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Abstract

Recently, learning based hashing methods have become
popular for indexing large-scale media data. Hashing
methods map high-dimensional features to compact bina-
ry codes that are efficient to match and robust in preserving
original similarity. However, most of the existing hashing
methods treat videos as a simple aggregation of indepen-
dent frames and index each video through combining the
indexes of frames. The structure information of videos, e.g.,
discriminative local visual commonality and temporal con-
sistency, is often neglected in the design of hash functions.
In this paper, we propose a supervised method that explores
the structure learning techniques to design efficient hash
functions. The proposed video hashing method formulates
a minimization problem over a structure-regularized empir-
ical loss. In particular, the structure regularization exploits
the common local visual patterns occurring in video frames
that are associated with the same semantic class, and si-
multaneously preserves the temporal consistency over suc-
cessive frames from the same video. We show that the min-
imization objective can be efficiently solved by an Acceler-
ated Proximal Gradient (APG) method. Extensive experi-
ments on two large video benchmark datasets (up to around
150K video clips with over 12 million frames) show that
the proposed method significantly outperforms the state-of-
the-art hashing methods.

1. Introduction

Most of the current commercial video search engines re-
ly on textual keyword matching rather than visual content-
based indexing. Besides the well-known issue of seman-
tic gap, the computational cost is another bottleneck for
content-based video search since exhaustive comparisons of
low-level visual features are practically prohibitive, when
handling a large collection of video clips.

Fortunately, the emerging hash-based Approximate N-
earest Neighbor (ANN) search methods provide efficient
ways to large-scale video retrieval. Especially, the frame-
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Figure 1. An illustration of the proposed hash code generation for
videos within the event category “feeding an animal”. Discrimina-
tive local commonality is automatically discovered, e.g., the eyes
of animals, the edges of tubs, and the parts of human hands. Tem-
poral consistency is preserved, and successive frames are grouped

and put into the same hash bucket.

work of learning to hash has been well studied, and many
new hashing methods have been developed through in-
corporating various machine learning techniques, ranging
from unsupervised to semi-supervised to supervised learn-
ing [22, 201, 1] 7, 12] B] 6]. The key idea for learning-based
hashing is to leverage data properties or human supervision
to derive compact yet accurate hash codes. Most of the
existing hashing methods can be directly applied to index
video data, such as the recent multiple feature based video
hashing [19] and submodular video hashing|[3]. Despite of
the promising results reported in the literature, the existing
video hashing methods cannot explicitly encode the specif-
ic structure information in video clips, e.g., the commonly
shared local visual patterns by videos associated with the
same semantic labels and the temporal consistency between
successive frames.

To address the above problems, we propose to explore
the structure information to design novel video hashing
methods. In particular, two important types of structure in-



formation are considered in the learning process. The first
type is the spatial structure information, namely Discrimi-
native Local Visual Commonality. Notably, although each
video clip contains fruitful local visual patterns, only a lim-
ited number of discriminative local patterns are shared by
videos within the same semantic category. For example, a
video of event “feeding an animal” in Figufd 1 can be char-
acterized by a sparse subset of visual patterns (e.g., ‘eyes”
and “hands” in Figufe 1). The idea is analogous to sparse
coding, in which only a small subset of codewords or fea-
ture dimensions have non-zero weights. The second type is
called Temporal Consistency. It is easy to expect successive
frames to maintain similar visual appearance. Therefore,
the hashing method should ensure that the hash codes for
successive frames to be as similar as possible (Figufd 1).
To incorporate these two types of structure characteris-
tics of videos, we propose a supervised framework with
structure learning to design efficient linear hash functions
for video indexing. In particular, we formulate our objec-
tive as a minimization problem of a structure-regularized
empirical loss function. To capture the common local pat-
terns across all the video frames from the same category,
the first regularization term imposes a ¢ ;-norm over the
hash functions so that only a small number of informative
feature dimensions are selected. Since we apply the wide-
ly used Bag-of-Words (BoW) model with local SIFT [15]
features for video representation in our formulation, such s-
elected feature dimensions, i.e., visual words, correspond
to discriminative local visual patterns. In this way, we
obtain consistent patterns across different videos, and im-
prove the discrimination ability of the learned hash func-
tions. The second regularization term uses a /.-norm on
the hash codes of successive frames, which enforces suc-
cessive frames to receive similar hash codes and essentially
preserves the temporal consistency in Hamming space. Fi-
nally, we apply an APG method to efficiently solve the min-
imization problem. Extensive experiments over two large
video benchmark datasets and comparisons with represen-
tative learning-based hashing methods demonstrate the su-
periority of the proposed video hashing method. Compared
with our baseline method without structure learning, we al-
so clearly demonstrate that leveraging video structure infor-
mation helps improve the performance significantly.

2. Related Works

The rapid growth of massive databases in various appli-
cations has promoted the research and study of hash-based
indexing algorithms. Recently, learning to hash frame-
work has been extensively investigated and various machine
learning algorithms are incorporated for designing efficient
hash functions. In the following, we briefly introduce sev-
eral representative learning-based hashing methods and the
recent applications on video indexing and retrieval.
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Unsupervised hashing methods often utilize the data
properties such as distribution or manifold structure to de-
sign effective indexing schemes. For example, spectral
hashing assumes that the data are sampled from a uniform
distribution and partitions the data along their principal di-
rections with the consideration of spatial frequencies [22].
Graph hashing explores the low-dimensional manifold
structure of data to design compact hash codes [13]. Super-
vised hashing learning can be mainly categorized as point-
wise and pairwise methods. Pointwise methods, such as
boosted similarity sensitive coding [18] and deep neural
network-based method [20], often treat the design of hash
functions as a special classification problem and use sam-
ples’ labels in the training procedure. Pairwise method-
s take into account the pairwise relationship of samples
in the hash function learning. As a popular formulation,
many recent works, including binary reconstructive embed-
ding [11], complementary hashing [23], supervised hash-
ing with kernels [14], and iterative quantization [7] fall into
the category of pairwise methods. Finally, semi-supervised
hashing method plays a tradeoff between supervised infor-
mation and data properties to design robust hash functions,
which aims at alleviating the defects from overfitting or in-
sufficient training [21].

Note that all the aforementioned methods treat the da-
ta samples separately and generate binary codes for each
sample independently. To our best knowledge, there are
very limited studies on developing specific hash functions
to index structured data like videos. More recently, Douze
et al. [4] proposed a method to handle the temporal bursti-
ness for video copy detection. Cao et al. [3] proposed a
submodular hashing framework to index videos. Song et
al. [19] proposed a multiple feature based hashing for video
near-duplicate detection. However, in those video hashing
methods, conventional hashing methods like locality sensi-
tive hashing [6] and spectral hashing [22] are often applied
to generate binary codes. None of the existing methods re-
ally consider the special structure information like visual
commonality and temporal consistency of videos to design
structure-specific hash functions for video indexing. In con-
trast, our proposed video hashing method leverages video
structure information in a supervised learning paradigm to
derive optimal binary codes for large-scale video retrieval.

3. Structure Learning Based Video Hashing

In this section, we will introduce our structure learning
method for video hashing. We first present the notation and
definition, and then describe the problem formulation.

3.1. Notation and Definition

Suppose we have a training video collec-
tion X = {X,,y}Y, with N videos, where
X = [Xi1,..sXij, s Xin,] IS a video consisting of



n; successive frames, y; € {0, 1} is the label of video @il.
Xi; € R? is the feature vector of the j-th frame of video
X, with d being the feature dimensionality. Without loss
of generality, we assume all frame features in X have been
normalized with zero mean.

Given a video frame x, we want to learn K-bit binary
codes ¢ € {0,1}%, which needs to design K binary hash
functions. In this work, we consider the linear hash func-
tions for their simplicity and efficiency. Specifically, the
k-th hash function (k = 1, ..., K) can be defined as:

hi(x) = sgn(w,jx + bi), (1

where wi, € R? is a hash hyperplane and by, is the inter-
cept. With x being zero-mean, b;, will be 0. The resulting
hi(x) € {—1,1}, and the corresponding binary hash bit
can be simply calculated as ¢ (x) = (1 + hp(x))/2.

The Hamming distance between the hash codes of two
frames x;, and xj, from two videos X; and X can be de-
fined as:
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Based on the above definition, a straightforward way to
define the Hamming distance between videos X; and X is:

ng

nZ ; sz Xw,aij (3)

a=1b=1

D(X;, X;)

which means that the Hamming distance between two
videos equals to the average Hamming distance of each pair
of frames. The basic assumption behind this definition is
that most of frames within a video should be useful for
measuring the distance between videos, and similar pair-
wise metric methodology has been proven to be effective
inJ[3].

However, the above function is not tractable due to
the discrete nature of sgn function in each hash function.
Hence, a typical practice is to relax the distance function
by replacing sgn with its signed magnitude and rewrite the
above distance as

D(X;, X;) = T oy azzl bz; kzzl wk Xiq — W} x]b)
ng Ny
-
4n o ; ; Xia — Xjb) Tww (Xia — Xjb),
“4)
where W = [w, ..., wg]| € R™>¥ is a matrix consisting

of the coefficients of all hash functions.

IThe proposed method can be easily extended from binary class to
multi-class case.

3.2. Problem Formulation

Our goal is to learn a coefficient matrix W which not
only conveys discriminative information but also incorpo-
rates the temporal information of videos. We formulate the
following objective which learns the hash functions by min-
imizing a structure-regularized cost function:

min 4ZIK(§ijaD(Xian)) T AW l21
»J

N n;—1

)Y W i = W i fles ()

i=1 t=1

where A\,v > 0 are two parameters balancing the
three competing terms, ||[Wll21 = 2?21 ZjK:1 W2
is the fp1-norm, and |[W'x;y — W xit1]ec =
maszl,__”K{\sz’tH is the f.-norm, in which s;; =
WTXM — WTXMH and sg,t denotes the j-th entry of vec-
tor s; 4, £(-, ) is an empirical loss function with g;; = 1 iff
y; = y; and §J;; = —1 otherwise.

Now we explain the rationality of our objective func-
tion. The minimization of ||1¥]|2,1 ensures only a smal-
1 number of rows in matrix W are non-zero. Since each
row of W will be multiplied with one specific dimension
of the features, making it zero will discard the influence
of the feature dimension from hash function learning. As
a result, only a subset of the feature dimensions are se-
lected through the non-zero rows of matrix W. The s-
elected features correspond to the local common pattern-
s in the video frames related to a certain video category,
which convey discriminative information. The minimiza-
tion of ||W Tx;; — W Tx; 11]|e0 ensures the hash vectors
of two successive frames as similar as possible [2], i.e., en-
couraging the maximum absolute value of the entry-wise
differences between two hash vectors to be zero. This ac-
counts for the preservation of the temporal structure in the
hash codes generated for all frames of a video. Notably,
we apply ¢..-norm here instead of ¢;-norm or ¢s-norm s-
ince {,,-norm will ensure stronger constraint that the two
hash vectors of successive frames are close to each oth-
er. Through the above two regularizers, the structure in-
formation of videos can be comprehensively encoded into
the generated Hamming space.

We define the loss function in Eq.}(5) based on ¢;-loss:

(g5, D(X3, X)) = max (0,95 (D(X;, X;) — 6)), (6)
where § is a threshold. When minimizing E§)6), ¢:; =
1 leads to D(X;,X,;) < ¢ while g;; = —1 leads to
D(X;,X;) > 4. In this way, it enforces that videos with
the same category label should be close to each other while
videos with different category labels should be far apart.



With this loss term, we incorporate the supervision infor-
mation into the hash function learning, leading to discrimi-
native binary codes. Without loss of generality, we simply
set & = 1. Note that other loss functions such as hinge loss
or least square loss can be used as alternatives.

The objective function in Ed.|(5) is non-convex, and thus
is expected to achieve a local optimum. In the next section,
we will introduce an efficient procedure for the optimiza-
tion.

4. Optimization Procedure

In Eq[](S), the gradient of W cannot be calculated due
to the non-smoothness of the ¢ ;-norm and ¢,-norm reg-
ularizers. In this section, we first show that by using the
dual norm and smoothing approximation, the gradient of
£3.1-norm and /,-norm can be calculated. After that we
employ APG method to solve the optimization problem.

4.1. Smoothing Approximation

First, we concatenate all pairwise frame differences of
the training video collection into a matrix X € R4*7 with
the total number of successive frame pairs 7' = Zf\; (n; —
1), in which each column denotes the difference of two suc-
cessive frames and all columns are placed in the original
temporal order in the videos. Then the original objective
function in Eq.|(5) can be rewritten as:

N
> 0(Gi5, DX, X;)) + AW 2.1

min
w y
2,7=1
T
A Y VT X)illoos ()
i=1

where (W T X); € RE*! denotes the i-th column in matrix
(WTX).

We resort to the smoothing approximation to the solve
problem in Ed.](7). First, we decompose the objective func-
tion as the sum of the following two terms:

N
> (i D(Xs, X;)), (8)

ij=1

T
MWz +7 D W T X)illoee )

i=1

Herein, the subgradient of f(W) can be easily calculat-
ed based on its formula in Eq[[6). However, the gradi-
ent of 7(1¥) cannot be directly calculated due to its non-
smoothness nature. Therefore, we need to give a smooth
approximation so that its gradient can be computed.

Based on Nesterov’'s smoothing approximation
method _[17], r(WW) can be approximated by the fol-
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lowing smooth function:

d T
ru(W) = A> hi (W) +9> gin(W),  (10)
i=1 i=1
with the definitions:
i H
hiw(W) = max ((w)',v) = ZlvI3, (D
9i(W) = max (WTX)w) — Glull,  (2)

where 4 is a positive smoothness parameter to control the
accuracy of the approximate, (-, -) denotes the inner product
operator, w* denotes the i-th row of matrix W. v and u are
respectively a vector of auxiliary variables associated with
w' and (W7 X);. In our work, we set i to be 10™%.

For a fixed w!, assume that v(w') is the unique
minimizer of Eq[ (J1). It is standard that v(w’) =
m min{yu, |wi|l2}. ki, (W) is differentiable and its
gradient Vh; , = v(w?) is Lipschitz continuous with the
constant Ly, ; = 1/u. In addition, u((W7T X);) is the u-
nique minimizer of Eq[ (]2), and it can be calculated by
the ¢;-ball projection algorithm i [5]. g¢; (W) is differ-
entiable and its gradient Vg; , = u((W T X);) is Lipschitz
continuous with the constant L, ; = 1/p.

4.2. Optimization Using APG

For a fixed p, we minimize the following objective:

F

;L(W) = f(W) + TM(W)~ (13)
It is known that F), is a p-accurate approximation of ',

and it is differentiable with gradient:

VE,(W)=VfW)+Vr, (W), (14)
where we have
N
VW) = Z V(9ij. D(X;, X)), (15)
ij=1

T
Vr (W) = Av(W)+75) X (W' X);),16)

i=1

in which X; denotes the i-th column of matrix X, v(W) =
v(wh),...,v(w)]T € R>*E and V(g;;, D(X;, X;)
can be calculated as:

V(9i5, D(X;,X;)) =
0, if ij (D(Xi, X;) = 6) <0,
9:5§2; W, otherwise.

A7)



Algorithm 1 Solving Problem of Ed. (13) by APG

1: Input: X; € R 4, € {0,1},i=1,...,N, X, \,
v, d and p.

2: Initialize: Calculate L, based on E 8), randomly
initialize W0, Z(0) ¢ RI*XK apd 77(0 «~—0,t<+ 0.

3: repeat

4 a® = (1- n(t))W(t) +n®MZ®),

5:  Calculate VF, (o) based on Eq. (14).

6: ZU+) =z n(t)lLFu VE,(a®).

7. W) — (1— 77(t))w(t) +n®) ZE+D),

g0 Ut = 2t t+ 1

9: until Converges.

10: Output: W),

Herein, Qij = ﬁ ZZ;l Zil(xm — ij)(xia — ij)T.

It is straightforward to verify that V f(W) is Lipschitz
continuous with constant L; = || ijzl Q;;]|2 where || -] 2
denotes the spectral norm of a matrix. Combining with the
Lipschitz constants of h; (W) and g; ,(W), we get that

V F,,(W) is Lipschitz continuous with constant

al 1
L, = Y Qijlla + M

ij=1

()\xd—i—vxT). (18)

We are now ready to employ APG to optimize F), ().
The optimization procedure is described in Algorithfq 1.

5. Experiments

In this section, we provide extensive experiments and
comparison studies on two large video collections, i.e., the
Columbia Consumer Video (CCV) [9] and the TRECVID
Multimedia Event Detection (MED) 2012 video dataset[[1].
The details of these two video datasets will be described
later. To demonstrate the strength of using both spatial
and temporal structure information of videos, we test sev-
eral variants of the proposed structure learning based hash-
ing methods, and also compare with several representative
hashing methods in our experiments. The following six
methods will be compared: (1) Spectral Hashing (SH) [22];
(2) Sequential Projection Learning based Hashing (SPL-
H) [21]; (3) Unstructured Video Hashing (UVH), where we
ignore the structure information of videos and learn the hash
functions based on frame features only by setting A and ~
in Eq|:|(5) to be 0; (4) Video Hashing with Discriminative
commonality (VHD) only, which can be realized by setting
7 in Eq-}(5) to be 0; (5) Video Hashing with Temporal con-
sistency (VHT) only, which can be realized by setting A in
qu:|(5) to be 0; (6) Video Hashing with both Discrimina-
tive commonality and Temporal consistency (VHDT). Note
that both SH and SPLH treat each video as a composite of
independent frames and index the video by combining the
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Figure 2. Convergence curve on the CCV dataset experiment.
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Figure 3. Comparisons of training time between SPLH and our
proposed VHDT method on (a) CCV dataset and (b) TRECVID
MED 2012 dataset.
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hash codes of frames, similar as that described in[3]. More-
over, SH and SPLH are the representative hashing methods
with publicly available codes, and hence are chosen for fair
study. Although there are some recent methods for video
hashing [3. 19], they are built on standard hashing tech-
niques like LSH, and require specific settings, like submod-
ular or multiple-feature representations, hence not serving
as standard comparable methods in our experiments.

5.1. Evaluations and Settings

We follow the evaluation protocols used in_[21] and
adopt the following two criteria: (1) Hamming ranking: All
the video clips are ranked according to their Hamming dis-
tance to the query video. (2) Hash lookup: A hash lookup
table is constructed and all the samples fall within a Ham-
ming ball with radius r (r = 2 in our setting) to the query
sample are returned. Since each query video is represent-
ed as a set of binary codes corresponding to the frames in
the video, here we adopt the following query strategy to
return the nearest neighbor (NN) video clips. For Ham-
ming ranking based evaluation, it is fairly straightforward
to return the nearest video clips by exhaustively comput-
ing and ranking the video Hamming distance between the
query and the database samples, as defined in Eq-{(3). For
hash lookup based evaluation, we first retrieve the nearest
neighbor frames within Hamming radius 2 for each individ-
ual hash code vector of the query video frames. Then all the
videos whose composite frames are successfully hit by any
query frame will be regarded as the candidate NN videos.
An intuitive way to rank all these candidate NN videos is by
counting the hit frequency of each video (normalized by the
number of total frames in that video). Note that these two e-
valuations focus on different aspects of hashing techniques.
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Figure 4. MAP/precision within Hamming radius 2 comparisons of different methods on the CCV dataset.

Hamming ranking provides better quality assessment but it-
s complexity is linear. Hash lookup emphasizes the search
speed since the query complexity is often constant time, but
the search quality could be unjustified when using very long
hash codes, resulting in failed queries due to empty return
within Hamming radius 7.

In order to get the quantitative comparison, for Ham-
ming ranking criterion, we employ Average Precision (AP)
as the evaluation metric. Specifically, given the returned
ranking list with length m, AP is computed as AP
% Z;nzl %G 7, where I is the number of positive samples
in the ranking list, and R; is the number of relevant sam-
ples among the top j samples, G; = 1 if the jth sample
is positive and 0 otherwise. For hash lookup criterion we
compute retrieval precision which measures the percentage
of true neighbors within Hamming radius + [21]. For each
of the above two metrics, we calculate the result for each
query and then report the mean value across all queries as
the final evaluation metric.

For SH and SPLH, we use the best settings reported in
literatures [22, 21]. For our proposed method, we use cross
validation to determine the appropriate parameters, i.e., the
weights A and . In addition, for all the supervised and
semi-supervised methods, a small set of labeled samples are
randomly selected as training data on both CCV dataset and
TRECVID dataset.

We implement our method on an Intel XeonX5660 work-
station with 2.8GHz CPU and 8GB memory, and observe
very good convergence property. Figufe 2 shows the con-
vergence process of the iterative optimization which is cap-
tured in our later experiment. As seen, the objective func-
tion converges to the local minimum after about 60 itera-
tions, and thus the convergence speed is fast. For example,
in the experiments on the CCV dataset, it takes around 6.3
seconds in average to run one iteration from step 3 to step
9 in Algorithfn| 1. Figufe| 3 demonstrates the training time
of SPLH and our proposed VHDT method, where we can
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observe that these two methods have similar computational
time. This indicates that our method is able to achieve com-
parable time complexity as the existing hashing method.
Moreover, we also empirically discover that our method is
not sensitive to the initialization, which shows very tiny per-
formance differences with different initializations.

5.2. Columbia Consumer Video (CCV) Dataset

The Columbia Consumer Video (CCV) dataset [9] con-
tains 9, 317 YouTube videos with over 20 diverse semantic
categories. In our experiments, we randomly select 5 videos
from each semantic category as labeled data for training,
and choose another 25 videos in each category as the query
videos for testing hashing performance. This results in 100
training videos and 500 query videos. The remaining 8, 717
videos are considered as the samples in the database. The
key frames are evenly sampled every 2 seconds and each
video has at least 30 key frames. For each key frame, we
extract 128-dimensional SIFT features [15] over key points
and perform BoW quantization to derive the image repre-
sentations [16]. In particular, we utilize two different sparse
key point detectors, i.e., Different of Gaussian and Hessian
Affine. Finally, each video key frame is represented as a
5, 000-dimensional BoW feature.

In the experiments, we evaluate the performance using
hash codes with different length, ranging from 12 to 64 bit-
s. Figufe 4(a) shows performance curves of the Mean Av-
erage Precision (MAP) averaging over 500 queries of dif-
ferent methods. From the results, we have the following
observations : (1) The proposed VHDT method consistent-
ly outperforms the other baseline methods by a large mar-
gin, which demonstrates its effectiveness for video hashing;
(2) All structure learning based hashing methods, including
VHDT, VHD and VHT, produce significantly higher MAPs
than UVH. This is due to the fact that the former methods
take advantages of structure information of video data (ei-
ther discriminative local patterns or temporal consistency
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Figure 5. MAP/precision within Hamming radius 2 comparisons of different methods on the TRECVID MED 2012 dataset.

across successive frames) while the latter one only blind-
ly generates hash codes without accounting any structure
information; (3) Our proposed VHDT clearly beats the con-
ventional hashing methods like SH and SPLH. The reason is
that these methods only try to learn hash functions for sim-
ple samples such as images and hence are not appropriate
for video data; (4) Our VHDT method performs better than
VHD and VHT, since the latter ones merely consider one
aspect of the structure information in videos. In contrast,
our VHDT method fully exploits both structure information
and produces the best performance in the experiments.

We also show the precision curves within Hamming ra-
dius 2 in Figufe 4(b), where similar performance gains of
our method can be observed. However, the precisions of all
methods begin to drop when using longer hash codes. This
is because that, with the increasing of the number of hash
bits, the number of samples falling in a bucket decreases ex-
ponentially, resulting in empty returns within the Hamming
radius 2. Similar performance droppings have also been ob-
served in the previous work [21]. Again, the VHDT method
achieves the best performance among all methods in com-
parison.

5.3. TRECVID MED 2012 Dataset

TRECVID MED is the benchmark dataset for the eval-
uation of semantic event detection in videos. The dataset
used in our experiments is TRECVID MED 2012 [1]. The
entire dataset has around 150K videos falling into 25 se-
mantic event categories. There are around 10K video clip-
s with the ground truth semantic labels. For each video,
we extract key frames every 2 seconds and obtain the fi-
nal set containing over 12 million video key frames. To
our best knowledge, TRECVID MED 2012 is among one
of the largest video collections with manual annotation in
the public research community. Since we merely have par-
tial ground truth labels for the 150K videos, we evaluate the
performance based on two different protocols. The first is to

2278

evaluate on the 10K videos with ground truth labels while
the second is to evaluate on the entire 150K videos based on
the top returned videos labeled by ourselves. In each proto-
col, we follow exactly the same feature extraction process
as in the CCV dataset experiment. In the training process, 5
labeled videos from each category (in total 125 videos) are
randomly selected.

Results on 10K videos with ground truth labels. In
this scenario, 25 labeled videos in each category are chosen
as the query video clips for testing hashing performance.
Figufe 5(a) and Figufe 5(b) show the performance curves
of different methods in terms of MAP and precision. As
can be seen, our method achieves the best performance over
all the other methods in comparison. The performance im-
provements are consistent as the number of hash bits varies.
Once again the experiment results demonstrate the effec-
tiveness of our method. It is worth noting that, for the
TRECVID MED task, most of the state-of-the-art system-
5 [10] use SVM classifier as the basic framework since the
focus is the prediction performance, while the efficiency is
mostly neglected. In contrast, our proposed hashing method
focuses on real time retrieval on large-scale video data. For
example, it will take hours to just compute the non-linear
SVM kernels for 10, 000 videos, while for hash-based meth-
ods it only needs 10 seconds to find similar video clips from
the entire database. Therefore, it is inappropriate to directly
compare the performance of our methods with the official
results of TRECVID MED 2012 due to the completely dif-
ferent technical purposes.

Results on 150K videos. Since we do not have all la-
bels of the 150K videos, the AP and precision within Ham-
ming radius 2 cannot be calculated. Therefore, we only re-
port the precision within the top 100 returned videos for
each method. We randomly select 5 videos with ground
truth from each of the 25 categories, and consider the 125
videos as queries. 64-bit binary code is generated to search
videos within the 150K video dataset. For each query, we
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Figure 6. Qualitative evaluation over the 150K video dataset using 64-bit hash code. Queries from top to bottom belongs to category

CLINTS

“woodworking”,

SH SPLH UVH VHT VHD VHDT

ACC | 0.12 0.15 0.17 020 0.21 0.24

Table 1. Accuracy of top 100 retrieval videos using 64 bits over
the 150K video dataset.

retrieve the NN videos within Hamming radius 2 and then
pick up the top 100 videos ranked by the normalized frame
hit frequencies. Finally, the category label of each unlabeled
video within the top 100 videos is manually annotated. We
calculate the accuracy of top 100 videos of each query and
report the average performance across 125 queries in Ta-
bfg 1. As seen, our method achieves the best performance
among all methods. Figufd 6 shows the key frames of some
exemplar query videos as well as the top 6 returned key
frames, which shows that our structure learning based video
hashing consistently generates better visual retrieval results.

6. Conclusion

We have introduced a structure learning method for
large-scale video hashing. The proposed method works in a
supervised setting with a #;-norm based empirical loss reg-
ularized by the video structure related terms. Specifically,
we use a /5 1-norm to select certain feature dimensions in
the training videos to capture the discriminative local visu-
al patterns, and employ a /,-norm in the binary codes of
successive frames to preserve the temporal consistency in
the learned Hamming space. The final objective is formu-
lated as a £5 ;-norm and ¢,-norm regularized minimization
problem and the APG method is applied for the optimiza-
tion. Extensive experiments on two large video datasets val-
idate the effectiveness of our method. In the future, we will
investigate the proposed method in the kernel spact [14].
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rock climbing”, and “vehicle unstuck”. Top 6 retrieval results are presented. Incorrect results are shown with red border.
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