyards are

oddly attached—the scale is wrong and the outer courtyard

faces the wrong direction. In fact, disambiguation finds a

less obvious mistake: the images in the outer courtyard were

originally reconstructed as facing the same direction, when

in fact many of them face west (2), while several others face

east (3). The result is in three components.

As described in the introduction, Sacre Coeur (Figure 6

(c)) is very challenging. The original model has extra towers

and domes (circled in blue). Also, instead of a scalloped

wall on each side of the rear of the cathedral, there is only

one copy (circled in red) in the wrong place. Disambiguation

separates each of these problems. There is a cluster of photos

(4) that look outwards from the cathedral into Paris and see

little in common with the other images. Note that very few

pictures were taken in the narrow streets along the sides of

Figure 8. Reconstruction of Louvre using [13]

the cathedral. This causes the cathedral to separate into three

pieces: the front (2) and the two sides of the rear (1,3).

Notre Dame (Figure 6 (d) is our largest dataset. In the

original reconstruction note the extra copy of the roof at-

tached at an incorrect 45◦ angle to the rest of the model

(circled in red). The central spire is the main feature that

attaches the two together, and unfortunately it has an 8-way

symmetry that causes the aerial views to get “glued on” at the

wrong angle from the ground. These are correctly separated

in (1). Again, we see that a sparsity of photos, combined

with our removal of tracks, was enough to disconnect the

rear of the cathedral (2) from the front (3)—a small point of

failure. We note that (2) and (3) can be merged together by

describing tracks by mediod SIFT features, matching, and

then estimating an alignment with RANSAC.

Comparison with [13]. We ran the disambiguation proce-

dure of [13] for comparison. This is a recent geometry-based

method for which the authors have made code available. It

examines cycles of epipolar geometries in the image graph.

An inference step finds a blacklist of image pairs to remove.

We omit results for two of our datasets because we could

not run them within the 64GB memory limitation of our

machine. Louvre took 50.6 hours and removed 17% of all

EGs. Figure 8 is a rendering of the results—all ambiguities

remain. Similarly, Seville took 47.5 hours, removed 19% of

all EGs, and also did not disambiguate the scene.

In each case the results still contain their original ambigu-

ities. Interestingly, the same is true for running [13] on our

covering subgraphs. In looking at these results, we specu-

late that our image graphs are much different—much denser

and higher degree—than the graphs for which this technique

was designed; the underlying inference engine, loopy belief

propagation, is possibly more amenable to graphs that are

more sparsely connected and more tree-like.

Unbroken Datasets. We also ran our method on datasets

where the original reconstruction was correct. In each case

it behaved reasonably, splitting the scenes in natural ways.

Roman Forum (Figure 6) and Acropolis each split into

two mergable components. For Jefferson Memorial, two

clusters of images were connected by a few wide views. Our

method returned these two components, but removed the

sparse connecting tracks so that they couldn’t be merged.

Our method is slightly destructive by removing tracks, but

518

Figure 5. Reference views of each dataset: Seville Cathedral, Louvre, Sacre Coeur, and Notre Dame.

(a) (1) (2) (3) (4)

(b) (1) (2) (3)

(c) (1) (2) (3) (4)

(d) (1) (2) (3)

Figure 6. Original (left) and disambiguated (right) reconstructions of (a) Seville Cathedral, (b) Louvre, (c) Sacre Coeur, and (d) Notre
Dame. In case, the disambiguated reconstruction is in more than one component. For the originals, the main mistakes are circled.

519

Figure 7. An unbroken dataset, Roman Forum, showing the two components we produce (left, middle) and the merged model (right). In the

merged model, points from the second component are highlighted in purple. The merged model is very similar to the original.

for well-connected scenes the loss is barely perceptible.

Limitations. We have shown that our disambiguation

method can successfully fix reconstructions broken by struc-

tural ambiguities in several large datasets. As discussed

above, one mode of failure is oversegmentation. We see this

in Seville, where an entryway is split off from a larger model,

and in Sacre Coeur, where the outward-facing images were

split away from the rest. These extra splits happen at places

where the visibility graph is weakly connected. For instance,

although parts of the Seville entrance are seen by cameras in

components (1) and (2), there are very few matches between

them because of the wide baseline between views. However,

in such cases our approach substitutes a difficult problem

(SfM disambiguation) with a more tractable one (model

merging), with the added benefit that the output goes from

an incorrect reconstruction to a set of correct but possibly

partial models, which are potentially much more useful.

In addition, when we evaluated our method on the chal-

lenging laboratory datasets introduced by Roberts et al. [8]

(and used in subsequent work, e.g. [4]), we saw that the blcc
was weakly correlated with bad tracks, but we were only

successful at disambiguating Desk. We believe this is due to

both the small overlap within each dataset (yielding sparse

visibility graphs), as well as the lack of the contextual cues

which we found abundantly in our Internet datasets. Of these

small datasets, Desk has the most background context.

7. Conclusion
Structure from motion models are often incorrect when

there are similar-looking objects in the scene. We presented

a new method for disambiguating such scenes. Bad tracks

are identified as those which have similar local topology to

a prototypical model in the visibility graph. We compute

this via the bipartite local clustering coefficient, computed

on a subgraph of the input set, and propose a reconstruction

procedure for using this score to build a model. Our method,

based on local context, is scalable to large datasets, and our

results show that a visibility graph-based approach (without

global geometric reasoning) is often sufficient to solve many

problems of interest. Our code and data are available online

at www.cs.cornell.edu/projects/disambig.

In the future we hope to explore ways of judiciously com-

bining geometric reasoning with our pure visibility-based

approach, in order to obtain more accurate disambiguations

without sacrificing scalability.

Acknowledgements. This work was supported in part by

the National Science Foundation under IIS-1149393, IIS-

1111534, and IIS-0964027, and a grant from Intel Corpora-

tion. We would also like to thank Chun-Po Wang and Robert

Kleinberg for their valuable discussions.

References
[1] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski.

Building Rome in a day. In ICCV, 2009.

[2] A. Cohen, C. Zach, S. N. Sinha, and M. Pollefeys. Discover-

ing and exploiting 3d symmetries in structure from motion.

In CVPR, 2012.

[3] O. Enqvist, F. Kahl, and C. Olsson. Non-sequential structure

from motion. In ICCV Workshops, 2011.

[4] N. Jiang, P. Tan, and L. Cheong. Seeing double without con-

fusion: Structure-from-motion in highly ambiguous scenes.

In CVPR, 2012.

[5] M. Klopschitz, A. Irschara, G. Reitmayr, and D. Schmalstieg.

Robust incremental structure from motion. In 3DPVT, 2010.

[6] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. In IJCV, 2005.

[7] T. Opsahl. Triadic closure in two-mode networks: Redefining

the global and local clustering coefficients. Social Networks,

2011.

[8] R. Roberts, S. N. Sinha, R. Szeliski, and D. Steedly. Structure

from motion for scenes with large duplicate structures. In

CVPR, 2011.

[9] N. Snavely, S. Seitz, and R. Szeliski. Photo tourism: Explor-

ing photo collections in 3d. In SIGGRAPH, pages 835–846,

2006.

[10] N. Snavely, S. M. Seitz, and R. Szeliski. Skeletal sets for

efficient structure from motion. In CVPR, 2008.

[11] S. H. Strogatz. Exploring complex networks. Nature,

410(6825):268–276, March 2001.

[12] C. Zach, A. Irschara, and H. Bischof. What can missing

correspondences tell us about 3d structure and motion? In

CVPR, 2008.

[13] C. Zach, M. Klopschitz, and M. Pollefeys. Disambiguating

visual relationships using loop constraints. In CVPR, 2010.

520

