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Abstract

Object functionality refers to the quality of an object that
allows humans to perform some specific actions. It has
been shown in psychology that functionality (affordance)
is at least as essential as appearance in object recogni-
tion by humans. In computer vision, most previous work
on functionality either assumes exactly one functionality for
each object, or requires detailed annotation of human pos-
es and objects. In this paper, we propose a weakly super-
vised approach to discover all possible object functionali-
ties. Each object functionality is represented by a specific
type of human-object interaction. Our method takes any
possible human-object interaction into consideration, and
evaluates image similarity in 3D rather than 2D in order
to cluster human-object interactions more coherently. Ex-
perimental results on a dataset of people interacting with
musical instruments show the effectiveness of our approach.

1. Introduction
What is an object? Psychologists have proposed two

popular philosophies of how humans perceive objects. One

view asserts that humans perceive objects by their physical

qualities, such as color, shape, size, rigidity, etc. Anoth-

er idea was proposed by Gibson [15], who suggested that

humans perceive objects by looking at their affordances.

According to Gibson and his colleagues [14, 2], affordance

refers to the quality of an object or an environment which

allows humans to perform some specific actions. Recent

studies [23] have shown that affordance is at least as impor-

tant as appearance in recognizing objects by humans. An

example is shown in Fig.1.

In the field of computer vision, while most previous work

has emphasized modeling the visual appearances of ob-

jects [11, 3, 10], research on object/scene affordance (al-

so called functionality1) is attracting more and more re-

searchers’ attention recently [17, 20, 16, 33, 13]. On the

1There are subtle differences between affordance and functionality in

psychology. But in this paper, we use them interchangeably.

Figure 1. Humans can use af-

fordance to perceive objects. In

this image, although the violin

is almost invisible, most humans

can easily conclude this is an im-

age of a human playing a violin

based on the way the human in-

teracting with the object.

one hand, observing the functionality of an object (e.g. how

humans interact with it) provides a strong cue for us to rec-

ognize the category of the object. On the other hand, infer-

ring object functionality itself is an interesting and useful

task. For example, one of the end goals in robotic vision

is not to simply tell a robot “this is a violin”, but to teach

the robot how to make use of the functionality of the violin

- how to play it. Further, learning object functionality al-

so potentially facilitates other tasks in computer vision (e.g.

scene understanding [4, 13]) or even the other fields (e.g.

exploring the relationship between different objects [9]).

In this work, our goal is to discover object functionality

from weakly labeled images. Given an object, there might

be many ways for a human to interact with it, as shown

in Fig.2. As we will show in our experiments, these inter-

actions provide us with some knowledge about the object

Figure 2. There are multiple possible modes of interactions be-

tween a human and a given object. Some interactions correspond

to the typical functionality of the object while others do not.

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.312

2512

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.312

2512



and hence reveal the functionalities of those objects. Fur-

thermore, while inferring these types of interactions, our

method also builds a model tailored to object detection and

pose estimation for each specific interaction.

We propose an iterative model to achieve our goals. Us-

ing violin as an example, given a set of images of human-

violin interactions, we discover different types of human-

violin interactions by first estimating human poses and de-

tecting objects, and then clustering the images based on

their pairwise distances in terms of human-object interac-

tions. The clustering result can then be used to update the

model of human pose estimation and object detection, and

hence human-violin interaction. Compared with previous

human-object interaction and affordance work, we highlight

the following properties of our approach:

• Same object, multiple interactions: Our method

takes into account the fact that humans might inter-

act with the same object in different ways, with on-

ly some typical interactions corresponding to objec-

t affordance, as shown in Fig.2. This differs from

most previous approaches that assume a single type of

human-object interaction for each object [17, 20].

• Weak supervision: Comparing with [18, 33], our

method does not require annotations of human poses

and objects on every training image. We only need a

general human pose estimator and a weak object de-

tector trained from a small subset of training images,

which will be updated by our iterative model.

• Unconstrained human poses: Rather than being lim-

ited to a small set of pre-defined poses such as sitting

and reaching [16, 13], our method does not have any

constraint on human poses. This allows us to learn a

larger variety of human-object interactions.

• Bridging the gap between 2D and 3D: Considering

that the same human-object interaction might lead to

very different 2D appearances (Fig.3) because of dif-

ferent camera angles from which the images are taken,

we convert 2D human poses to 3D and then measure

the similarity between different images. This allows

us to obtain more semantically meaningful clusters as

compared to previous work [33, 25].

• Aiming for details: The functionality we learn refer-

s to the details of human-object interactions, e.g. the

pose of the human, the object, as well as how the ob-

ject should be used by humans. This makes our work

different from most previous functionality work which

mainly focuses on object detection [20, 25].

The rest of the paper is organized as follows. Sec.2 intro-

duces related work, then Sec.3 elaborates on our approach

of weakly supervised functionality discovery. Sec.4 demon-

strates experimental results.

Figure 3. The same human pose might lead to very different ap-

pearances and 2D spatial configurations of body parts because of

variations in camera angle.

2. Related Work

Functionality for object recognition. Recently, function-

ality has been used to detect objects [17, 20], where human

gestures are recognized and treated as a cue to identify ob-

jects. In [16], 3D information is deployed such that one

can recognize object affordance even when humans are not

observed in test images. Such approaches assume that an

object has the same functionality across all images, while

our method attempts to infer object functionality given that

humans might interact with the same object in many ways.

Human context. Context has been widely used in various

computer vision tasks [26, 22]. Specifically, because of the

advances in human detection [3, 10] and human pose esti-

mation [1, 30], humans are frequently used as cues for other

tasks, such as object detection (details below) and scene re-

construction [19, 4, 13]. Humans can also serve as context

for each other to obtain performance improvement on all

humans [6]. In this paper, we use human poses as context

to discover functionalities of objects.

Human-object interaction. Our method relies on model-

ing the interactions between humans and objects. Most such

approaches first estimate human poses [1, 30] and detect

objects [10], and then model human-object spatial relation-

ships to improve action recognition performance [5, 18, 33].

There are also approaches that directly train components

of human-object interactions [8]. While those approach-

es usually require detailed annotations on training data, a

weakly supervised approach is adopted in [25] to infer the

spatial relationship between humans and objects. While our

method also uses weak supervision to learn the spatial rela-

tionship between humans and objects, it takes into account

that humans can interact with the same object in different

ways, which correspond to different semantic meanings.

Semantic image clustering. In this paper, we use a clus-

tering approach to discover different human-object interac-

tions. Unsupervised learning of object classes has been ex-

plored in object recognition [28]. Recently, unsupervised

object clustering [28] has been used to improve the perfor-

mance of object classification. In this work, we cluster hu-

man action images in 3D, where the clustering results are

more consistent with human perception than those from 2D.
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Figure 4. An overview of our approach (“violin” as an example).

Given a set of images of human-violin interactions, our goal is to

figure out what are the groups of interactions between a human

and a violin, and output a model for this action.

3. Algorithm
3.1. Overview

As shown in Fig.2, there are many possible ways for a

human to interact with an object. Different interactions,

such as playing a violin or using a violin as a weapon, cor-

respond to different object functionalities. Our goal is to

discover those interactions from weakly supervised data.

An overview of our approach is shown in Fig.4. Given

a set of images of humans interacting with a certain object

and an initial model of object detection and pose estima-

tion, we propose an iterative approach to discover different

types of human-object interactions and obtain a model tai-

lored to each interaction. On the one hand, given a model of

object functionality, we detect the object, estimate the hu-

man pose, convert 2D key points to 3D, and then measure

the distance between each pair of images (Sec.3.2). The

pairwise distance can then be used to decide which inter-

action type does each image belong to (Sec.3.3). On the

other hand, given the clustering results, both the object de-

tectors and human pose estimators can be updated so that

the original model can be tailored to specific cases of object

functionality (Sec.3.4).

3.2. Pairwise distance of human-object interactions

To reduce the semantic gap between human poses and

2D image representation (shown in Fig.3), we evaluate the

pairwise distance of human-object interactions in the three-

dimensional space. The pipeline we use to compute simi-

larity between two images is shown in Fig.5. First, the 2D

locations and orientations of objects and human body part-

s are obtained using off-the-shelf object detectors [10] and

human pose estimation [30] approaches. Coordinates of 2D
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���������	
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Figure 5. The pipeline we use to compute the similarity between

two images of human-object interaction. We first detect objects

and estimate human poses in each image, and then convert the key

point coordinates in 3D and measure image similarity.

key points are then converted to 3D [27], and we evaluate

pairwise distance between images by aligning 3D perspec-

tives and computing the sum of squared distances between

the corresponding body parts [32] and objects.

Object detection. We use the deformable parts model [10]

to detect objects. To get more detailed information about

human-object interactions, our detector also takes object

orientation into consideration, as shown in Fig.4. At train-

ing time, we provide rectified bounding boxes with upright

objects as positive training examples, and treat all the other

image windows without the object or with non-upright ob-

jects as negative examples. During detection, we rotate the

image using 12 different orientations and apply the trained

detector in each case. Non-maximum suppression is done

by combining the detection results on all orientations.

2D pose estimation. We use the flexible mixture-of-

parts [30] approach for 2D human pose estimation. This

approach takes the foreshortening effect into consideration,

which facilitates the generation of 3D poses. We consider

six body parts for the upper body of humans: head, torso,

left/right upper arms, and left/right lower arms, as shown in

Fig.5. For full-body humans, we also consider left/right up-

per legs and left/right lower legs. To improve performance,

we replace the part filters with strong body-part detectors

trained using the deformable parts model [10].

3D reconstruction of human pose. Because of camera

angle changes, the same human pose might lead to very dif-

ferent 2D configurations of human body parts, as shown in

Fig.3. Therefore, we use a data-driven approach to recon-

struct 3D coordinates of human body parts from the result

of 2D pose estimation [27]. By leveraging a corpus of 3D

human body coordinates (e.g. CMU MOCAP), we recover
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3D human body coordinates and camera matrices using a

sparse linear combination of atomic poses. For the 3D loca-

tions of detected objects, we search the nearest body parts

in 2D space, and average their 3D locations as the locations

of objects in 3D space.

Pairwise distance computation. It has been shown that

pose features perform substantially better than low-level

features in measuring human pose similarities [12]. Follow-

ing this idea and inspired by [32], we measure the distance

of two human poses by rotating one 3D pose to match the

other, and then consider the point-wise distance of the ro-

tated human poses. Mathematically, let M1 and M2 be the

matrices of the 3D key-point locations of two images x1

and x2. We find a rotation matrix R∗ such that

R∗ = argmin
R

‖M1 −M2R‖2, (1)

and the similarity between M1 and M2 can be computed by

D(x1,x2) = ‖M1 −M2R
∗‖2. We further incorporate the

object in our similarity measure by adding the object as one

more point in M and assuming that the depth of the object

is the same as the hand that is closest to the object.

3.3. Clustering based on pairwise distance

The goal here is to cluster the given images so that

each cluster corresponds to one human-object interaction,

as shown in Fig.4. However, the task is not straightforward,

since we only have the pairwise distance between images,

rather than having a feature representation for each image.

We use an approach similar to spectral clustering [21] to

address this issue. First, we use kernel PCA [29] to project

each image x into a principal component space while keep-

ing the pairwise image similarity computed from Sec.3.2.

Denote the N × N similarity matrix as K, where Kij =
1

D(xi,xj)+ε , ε > 0 is the similarity between xi and xj . As-

suming an unknown feature representation for xi as Φ(xi),

we have the covariance matrixC = 1
N

∑N
i=1 Φ(xi)Φ(xi)

T .

Performing PCA, we have λkvk = Cvk, where λk is the

k-th largest eigenvalue of C. There also exist coefficients

αk,1, · · · , αk,N such that

vk =
N∑

i=1

αk,iΦ(xi). (2)

Since Kij = Φ(xi)
TΦ(xj), the projection of Φ(xl) on vk

can be written as

zl,k = vT
k Φ(xl) =

N∑

i=1

αk,iKil. (3)

According to [29], αk = [αk,1, · · · , αk,N ]T can be com-

puted by solving

Nλkαk = Kαk, s.t. αT
kαk = 1/λk. (4)

Given the projected vector zi for each image xi, we per-

form k-means clustering on all i = 1, · · · , N to form clus-

ters of human-object interactions. Our approach chooses an

appropriate number of clusters for every step of the process

by using the standard elbow method - a cluster number is

chosen such that adding another cluster does not give much

decrement of the k-means objective. Since the above com-

putation requires K to be positive semidefinite, we use a

matrix approximation to replace K with K̂ such that

K̂ = argmin ‖K− K̂‖2, (5)

where K̂ is positive semidefinite. We also assumed Φ(xi)
to be centered in the above derivation. Please refer to [29]

for details of how to drop this assumption.

3.4. Updating the object functionality model

In each iteration, we update the model of object detec-

tion and pose estimation for each cluster of human-object

interaction. In each cluster, we re-train the models by using

object detection and pose estimation results from this iter-

ation as “ground-truth”. Although there will be mistakes

in these detection and estimation results, putting all the im-

ages together can still provide us more accurate priors that

are tailored to each cluster.

In the step of object detection and pose estimation in the

next iteration, we apply all the models from different clus-

ters, and choose the one with the largest score of object de-

tection and pose estimation. The detectors and estimators

from different clusters are calibrated by fitting a probability

distribution to a held-out set of images, as in [24].

4. Experiments
Dataset and experiment setup. For performance evalua-

tion, we need a dataset that contains different interaction-

s between humans and each object. The People Playing

Musical Instrument (PPMI) dataset [31] contains images

of people interacting with twelve different musical instru-

ments: bassoon, cello, clarinet, erhu, flute, French horn,

guitar, harp, recorder, saxophone, trumpet, and violin. For

each instrument, there are images of people playing the in-

strument (PPMI+) as well as images of people holding the

instrument with different pose, but not performing the play-

ing action (PPMI-). We use the normalized training images

to train our models, where there are 100 PPMI+ images and

100 PPMI- images for each musical instrument.

For each instrument, our goal is to cluster the images

based on different types of human-object interactions, and

obtain a model of object detection and pose estimation for

each cluster. Ideally, images of humans playing the instru-

ments should be grouped in the same cluster. To begin with,

we randomly select 10 images from each instrument and

annotate the key point locations of human body parts as
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Instrument
Object detection Pose estimation

Baseline Ours Baseline Ours

Bassoon 16.4% 21.1% 43.1% 45.5%

Cello 41.9% 44.8% 48.1% 57.4%

Clarinet 11.1% 15.8% 52.0% 55.5%

Erhu 28.2% 33.1% 55.8% 57.8%

Flute 20.3% 23.1% 57.2% 59.7%

French horn 43.2% 43.7% 48.9% 55.1%

Guitar 45.5% 48.0% 40.8% 45.5%

Harp 30.6% 34.6% 41.0% 44.5%

Recorder 13.0% 16.9% 43.2% 51.5%

Saxophone 36.0% 41.9% 54.8% 60.7%

Trumpet 22.1% 24.7% 43.1% 48.6%

Violin 33.2% 39.5% 54.3% 63.5%

Overall 28.5% 32.3% 48.5% 53.8%

Table 1. Results of object detection and human pose estimation.

“Baseline” indicates the results obtained by the original detec-

tors [10] and the general pose estimator [30]. “Ours” indicates the

results from the final models obtained from our iterative approach.

well as object bounding boxes, and train a detector [10] for

each musical instrument and a general human pose estima-

tor [30]. The object detectors and human pose estimator

will be updated during our model learning process.

Object detection and pose estimation. Table 1 shows the

results of object detection and pose estimation. For each

musical instrument, we apply the “final” object detectors

and pose estimators obtained from our method to the test

PPMI images. For each image, we consider the models that

correspond to the largest confidence score. We compare our

method with the initial baseline models that are trained for

all musical instruments. An object detection result is con-

sidered to be correct if the intersection of the result and the

ground truth divided by their union is larger than 0.5, as

in [7]. For human pose estimation, a body part is consid-

ered correctly localized if the end points of its segment lie

within 50% of the ground-truth segment length [12].

The results show that our method outperforms the base-

lines by a large margin. This demonstrates the effectiveness

of iteratively updating pose estimators and object detectors.

Furthermore, our pose estimation result (53.8%) even per-

forms slightly better than that in [33] (52.0%), where the

models are trained with all PPMI training images annotated.

The method in [33] (37.0%) obtains better object detection

result than ours (32.3%), but was solving a simpler problem

where object orientations were ignored.

Discovering object functionality. The PPMI dataset con-

tains ground truths for which images contain people playing

the instrument (PPMI+) and which images contain people

only holding the instrument but not playing (PPMI-). This

provides us the opportunity to evaluate the quality of clus-
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Figure 6. Average num-

ber of images per clus-

ter on all musical instru-

ments. The clusters are

ordered by the number of

images they contain.

tering results. For each instrument, ideally, there exists a big

cluster of humans playing the instrument, and many other

clusters of humans holding the instruments but not play-

ing. To get such clusters, we make use of the prior knowl-

edge that there are 100 PPMI+ images for each instrument.

We choose the number of clusters such that the number of

images in the largest cluster is as close to 100 as possible.

Fig.6 visualizes the average distribution of number of im-

ages in each cluster on all musical instruments.

We compare our clustering approach with two baselines.

One is based on low-level image descriptors, where we rep-

resent an image with HOG [3] descriptors and then use P-

CA to reduce the feature dimension to 35, and then perform

image clustering in the 35-dimensional space. In the other

baseline, we cluster images based on 2D positions of key-

points of objects and human poses without converting them

to 3D. For these two methods, we also choose the number of

clusters on each instrument such that the number of images

in the largest cluster is as close to 100 as possible.

For each instrument, we assume only the largest cluster

contains images of people playing the instrument. A com-

parison of the accuracy of the different methods is shown

in Fig.7. We observe that using 2D key points perform-

s on par with low-level HOG features. The reason might

be due to the errors in 2D pose estimation and the lack of

accurate pose matching because of camera angle changes.

On almost all the instruments, our method based on 3D key

point locations significantly outperforms both low-level fea-

tures and 2D key point locations. The only exception is on

French horn, where all three approaches have similar per-

formance. This is due to the large size of French horns, and

the fact that the human poses as well as human-object spa-

tial relationship are very similar in images of people playing

French horn and people holding French horn but not play-

ing. Finally, the performance can be further improved by

combining 3D key points and low-level HOG features, as

shown in Fig.7.

Affordance visualization. Examples of image clusters

obtained by our approach are shown in Fig.8. On the in-

struments such as flute and trumpet, we are able to separate

PPMI+ images from the others with high accuracy, because

of the unique human poses and human-object spatial rela-

tionships on PPMI+ images. This partly explains why we
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Figure 7. Comparison of our functionality discovery method with the approaches that based on low-level features or 2D key point locations.
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Figure 8. Examples of

image clusters obtained

by our approach. For

each instrument, images

with the same border

color belong to the same

cluster. Solid lines in-

dicate images of people

playing the instrumen-

t (PPMI+) in the ground

truth, while dashed lines

indicate images of peo-

ple holding the instru-

ment but not playing it

(PPMI-).

can obtain high accuracy on those instruments in Fig.7. The

poor clustering performance on French horn can also be ex-

plained from this figure, where the spatial relationship be-

tween humans and French horns are very similar in images

of all types of interactions.

Fig.9 visualizes the heatmap of the locations of human

hands with respect to the musical instruments, as well as

the locations of objects with respect to the average human

pose in different interactions. On most instruments, we ob-

serve more consistent human hand locations on the clusters

of people playing the instrument than that on the other clus-

ters. However, we still observe some points that are fre-

quently touched by the humans even for the cases of “hold-

ing but not playing” for some instruments, e.g. flute and

guitar as shown in Fig.10. This shows some general rules

when humans interact with a specific type of object, no mat-

ter what the functionality of the interaction is. Interestingly,

people usually touch different parts of French horn when

they are playing or not playing it, as shown in Fig.8.

Predicting objects based on human pose. Our method

learns the interaction between humans and objects. Given

a human pose, we would like to know what object the hu-

man is manipulating. On the PPMI test images, we apply

all the human pose models to each image, and select the hu-

man that corresponds to the largest score. We say that the

object involved in the selected model is manipulated by this
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Figure 9. (a) Heatmaps of the locations of human hands with re-

spect to musical instruments. (b) Heatmaps of the locations of ob-

jects with respect to the average human pose. For each instrument,

“play” corresponds to the largest cluster, while “with” corresponds

to all other clusters. We only show results from seven instruments

due to space limitation. This figure is best viewed in color.

human. We only consider PPMI+ test images in this exper-

iment. We compare our approach with a baseline that run-

s deformable parts models [10] of all instruments on each

image, and output the instrument that corresponds to the

largest calibrated score. The results are shown in Table 2.

Table 2 shows that on the musical instruments where the

human pose is different from the others, such as flute and

violin, our method has good prediction performance. On

musical instruments which are played with a similar human

pose, such as bassoon, clarinet and saxophone (shown in

Fig.11), the appearance-based models perform better. This

Figure 10. Humans tend to touch similar locations of some musical

instruments, even when they are not playing it.

Instrument DPM Ours Instrument DPM Ours

Bassoon 47% 38% Cello 39% 49%
Clarinet 32% 38% Erhu 53% 23%

Flute 41% 60% French horn 78% 37%

Guitar 46% 26% Harp 51% 53%
Recorder 32% 42% Saxophone 53% 29%

Trumpet 59% 53% Violin 34% 48%

Table 2. Comparison of using appearance and using human pose to

predict object categories. For each instrument, bold fonts indicate

better results. Chance performance is 8%.

confirms that both object appearance and functionality are

important in perceiving objects and provide complementary

information [23].

5. Conclusion

In this paper, we propose a weakly supervised approach

to learn object functionality, e.g. how humans interact with

objects. We consider multiple possible interactions between

humans and a certain object, and use an approach that it-

eratively clusters images based on object functionality and

updates models of object detection and pose estimation. On

a dataset of people interacting with musical instruments, we

show that our model is able to effectively infer object func-

tionalities. One direction of future research is to extend our
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Figure 11. Humans might manipulate different objects with very

similar poses.

method to the objects where the human-object interaction is

more complicated, such as basketball.
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