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Abstract

We present a hybrid parametric and nonparametric al-
gorithm, exemplar cut, for generating class-specific object
segmentation hypotheses. For the parametric part, we train
a pylon model on a hierarchical region tree as the energy
function for segmentation. For the nonparametric part, we
match the input image with each exemplar by using regions
to obtain a score which augments the energy function from
the pylon model. Our method thus generates a set of highly
plausible segmentation hypotheses by solving a series of ex-
emplar augmented graph cuts. Experimental results on the
Graz and PASCAL datasets show that the proposed algo-
rithm achieves favorable segmentation performance against
the state-of-the-art methods in terms of visual quality and
accuracy.

1. Introduction

Category level object segmentation is one of the core
problems in computer vision. Its main challenges lie in that
small visual elements (pixels or superpixels) contain insuf-
ficient information that admits category level object recog-
nition. One line of research aims at effectively propagating
high level recognition results back to low level segmenta-
tion through superpixel neighborhood [10], high-order Con-
ditional Random Fields (CRFs) [18] or object detector out-
puts [1, 27]. Another line makes efforts to generate ob-
ject segmentation hypotheses so that recognition can be
achieved more efficiently by classification or ranking [20].

Object segmentation hypotheses could be category in-
dependent or category specific. Recent work for category
independent object segmentation [8, 6, 13] exploit hierar-
chical image segmentations, grouping strategies and cross-
category shape priors in order to increase the chance of re-
covering true object regions. As a result, such methods are
likely to generate thousands of instance-level object region
hypotheses which entail laborious post-processing to filter
out low-quality solutions. Category specific approaches in-
stead, [5, 17, 4] generate single object segmentation by us-
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Figure 1. Generating class-specific segmentation hypotheses from
exemplars (person in this example). (a) input image. (b) one ex-
emplar image. (c) another exemplar image. (d) MAP solution for
person segmentation. (e) exemplar cut using exemplar A. (f) ex-
emplar cut using exemplar B.

ing efficient maximum a posteriori (MAP) inference tools
(e.g., graph cut [15]), which perform well when target ob-
jects appear dominantly in the images with simple back-
grounds. In real-world applications, however, target objects
more often appear in cluttered backgrounds with large ap-
pearance variations and interact with the objects of other
categories (e.g., PASCAL VOC datasets [9]). In these cases,
the single MAP solution becomes less satisfactory (Fig-
ure 1(d)) due to the limited model capacity and training
errors. A natural choice to resolve this issue is to gen-
erate multiple object segmentation hypotheses from class-
specific models [3, 12] (Figure 1(e)(f)). This choice not
only benefits from learning but also increases the probabil-
ity of finding all the target objects.

In this paper, we propose a hybrid parametric and non-
parametric model for generating a small set of highly plau-
sible class-specific object segmentations, thereby reducing
ambiguities and computational loads for sequential clas-
sification or ranking. Towards that, we first learn a py-
lon model [19] to obtain the parametric object segmenta-
tion energy function. Building on a bottom-up hierarchi-
cal segmentation [2], the pylon model combines a flat CRF
with a region tree. The resulting energy function remains



submodular and admits efficient inference by graph cut,
which brings conveniences to max-margin learning. Sec-
ond, we match the test image with each exemplar by re-
gions. For each region in the test image, we retrieve k near-
est neighbors (K-NN) from the matching exemplar, so that
the node potentials of the pylon model are augmented by
K-NN matching scores. Therefore, an object segmentation
hypothesis can be generated by solving a graph cut with the
exemplar augmented energy function, which we refer as ex-
emplar cut.

Our method leverages both the generalizability of para-
metric models and the flexibility of nonparametric models.
Parametric models usually make assumptions on image seg-
mentations. For example, CRFs and pylons assume that re-
gions are classifiable in the node potentials, and labels be-
tween adjacent regions are consistent up to the Potts pair-
wise potentials. Under these assumptions, the MAP infer-
ence usually produces reasonably smooth labeling around
the target (Figure 1(d)). The reason of missing some parts
and predicting a false negative lies in that the node clas-
sifiers are less effective in handling heterogeneous appear-
ance in complex background.

On the other hand, the nonparametric segmentations
[24, 21, 16, 23] are more flexible to model assumptions.
These methods are able to segment an image by transfer-
ring prior knowledge (e.g., labels and shape masks) from
retrieved exemplars or regions in a database of segmenta-
tion exemplars. However, considering the statistical insta-
bility of using exemplars, challenges arise from integrating
the retrieved or matched segmentation results into a single
solution. Our method avoids such issue and instead queries
each exemplar to generate one segmentation hypothesis. By
adjusting the pylon energy function by the exemplar match-
ing score, we fuse the parametric and nonparametric clas-
sifiers [7] on the node potentials and still take advantage of
the label consistency assumption and learned parameters on
the pairwise potentials. Consequently, we increase the pos-
sibilities of correcting the mistakes of parametric models
and prevent segmentation from noisy labeling.

We carry out experiments on the Graz-02 [22] and PAS-
CAL VOC 2010 datasets [9]. We use the intersection/union
overlap scores [9] to evaluate the upper bound performance
of segmentation hypotheses. The results show that the pro-
posed exemplar cut algorithm generates better segmenta-
tion hypotheses than the MAP solution and performs favor-
ably against the state-of-the-art methods based on paramet-
ric min cut [14], diverse M-Best solutions [3] and multi-
ple choice learning [12]. We also analyze the performance
of hypotheses at different MAP quality levels. The results
on the Graz-02 dataset suggest that exemplar cut maintains
high recall rates when MAP solutions miss the target ob-
jects.
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2. Related Work

As the focus of this work is generating good hypotheses
for class-specific segmentation, we discuss the most related
work in three aspects.

Parametric Min Cut. The parametric min cut algo-
rithm [14] introduces a constant value to the node poten-
tials of the graph cut energy function, which changes the
decision threshold of classifying the nodes into foreground
and background. By varying the constant value, a series
of graph cuts are solved to produce a set of segmentation
hypotheses. This technique has been used in [6, 13] for cat-
egory independent object segmentation hypotheses. As the
classification thresholds are changed uniformly for all the
nodes, the parametric min cut usually produces noisy seg-
mentation results where good segments are companied by
false negatives. In contrast, our exemplar cut adaptively de-
termines the decision boundary by K-NN matching scores
with exemplar regions.

M-Best Solutions. When the single MAP solution becomes
less satisfactory, it is beneficial to find M best solutions.
A potential issue is that the top M most probable solutions
may be similar to each other if many noisy local minimal
solutions exist close to the MAP one [28]. To address that,
Batra et al. [3] propose to explore different local modes of
the energy function by enforcing the solution diversity. In
their work, the energy function is augmented with dissimi-
larity constraints that isolate the current solution from pre-
vious ones by a pre-defined threshold. This strategy entails
a greedy algorithm to find solutions sequentially. In contrast
to the dissimilarity metric that operates as a repulsive force
to push the current solution away from existing ones, the
matching similarity in our work performs as an attractive
force that pulls the current solution towards the exemplars.

Multiple Choice Learning. This approach aims to gen-
erate multiple structured outputs [12] by learning a set of
sub-models simultaneously, rather than inferring multiple
solutions from a single model. Recall that we need a di-
verse set of segmentation hypotheses. It is thus essential
to enforce sub-models as different as possible. In fact, the
multiple choice learning approach realizes this objective in
the training phase by discriminative clustering. It assigns
the training exemplars to sub-models by evaluating their
segmentation errors so that a sub-model is eventually op-
timized towards a subset of exemplars. This approach is
constrained by the clustering structure of training exemplars
and sensitive to the initialization. When the number of sub-
models is not properly chosen, the segmentation capabilities
of learned sub-models may be imbalanced (some too strong
and others too weak) so that the weak predictor degener-
ates in the training phase. In addition, since each sub-model
governs a set of exemplars, we can also perform exemplar
cut to each sub-model of multiple choice learning.



3. Exemplar Cut

In this section, we present the proposed exemplar cut
algorithm for class-specific object segmentation in details.
We first introduce the underlying segmentation model and
then present our approach of generating multiple segmenta-
tion hypotheses with exemplars.

3.1. Category Specific Object Segmentation

Pylon Model. We use the two-class pylon model [19] as
the underlying mechanism for category specific object seg-
mentation. In Figure 2, we parse an image with a simplified
two-class pylon model in a segmentation tree.

Figure 2. A two-class pylon model illustration. We parse an im-
age by a segmentation tree. Each node represents a segment at a
different level and its figure/ground assignment energy is given by
U(f:) in (3). The edges between the leaf nodes V' ( f;, f;) in (4) de-
notes the pairwise smoothness term. The edge between a segment
and its ancestor represents the consistency constraint C'(f;, fa(i))
in (1). A labeling of the image is visualized by colored bounding
boxes around the segments. The red box indicates the figure label
(fi = 1) while the blue box indicates the ground label (f; = 2).
The dashed box indicates the segment is not being used to explain
the image (f; = 0) and all the solid boxes constitute a complete
image.

We first segment an image [ into a hierarchical region
tree S = {S1,5%,...,521-1} by the gPb contour detec-
tor [2]. We index the leaf segments from 1 to L, the in-
termediate segments from L + 1 to 2L — 2 and the root
segment (the entire image) as the last one, 2L — 1. We also
denote a(i) as the ancestor of segment 4 and p(i, j) as the
shortest path from segment ¢ to segment j. Note that seg-
ment ¢ and its ancestor a(7) are overlapped, so we only need
to keep one of them to explain the image. Each segment
S; € S thus could be assigned a label f; € {0,1, 2}, where
fi = 1 indicates the foreground, f; = 2 the background,
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and f; = 0 not being used for explaining the image. To pro-
duce a consistent labeling f = {f1, ..., foar.—1}, the pylon
model requires that for any leaf segment, there is only one
non-zero label along its path to the root node in the tree,

Vi=1,..,LVj€p(i,2L-1), f; > OAfj-faijy = 0. (1)

This constraint guarantees
overlapping labeling.

We formulate an energy function for the pylon model
similar to a conventional CRF,

the complete and non-

2L-1

E(f) = Z U(fi) + Z V(fi: f7),
i=1

(1.9)EN

@)

where the unary term U (f;) specifies the cost of assigning
alabel f; for the segment 4, and the pairwise term V'(f;, f;)
instantiates the non-negative boundary cost between any
two adjacent segments (4, j) € N. The set of adjacent seg-
ments is denoted by V. In particular, we define the unary
term as linear models,

|Si| - <w1,h(S;)>, for f; =1,
U(fi) = S 1Si| - <wa,h(Si)>, forfi=2, (3)
0, for f; =0,

where h(S;) denotes the feature vector extracted from the
segment S; and wy, wo denotes the unary parameter vec-
tors. We use the size of segment |.S;| as a weighting factor
to encourage the pylon inference to select larger segments.
The pairwise term is defined by a weighted Potts model,

V(fi, fj) = <ws, b(S;, S5)> - 8[f; # fj], 4)

where b(S;,S;) is a vector of exponentiated boundary
strength with different bandwidths and wg is the smooth-
ness parameter vector.

Inference. It is not trivial to infer the pylon model with
both semantic labels f; = 1,2 and exclusive label f; = 0.
In order to leverage the strength of graph cut for optimal
inference on binary Markov random fields, Lempitsky et
al. [19] decompose the target label f; of each segment into a
pair of equivalent binary variables =} and 22, which indicate
whether any of the segments along the path p(i,2L — 1)
falls entirely into the regions of class 1 or 2. Based on this
re-parametrization technique, both the unary terms (except
the root) and consistency constraint in (1) are absorbed into
a new energy function E(x!,x?) as pairwise terms. With
some manipulations, this new energy function becomes sub-
modular and can be minimized by graph cut. To recover
the target labeling f from equivalent labelings (x*, x?), we
can simply examine if its ancestors up the tree are assigned
non-zero labels. More details about this re-parametrization
method can be found in [19].
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Figure 3. Exemplar cut algorithm. The goal is to segment an input image in the center into the foreground object and the background.
We construct a pylon graph [19] on the regions generated by [2]. The node energies (orange links) are constructed by the pre-learned
person and background models (orange nodes). The pairwise energies are constructed on the adjacent regions by measuring their shared
boundaries (white lines in the image) and compatibilities. Note that we omit the hierarchical structure for ease of illustration. On the left
are an exemplar image (top) and its segmentation mask (bottom). The exemplar is also segmented into regions by [2] and each region is
assigned a label based on the mask. We find the best match (blue links) in the exemplar image for each region of the test image. Based on
their labels, we incorporate the node energy of each region with the matching similarities. We solve a graph cut to this augmented energy
function for generating an exemplar cut solution, which is shown on the bottom right. As the test image shares similar appearance with
the exemplar image, the resulting segmentation has a very high accuracy. The original MAP solution on the top right instead misses many
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small targets and one occluded person.

Max-Margin Learning. The pylon model can be learned
in a max-margin fashion. The optimization is formulated
as,

1., C
m“lln§\|w|| +N;€m st. V& >0

max[A(x™ x) ~E(x,y ™ w) + Ex" y™Ww)] < &,

W3 Z 0
&)
where x denotes all the binary variables {x!,x?}, y rep-
resents all the feature vectors {h;;b,;} and w is the full
parameter vector [wy;wsa;ws]. We develop a stochastic
gradient (sub-gradient) descent algorithm for efficiently op-
timizing the max-margin learning objective in (5).

3.2. Hybrid Parametric/Nonparametric Model

Pylon models have been demonstrated to be effective
for figure/ground segmentation and semantic scene pars-
ing [19], due to their ability of selecting larger regions in
the segmentation tree to reduce the classification ambiguity.
When the pylon models are applied to object class segmen-
tation, their MAP solution becomes less effective in deal-
ing with complex object appearance and their interactions.
On one hand, the Markov random field assumption about
image structures may be invalid for the objects with het-
erogeneous appearance. For example, the strong edges be-
tween different body parts and partial occlusions break the
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smoothness assumption while the cluttered background vi-
olates the discontinuity assumption around object bound-
aries. On the other hand, the max-margin objective and the
use of slack variables in (5) usually introduce bias to the
process of model learning, although they improve the gen-
eralizability to unseen images and the resistance to noises.

On the contrary, exemplar based nonparametric ap-
proaches, which involve no model assumptions and train-
ing process, can generate segmentations by image matching
and prior transfer. Although they are flexible of exploiting
prior knowledge contained in exemplars, the nonparametric
approaches still face the challenge of filtering the matching
results due to the large variance of exemplars.

We herein present a hybrid method by integrating the py-
lon model with exemplars. Figure 3 illustrates the proposed
algorithm. To segment an input image I, we first com-
pute its parametric energy from the learned pylon model
through (2), which provides a basis of generating smooth
segmentations close to the ground truth. The exemplars
are then used to generate segmentation hypotheses different
from the MAP solution, through region matching. We rep-
resent an exemplar by an image 1(") and its segmentation
£("), and denote the matching energy by A(f, £(™); I, 1),
Therefore, a segmentation hypothesis can be generated by
solving graph cut to the augmented energy function,

E(f,£M) = (1 = MU(£) + AA(F, £)) + V(£),  (6)



where A € [0, 1] controls the tradeoff between the paramet-
ric and nonparametric energies. In this exemplar cut energy
function (6), we actually resolves the learning bias of pylon
model by the matching variance with exemplars.

3.3. K-Nearest Neighbor Region Matching

In this work, we compute the nonparametric matching
energy function A(f, (™)) by using the K-NN matching al-
gorithm. We parse an exemplar image 7(™) into a set of hier-
archical regions S("). For each region, we extract a feature
vector hgn) and assign a ground truth label fi(") from its an-
notated object masks. The exemplar is thus represented by a
set of feature-label pairs {(hl(-n), fi("))}i:1,27,,,,2L_1. Note
that we assign non-zero labels to regions that fall entirely
into ground truth foreground, which increases the chance of
recovering object parts. We assume that segments are inde-
pendent of each other so that we approximate the matching
energy by

2L—-1

A(F,£0)) = > A(fi, £0). @)
=1

For each region ¢ in the test image, we retrieve K best seg-
ments in the exemplar based on their feature similarities,

(B £tz KNN(hg, (B, £, (8)

We define the matching energy of region ¢ by the K-NN
output,

K
1 0 n
A(fi) = _EE "<hy,h("> -0 =) )
k=1

This matching energy can be easily merged into the para-
metric unary term (3) so that the augmented energy func-
tion (6) remains the same form as the original energy func-
tion (2) and can be solved by the inference algorithm de-
veloped in [19]. Figure 4 shows the foreground confidence
maps of pylon model and K-NN matching, and their com-
plementary effects.

4. Experiments

We present the experimental results using the Graz-
02 [22] and PASCAL VOC 2010 datasets [9] with evalu-
ations of the proposed algorithm against several state-of-
the-art class-specific methods for generating segmentation
hypotheses, i.e., the parametric min cut (PMCut) method,
the diverse M Best solutions (MBest) [3] and the multiple
choice learning (MCL) approach [12]. We implement these
three algorithms based on the learned pylon model. We use
the intersection/union overlap scores to evaluate the upper
bound performance of these segmentation algorithms.
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(a) Input

(c) Pylon confidence map (d) K-NN confidence map
Figure 4. Foreground confidence maps of the pylon model and K-
NN matching method. The confidence maps are computed from
the node energy. The K-NN matching recovers small targets at
a distance and a partial figure near the right boundary, which is
missed by the pylon model. The pylon model removes the false
positives of the K-NN matching method around the tree region.

4.1. Graz-02

Setup. The Graz-02 dataset includes 3 object classes (bike,
car and person) and background images, which is challeng-
ing for object segmentation due to large pose variations,
scale changes and partial occlusions. Each class consists
of 300 images I(™) of 640 x 480 pixels and all the images
are annotated by foreground masks. The odd-numbered im-
ages per class are used for training pylon models and for
exemplars, and the rest for evaluation. We set the parame-
ter A = 0.9 as the tradeoff of parametric and nonparametric
energy, and the parameter K = 7 as the number of nearest
neighbors in the K-NN matching method'.
Representations. We represent an image by a bottom-up
segmentation tree using the gPb algorithm [2]. The num-
ber of segments is around 7000 on average. Each seg-
ment S; is represented by three kinds of features h;, =
[WSTET; peolor, shaPe] - We extract dense SIFT descrip-
tors using the VLFeat toolbox [25] and train a codebook
of size 512 using all the training images of three classes.
The SIFT histogram hy/#7 is computed using the local-
ity constrained linear coding method [26] and max pool-
ing. The color histogram h$°'°" is computed from a color
codebook of size 128 by assigning each RGB pixel to its
closest codeword. The contour shape descriptor hi™* is
extracted from a spatial pyramid of oriented gPb edge re-
sponses [11]. We map the concatenated feature vectors to a
high-dimensional space with the explicit x? kernel [25].
Ground truth labeling. To train the pylon models and use
exemplars, we need to determine the ground truth labels for

'We empirically determine these values by evaluating A € [0.7, 1.0]
and K = [5,9].



each region in a training image, generated by the gPb algo-
rithm. Due to the errors from the gPb contour detection and
blurred boundaries of annotated masks, the average overlap
score of the pylon ground truth segmentations with anno-
tated masks is 87.8%.

Results. We use the learned pylon models of each class to
generate MAP segmentations of test images. For the diverse
MBest approach, we observe that its performance improves
slightly when the number of solutions is close to 30, thereby
its overlap scores are reported by using 30 solutions per im-
age. For the MCL method, we train up to 5 sub-models for
each class and observe some sub-models are underutilized
(as no training exemplars belong to some sub-models). For
the PMCut, we follow the method in [13] and draw 41 sam-
ples by varying the constant parameter from -2.0 to 2.0 with
the increment 0.1. By using exemplar cuts, we generate 150
raw segmentation hypotheses per test image. Note that all
these methods generate redundant segmentations. We eval-
uate their performance from raw results without considering
post-processing to merge the duplicates and remove the low
quality ones. Table 1 shows the overlap scores of segmen-
tation approaches by using the “oracle” evaluation proto-
col [3]. The exemplar cut algorithm outperforms the MAP
solution by 15.3% on average and the second best MCL ap-
proach by 5.1%. We present some qualitative results in

Table 1. “Oracle” overlap scores in the Graz-02 dataset.

overlap Bicycle Car Person mean
MAP 66.4 614 60.6 62.8
MBest 69.8 67.3  66.0 67.7
PMCut 73.9 70.6  70.7 71.7
MCL 73.1 75.1  71.0 73.0
ExemplarCut | 77.4 789 78.0 78.1

Figure 5, and more results can be found in the supplemen-
tary material. It shows that the segmentation hypotheses
generated by exemplar cut are usually able to deal with oc-
clusions, suppress the background clutters and recover the
missing targets.

We generate up to 150 segmentations per test image.
Moreover, we are interested in the performance of exemplar
cut segmentations when the MAP solutions fail to detect the
targets. We consider the hypotheses as true positives if their
overlap with ground truth are greater than 50%; otherwise
as false positives. In Figure 6, we compare the recall rates
of segmentation hypotheses at different MAP quality levels.
When the MAP overlap score is smaller than 10%, almost
losing the targets, the hypotheses generated by exemplar cut
(red curves) achieve recall rates 75.0%, 52.6% and 46.7%
for bike, car and person datasets. The overall recall rates are
97.3%, 88.7% and 90.0% for bike, car and person datasets,
respectively.
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Figure 5. Segmentation results on the Graz-02 test set. We present
two representative images per class for comparisions. Bikes, cars
and people are highlighted by green, blue and red masks, respec-
tively. From left to right, the segmentations are generated by
MBest, MCL, PMCut and ExemplarCut. Best viewed in color.
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Figure 6. Recall rates at different MAP quality levels on the Graz-
02 datasets. From the left to the right, we compare the evaluated
four algorithms for bike, car and person, respectively.

4.2. PASCAL VOC 2010

Setup. In the PASCAL VOC 2010 dataset, each of the train-
ing, validation and test sets includes 964 annotated images
from 20 object categories and one background class. The
images in this dataset may include multiple objects from
several categories. We use the training set to learn pylon
models, and evaluate the proposed algorithm on the vali-
dation set. For class-specific object segmentations, we first
parse the multi-class segmentation masks into class-specific
object masks, and then train a pylon model on the positive
exemplars for each class.

Implementations. Similar to the Graz-02 experiments, we
represent an image with a bottom-up segmentation tree us-
ing the gPb method and represent each segment by SIFT,



Table 2. “Oracle” class-wise overlap scores on the VOC 2010 validation set.
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52.9 19.1 35.6 39.3 23.3 49.9 43.1 47.4 11.8 56.9 36.8 45.1 50.6 44.3 37.9 20.9 58.1 34.5 48.9 33.1 39.5
57.9 29.3 45.7 36.1 32.8 57.4 50.9 61.0 23.9 68.8 49.7 60.1 58.5 55.1 50.0 20.9 65.4 45.9 61.1 35.7 48.3
60.3 24.3 47.9 51.0 39.2 67.1 51.6 66.4 22.7 69.3 50.7 55.9 56.7 55.7 50.3 29.6 71.6 45.2 62.7 43.9 51.1
66.8 28.0 66.6 60.7 44.1 71.1 59.8 72.7 34.5 76.4 71.4 68.9 68.2 64.9 63.9 39.5 71.0 62.1 70.4 55.2 60.8

color and shape features. Considering the large appearance
variations, we train a SIFT codebook of size 8096. We
use the same method in the Graz-02 experiments to obtain
ground truth pylon labelings and use the same values for the
parameter A and K. For exemplar cut of each class, we use
the positive training images as exemplars and thus gener-
ate about 50 segmentation hypotheses per class on average.
We implement the PMCut method by varying the parameter
from -2 to 2 by increasing 0.1 each step. For the MCL algo-
rithm, we choose to initialize one predictor per 10 images
since each class has different training images. We segment
one test image using the models from 20 classes, because
we have no information about the object categories before
running segmentation algorithms.

Results. We evaluate the quality of segmentation hypoth-
esis sets by “oracle” overlap scores in Table 2. In the top
panel, we present the overlap scores for class-specific ob-
ject segmentation hypotheses. The exemplar cut performs
the best on 18 of 20 classes, and achieves 60.8% average
overlap score, with an improvement over the second best,
PMCaut, by 9.7%. To elucidate the quality of our segmenta-
tion hypotheses, we present one image per class and com-
pare its exemplar cut and the second best segmentation in
Figure 7. In order to see the potentials of class-specific hy-
potheses for category level object segmentation, we com-
pute the upper bound overall overlap score in Table 3. For a

Table 3. “Oracle” multi-class overlap scores on the VOC 2010 val-
idation set.

MAP
44.86

MCL
54.3

PMCut
58.8

MBest [3]
48.0

ExemplarCut
68.7

overlap

test image, we select the best segmentation from each class
as its category confidence map. The class segmentation is
thus given by the maximum confidence score from all the
classes at pixels. Intuitively, if there is an oracle segmenta-
tion selector, we can achieve 68.7% overlap accuracy on the
PASCAL VOC 2010 validation set. This result suggests the
potential of exemplar cut for category level object segmen-
tation. Note that the MBest result [3], is computed from a
multi-class CRF model [18]. We do not present the MBest
result by the pylon model because we find it difficult to tune
a single dissimilarity parameter for all the classes.
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4.3. Discussions

The number of segmentation hypotheses for exemplar
cut equals the number of exemplars (i.e., 50). In both Graz-
02 and VOC 2010 datasets, exemplars are limited for each
class. Thus it is convenient to use all of them to gener-
ate hypotheses. When the number of exemplars is large,
it will be infeasible to use all the exemplars. Similar to
the algorithms for scene parsing [21, 24], we can also use
image retrieval techniques to find the most relevant exem-
plars for hypothesis generation. The segmentation results in
this work may include some isolated false negatives in the
background area and duplicate segments from different hy-
potheses. It will be worthwhile developing segment filters
to remove noise and redundancy [6] before using them for
classification purposes.

5. Conclusions

We present a novel exemplar cut algorithm for generat-
ing class-specific object segmentation hypotheses. It com-
bines a learning based parametric segmentation model and
a matching based nonparametric segmentation algorithm in
a principled way. Experimental results on the Graz-02 and
PASCAL VOC 2010 datasets demonstrate that the proposed
exemplar cut algorithm achieves favorable results in terms
of visual quality and accuracy. In addition, the results show
that the proposed algorithm is especially effective when
the MAP approaches fail to generate good segmentation
results on images with complicated scenes. Acknowl-
edgements The work is supported partly by NSF CAREER
Grant #1149783 and NSF IIS Grant #1152576.

References

[1] P. Arbelaez, B. Hariharan, C. Gu, S. Gupta, L. Bourdev, and
J. Malik. Semantic segmentation using regions and parts. In
CVPR, 2012.

P. Arbelaecz, M. Maire, C. Fowlkes, and J. Malik. Con-
tour detection and hierarchical image segmentation. PAMI,
33(5):898-916, 2011.

D. Batra, P. Yadollahpour, A. Guzman-Rivera, and
G. Shakhnarovich. Diverse m-best solutions in Markov ran-
dom fields. In ECCV, 2012.

(2]

(3]



MCL, 71.0

PMCut, 92.6

€ 19

i

MCL, 45.2

MCL, 66.5
CLJ

exemplar cut and the right image is produced by the most competing algorithm (MCL or PMCut). For the bicycle image, we present a case
that exemplar cut is slightly worse than MCL. For the sheep image, we present a failure case of exemplar cut where PMCut performs the
best. The masks for different classes follow the VOC color codes. Best viewed in color.

(4]

(3]
(6]

[7]

(8]

191

[10]

(11]

[12]

[13]
[14]

[15]

L. Bertelli, T. Yu, D. Vu, and B. Gokturk. Kernelized struc-
tural svm learning for supervised object segmentation. In
CVPR, 2011.

E. Borenstein and S. Ullman. Class-specific, top-down seg-
mentation. In ECCV, 2002.

J. Carreira and C. Sminchisescu. Constrained parametric
min-cuts for automatic object segmentation. In CVPR, 2010.
P. Chaudhuri, A. K. Ghosh, and H. Oja. Classification based
on hybridization of parametric and nonparametric classifiers.
PAMI, 31(7):1153 — 1164, July 2009.

I. Endres and D. Hoiem. Category independent object pro-
posals. In ECCV, 2010.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2010 (VOC2010) Results. http://www.pascal-
network.org/challenges/VOC/voc2010/workshop/index.html”.
B. Fulkerson, A. Vedaldi, and S. Soatto. Class segmentation
and object localization with superpixel neighborhoods. In
ICCV, 2009.

C. Gu, J. J. Lim, P. Arbelaez, and J. Malik. Recognition
using regions. In CVPR, 2009.

A. Guzman-Rivera, D. Batra, and P. Kohli. Multiple choice
learning: Learning to produce multiple structured outputs. In
NIPS, 2012.

J. Kim and K. Grauman. Shape sharing for object segmenta-
tion. In ECCV, 2012.

V. Kolmogorov, Y. Boykov, and C. Rother. Applications of
parametric maxflow in computer vision. In /CCV, 2007.

V. Kolmogorov and R. Zabih. What energy functions can be
minimized via graph cuts. PAMI, 26:65-81, 2004.

864

[16]
[17]

(18]

(19]
(20]
(21]
(22]
(23]
[24]

(25]

[26]

[27]

(28]

D. Kuettel and V. Ferrari. Figure-ground segmentation by
transferring window masks. In CVPR, 2012.

M. P. Kumar, P. Torr, and A. Zisserman. Obj cut. In CVPR,
2005.

L. Ladicky, C. Russell, P. Kohli, and P. Torr. Associative hi-
erarchical crfs for object class image segmentation. In /CCV,
2009.

V. Lempitsky, A. Vedaldi, and A. Zisserman. A pylon model
for semantic segmentation. In NIPS, 2011.

F.Li, J. Carreira, and C. Sminchisescu. Object recognition as
ranking holistic figure-ground hypotheses. In CVPR, 2010.
C. Liu, J. Yuen, and A. Torralba. Nonparametric scene pars-
ing via label transfer. PAMI, 33(12):2368-2382, 2011.

A. Opelt, A. Pinz, M. Fussenegger, and P. Auer. Generic ob-
ject recognition with boosting. PAMI, 28(3):416-431, 2006.
A. Rosenfeld and D. Weinshall. Extracting foreground
masks towards object recognition. In /ICCV, 2011.

J. Tighe and S. Lazebnik. Superparsing: Scalable nonpara-
metric image parsing with superpixels. In ECCV, 2010.

A. Vedaldi and B. Fulkerson. VLFeat: An open and portable
library of computer vision algorithms. http://www.
vlfeat.org/, 2008.

J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong.
Locality-constrained linear coding for image classification.
In CVPR, 2010.

W. Xia, Z. Song, J. Feng, L. FE. Cheong, and S. Yan. Seg-
mentation over detection by coupled global and local sparse
representations. In ECCV, 2012.

C. Yanover and Y. Weiss. Finding the m most probable con-
figurations using loopy belief propagation. In NIPS, 2003.



