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Abstract

Human action recognition under low observational la-
tency is receiving a growing interest in computer vision due
to rapidly developing technologies in human-robot interac-
tion, computer gaming and surveillance. In this paper we
propose a fast, simple, yet powerful non-parametric Mov-

ing Pose (MP) framework for low-latency human action and
activity recognition. Central to our methodology is a mov-
ing pose descriptor that considers both pose information as
well as differential quantities (speed and acceleration) of
the human body joints within a short time window around
the current frame. The proposed descriptor is used in con-
junction with a modified kNN classifier that considers both
the temporal location of a particular frame within the ac-
tion sequence as well as the discrimination power of its
moving pose descriptor compared to other frames in the
training set. The resulting method is non-parametric and
enables low-latency recognition, one-shot learning, and ac-
tion detection in difficult unsegmented sequences. More-
over, the framework is real-time, scalable, and outperforms
more sophisticated approaches on challenging benchmarks
like MSR-Action3D or MSR-DailyActivities3D.

1. Introduction

Automatic action and activity recognition are important

computer vision research problems of broad practical ap-

plicability. The new technologies being developed in com-

puter games using RGB-D cameras, or for environmental

awareness, require flexible methodologies that are both ac-

curate and have low observational latency, such that actions

can be reliably recognized long before the entire observa-

tion stream is presented. The task of early action detection

was addressed only recently but gains momentum [7,9] due

to the fast development of new technologies in human-robot

interaction or surveillance. The accurate real-time track-

ing of 3D skeletons [21], made possible with the introduc-

tion of low-cost RGB-D cameras, led to the development

of efficient methods for classification of dance moves [17]

and other arbitrary actions [7, 24]. Most published meth-

ods, however, require an entire action sequence in order to

perform classification. Only very few techniques offer low-

latency responses that would allow the rapid identification

of an action long before it ends [7, 9], and not all methods

are are able to cope with unsegmented test sequences.

In this paper we make several contributions which we

collectively refer to as the Moving Pose (MP) framework.

First, we propose the Moving Pose descriptor–a novel

frame-based dynamic representation that captures not only

the 3D body pose but also differential properties like the

speed and acceleration of the human body joints within a

short time window around the current frame. We argue that

due to physical constraints like inertia, or latency in muscle

actuation, the body movements associated with an action

can often be well approximated by a quadratic function, ex-

pressed in terms of the first and second derivatives of the

body pose with respect to time. Our second contribution

is a modified non-parametric kNN classifier that considers

not only the global temporal location of a particular frame

within the action sequence, but also the different discrimi-

native power associated with moving pose descriptors com-

puted in each frame. This makes our method capable to

perform not only state of the art low-latency action recog-

nition, but also accurate action detection in natural, unseg-

mented sequences captured under weakly controlled condi-

tions. We also show that our method is well suited for the

one-shot learning of actions, unlike any of the recent, early

action recognition approaches.

Related Work: Traditional research on general action

recognition focuses mainly on recognition accuracy using

hidden Markov models, and more recently conditional ran-

dom fields [14, 22], and less on reducing observational la-

tency [1, 10, 20]. In applications where a quick response

is needed, such as environment aware systems or robot-

computer interaction, the system has to respond quickly.

Thus, the action has to be recognized as soon as enough

evidence becomes available, ideally long before the whole

sequence is observed.
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Many authors have observed that primitive actions can

be well represented by a few key poses [5, 7, 19] for ac-

tion classification. Variations on using key poses include

matching shape information to prototypes [3] and using

discriminative frames to weight features in a bag-of-words

classifier [27]. Distinctive key poses from contours are

learned by [4], while [11] matches silhouettes between the

test frames and learned key frames. Other methods rely on

manually selecting key frames [3] or require accurate sil-

houettes [4,11]. Recent models [7,23] use multiple discrim-

inative key frames, obtained separately or during learning.

An important aspect in the automatic processing of ac-

tions is segmentation, since most real-world videos are

not partitioned into separate actions. There are a few

approaches that perform automatic temporal segmentation

[2, 26] but they require processing an entire sequence for

classification. In this paper we first assume that actions

are already segmented, then show that our approach can be

extended to automatically process unsegmented sequences.

Recent work on early event detection [9] modifies a struc-

tured output max-margin framework, within a bag-of-words

representation, by augmenting the training set with partial

events and enforcing a temporal monotonicity constraint on

outputs–thus partial sequences do not have a higher detec-

tion rate than encompassing sequence. Other techniques

[16] focus on reducing the computational latency of decod-

ing hidden state sequences, rather than on the observational

latency linked with classifying early partial events.

2. Representing Human Actions and Activities
Human actions are often considered to be primitive activ-

ities consisting of one or a few atomic body movements or

poses such as: walking, sitting, standing, kicking or jump-

ing. More complex activities often involve interactions with

objects and other people, and can occur over longer time

scales. In this paper we focus on recognizing actions or

activities that are well described by the 3D body pose and

movement only. To simplify formulation we will generally

refer to both types as actions, and qualify only when neces-

sary to differentiate between the two.

We represent an action as a sequence of frame descrip-

tors ordered in time. We assume that the 3D joint positions

of the human body are available in each frame. Since our

goal is to design a fast, low-latency classification method,

we will rely on only a few frames for efficient recogni-

tion. Consequently, we need local frame descriptors that

capture as much information as possible about the action in

the neighborhood of a given frame, in terms of both pose

and the kinematics of body joints. We observe that:

1. Actions usually involve body movement, not just the

body pose. At a given moment in time, a certain pose

together with specific movements of the 3D body joints

could be highly predictive of the intentions of the hu-

man subject and the action performed.

2. Despite the natural skeleton size and proportions vari-

ation in the human population, people tend to perform

the same action in the same qualitative way, by moving

similarly. Thus, for a given action, differential quan-

tities like the relative speed and acceleration of these

joints could be more stable across subjects than their

actual 3D locations.

It is clear that a good descriptor should capture both the

static pose as well as the joint kinematics at a given moment

in time. The velocity and acceleration of the different 3D

joints capture relevant information about different actions.

Velocity describes the direction and speed of the joints. It is

important to differentiate between actions spanning similar

poses but different directions of movement, such as jump-

ing vs. falling, or standing up vs. sitting down. The ac-

celeration of the 3D joints captures the change in velocity

over time. Changes in directions as well as in speed pro-

duce nonzero acceleration, which is useful to differentiate

between actions involving circular motions such as drawing

a circle or waving, versus drawing a line or standing up.

If we view the pose as a continuous and differentiable

function of the body joint positions over time, then its

second-order Taylor approximation in a window around the

current time step t0 would be defined by expanding around

the current pose P(t0) based on the first and second order

derivatives, δP(t0) and δ2P(t0):

P(t) ≈ P(t0)+δP(t0)(t−t0)+1/2δ2P(t0)(t−t0)
2. (1)

Effectively, the instantaneous pose and its first and sec-

ond order derivatives at a given time t0 contain information

about the pose function over a time segment around the cur-

rent t0. The time window over which the approximation is

valid could be much longer than the local window used to

approximate derivatives. Therefore, this type of local in-

formation could be seen as an approximation of an action

snippet [18] and can be used to reliably classify actions. In

experiments we actually show that introducing kinematic

information, encoded as proposed, induces a significant im-

provement over the use of poses-only, even when all poses

needed to compute derivatives are used within local frame

descriptors and fed to classifiers (Table 4).

3. The Moving Pose Descriptor
The skeleton representation of a pose in each frame of

a video captures the 3D positions of the skeleton joints

pi = (px, py, pz), where i ∈ {1, . . . , N}, with N the total

number of human body joints. For each frame we compute

the Moving Pose Descriptor (MP), as a concatenation of the

normalized 3D pose P = [p1,p2, . . . ,pn] and its first and
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second order derivatives δP(t0) and δ2P(t0). The deriva-

tives are estimated numerically by using a temporal window

of 5 frames centered at the current one processed: δP(t0) ≈
P(t1)−P(t−1) and δ2P(t0) ≈ P(t2)+P(t−2)− 2P(t0).
For better numerical approximation we first smooth each

coordinate of the normalized pose vector, along the time di-

mension, with a 5 by 1 Gaussian filter (σ = 1). Note that

Gaussian smoothing produces a lag of two frames which

does not significantly impact the overall latency in practice.

In order to suppress noise in the estimated input pose

and to compensate for skeleton variations across different

subjects, we normalize the poses as described in the fol-

lowing paragraph. The derivative vectors are also rescaled

so that they have unit norm–this normalization also re-

moves irrelevant variation in absolute speed and accelera-

tion across different input sequences, while preserving the

relative distributions between the different joints. The fi-

nal frame descriptor Xt for frame at time t is obtained

by concatenating the pose and its derivatives over time:

Xt = [Pt, αδPt, βδ
2Pt]. The parameters α and β weight

the relative importance of the two derivatives and are opti-

mized over the training set.

Algorithm 1 Skeleton normalization for frame at time t

Let p
(1)
start be the position of the root joint.

p′(1)start ← p
(1)
start

for all (p(i)
start,p

(i)
end) (in breadth first search order) do

di ← (p
(i)
start,p

(i)
end)

d′i = ri
di

||di||
p′(i)end ← p′(i)start + d′i

end for
return P′ = [p′1,p

′
2, . . . ,p

′
n]

Pose Normalization (Algorithm 1): Human subjects have

variations in body and limb sizes which are not relevant for

the action performed. In order to compensate for anthro-

pometric differences, we impose the same limbs (skeleton

segments) lengths for poses obtained from all individuals

in the dataset. We learn average skeleton segment lengths

from training data (a segment is defined by any two linked

joints). Let R = [r1, r2, . . . , rm] be the expected lengths

of skeleton limbs (segments), learned from training data.

We then adjust R to unit norm. Then for a given training

or testing pose, we start from a root node (the hip joint),

move forward the branches of the kinematic tree associated

with the body joints, and successively modify the joint lo-

cations accordingly, such that a length of i-th limb segment,

say, becomes equal to ri, while its direction vector is pre-

served. By using this procedure, the joint angles are not

modified, but the same limbs (e.g. the arms, or the legs)

will have the same length across subjects. In order to make

the 3D joint locations invariant to camera parameters, we

subtract from each joint the position of the hip center phip:

P = [p1 − phip, . . . ,pN − phip]. Carefully normalizing,

as proposed, is important, and improves the performance of

our methods by at least 5%.

4. Action Classification
The proposed MP descriptor encodes pose and kinematic

information to describe action segments. In order to empha-

size its discriminative power and for training flexibility (in-

cluding one-shot learning) we use a non-parametric action

classification scheme based on k-nearest-neighbors (kNN).

Our basic low-latency classification method for a test se-

quence is as follows: at time t, after observing t test frames,

let each of their kNN descriptors from the training pool vote

for its class, for a total of kt votes. For decision, we ap-

ply a simple rejection scheme. If the accumulated vote of

the most supported class cj is high enough compared to the

other classes, and enough frames have been observed, we

report the class with the largest number of votes, i.e. output

cj if maxj s(cj , t) ≥ θ, with s an additive voting model and

θ a confidence threshold.

4.1. Learning Discriminative Frames

One of the main difficulties in analyzing action se-

quences is that not all frames are representative for an ac-

tion. When performing certain tasks a person often has to

go through poses that are common to many other actions

or activities. This means that training data is, effectively,

only weakly supervised: not all frames in a given sequence,

assumed in bulk to belong to a specific action, are relevant

for that action. Such irrelevant or neutral configurations,

such as standing poses, could negatively impact the stan-

dard kNN classification. Our simple solution to this prob-

lem is to classify, at training time, each frame in the training

set using a kNN classifier (consider each training descriptor

as an unknown one and use the others to classify it). The

probability that a timestep descriptor ‘strongly belongs’ to

its class can be estimated by the confidence obtained using

the votes from its k nearest neighbors. If c is the correct

class of the sample X, the confidence function v(X) is de-

fined as the estimated posterior of the class c, given X, and

the non-parametric k-nearest neighbors class density esti-

mator.

v(X) = P (c|X) =
P (X, c)

P (X)
≈ kc/k. (2)

Here k is the number of nearest neighbors and kc the num-

ber of those that belong to class c. This confidence is not a

perfect measure as among nearest neighbors, some may not

be relevant, but if k is large enough the procedure works

well in practice. The confidence value is then used for clas-

sification as described in Algorithm 2. In fig.1 we show
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Figure 1. Examples of high confidence frames automatically identified from training sequences using Algorithm 2. The poses shown were

among the top ten rated the most confident within their sequence. Note how they indeed look iconic for those specific actions. The poses

with low confidence score were usually the common, shared ones, such as standing poses from the start and the end of each sequence.

some of the most discriminative frames, automatically dis-

covered by the algorithm, for a few action classes. On vi-

sual inspection, the automatically identified poses appear to

be representative, iconic, for their corresponding actions.

4.2. Global Temporal Information for Classification

A limitation of classical kNN classification applied to

action recognition is its lack of account of global tempo-

ral ordering. The descriptor X captures only local temporal

variations but does not include information that would al-

low one to identify when during the action sequence a par-

ticular short action segment takes place. The global posi-

tion of a pose within the entire sequence is often relevant.

For example, when a tennis player hits the ball, he usually

swings the racket first backwards, then forward. The order

of these two movements matters. Our approach to incorpo-

rate global temporal information within a kNN framework

is to gate the search for nearest neighbors only to samples

that are located at a similar position in the training sequence,

with respect to the first frame.

By combining discriminative local moving pose descrip-

tors like MP with a temporal aware classification scheme,

we can now account for two important aspects in action

classification: the discriminative power of key poses as well

as their local dynamics, and the global temporal course of

an action. This turns out to be important for more complex

activities that consist of many atomic action units.

5. Experiments

We test our method on both simple and complex ac-

tions, present in both segmented as well as unsegmented

sequences. We use the MSR Action3D dataset, the MSR-

DailyActivity3D dataset, the data of Ellis et al. [7], as well

Algorithm 2 Low-latency Action Recognition

For all candidate actions c set the score s(c) = 0.

for all time steps t ≤ T do
Compute the descriptor Xt.

Find the kNN of Xt from a similar temporal location

in the sequence w.r.t first frame.

for all Xtrain ∈ kNN(Xt) do
s(c) ← s(c) + v(Xtrain), where c is the class of

Xtrain and v(Xtrain) is the confidence of Xtrain.

end for
If t > Nmin and

s(c)∑
b s(b) > θ

then return c∗ = argmax(s(c)).
end for
return Final class c∗ = argmax(s(c))

as our own unsegmented action dataset1. We compare to

current methods and obtain state-of-the art results on all

datasets. We also demonstrate the effectiveness of the pro-

posed moving pose framework and the usefulness of our

confidence and global temporal constraints, over different

baselines. Our results clearly show that differential quanti-

ties like local motion and acceleration are powerful cues for

action recognition and in conjunction with static 3D poses

they can capture the specific dynamics inherently linked to

different types of actions, far beyond the static poses them-

selves. Our method is able to accurately recognize actions

with low observational latency at real time rates of 200−500
FPS (depending on the dataset) on a desktop computer.

5.1. Action Recognition

The MSR Action3D dataset consists of temporally seg-

mented action sequences captured by a RGB-D camera.

There are 20 actions in the dataset, performed 2 − 3 times

1Publicly available at www.imar.ro/clvp/actionMP.
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by 10 subjects. In total there are 567 sequences. The 3D

skeleton, represented as a set of 3D body joint positions,

is available for each frame, being tracked with the method

of [21]. About 10 skeleton sequences were not used in [24]

because of missing data or highly erroneous joint positions.

We follow the same procedure for fair comparisons. Our

parameters α and β (§3) were learned over the training set

and kept constant for all testing experiments (i.e. α = 0.75,

β = 0.6). We use the cross-subject test setting as in [10],

where the sequences for half of the subjects are used for

training (i.e. subjects (1, 2, 3, 4, 5)), and the remaining se-

quences of the other half of the subjects for testing. Our

Table 1. Recognition comparison on the MSR Action3D dataset.

Method Accuracy(%)

Recurrent Neural Network [13] 42.5

Dynamic Temporal Warping [15] 54

Hidden Markov Model [12] 63

Latent-Dynamic CRF [14] 64.8

Canonical Poses [7] 65.7

Action Graph on Bag of 3D Points [10] 74.7

Latent-Dynamic CRF [14] + MP 74.9

EigenJoints [25] 81.4

Actionlet Ensemble [24] 88.2

MP (Ours) 91.7

system (see Table 1) improves over the current state-of-the-

art by 3.5%. Figure 2 shows that we obtain perfect accuracy

on 17 out of 20 classes, compared to just 11/20 in [24].

The only classes causing confusion are, in our case, the

ones involving interactions with other objects (pick up and

throw, hand-catch and hammer), which (as also observed

by [24]) may not be easily captured by the skeleton infor-

mation alone. However, even using such limited informa-

tion and a simple classifier, we clearly outperform the cur-

rent state of the art based on 3D skeletons, LOP appearance

and depth features, global Fourier features, learned action-

lets, and a powerful Multiclass-MKL learning framework.

Naturally some of these additional features can be incorpo-

rated in our framework as well.

In addition to results readily available in the literature, we

also perform comparisons with a conditional random field,

LDCRF [14]. We used the code available online and val-

idated the model parameters under the same experimental

setting. When just 3D pose was used as observation, te

recognition rate was of 64.8%. By changing the unary term

with our MP descriptor, the accuracy increased significantly

to 74.9%. This supports the merits of MP as a descriptor

and shows that our non-parametric classifier complements

it well. In the context of action detection (discussed later in

5.6), our improvement over LDCRF in terms of per-frame

classification rate, is 57.3% over 54%. Note that LDCRF is

Figure 2. Confusion matrix of our method (MP) on the MSR-

Actions3D dataset: 17/20 actions are perfectly classified.

not immediately applicable for action detection in realistic

unsegmented scenarios, where it would require no-action

states. One-shot learning would not be entirely straightfor-

ward, either. In contrast, it is easy to adapt our approach to

such cases as shown later. We also conducted experiments

on the dataset introduced in Ellis et al. [7]. This dataset con-

tains 1, 280 temporally segmented action sequences gath-

ered from 16 different human subjects. Each subject per-

forms each of the 16 actions for 5 times. In this dataset,

the human poses are encoded in terms of only 15 3D joint

positions. As the location of the hip center, necessary for

our pose normalization, is not given, we approximate it by

taking the mean position of the left and right hip joints. For

this dataset we used a 4-fold cross-validation approach as

in [7], and averaged the results. It is important to mention

that on this dataset we did not retrain our model parameters,

but use the ones learned on the training set of MSR Ac-

tion3D dataset. Nonetheless, our method improves over [7]

by 2.5% (see Table 2).

Table 2. Recognition performance on the action dataset of [7].

Method Accuracy(%)

Canonical Poses [7] 95.94

MP (Ours) 98.50

5.2. Activity Recognition

The MSRDailyActivity3D dataset consists of temporally

segmented sequences of humans performing daily activi-
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ties. The dataset was captured with the Kinect RGB-D cam-

era and covers 16 activities, performed by 10 subjects. Each

of the subjects performs an activity twice: once seated on

a sofa and once standing. There are 320 temporally seg-

mented activity sequences in total. This dataset is challeng-

ing, as most activities involve human-object interactions.

Moreover, the joint positions are very noisy when the per-

son comes too close to the sofa. The cross-subject test set-

ting is also used on this dataset. The subjects used for train-

ing are (1, 3, 5, 7, 9), whereas the rest are used for testing, as

in [24]. In Table 3 we show that our method obtains state-

of-the-art results, even when only 3D pose information is

used. The learned values of our descriptor parameters (§3)

were α = 0.6 and β = 0.4.

Table 3. Recognition comparisons on MSRDailyActivity3D.

Method Accuracy(%)

Dynamic Temporal Warping [15] 54.0

Actionlet Ensemble (3D pose only) [24] 68.0

MP (Ours) 73.8

5.3. Benefit of Using δP and δ2P

The addition of kinematic features δP and δ2P dra-

matically increases the recognition accuracy over the 3D

poses alone, as can be seen in Table 4. In order to esti-

mate the derivatives numerically we use information from

other frames around the target one t0. Thus, when only

the first derivative δP is used in combination with the

pose P, we need information from three frames at times

(t−1, t0, t+1) around the current time t0. When the second

derivative δ2P is included, we need the five frames at times

(t−2, t−1, t0, t+1, t+2). The benefit of using the derivatives

becomes evident when we compare with descriptors that

consider only the static 3D poses from these frames. In Ta-

ble 4 we use the following notation: 3P = [P−1,P0,P+1]
and 5P = [P−2,P−1,P0,P+1,P+2]. It is interesting to

notice that even though poses from a time window implic-

itly contain movement information, the explicit estimation

of speed and acceleration makes a significant difference in

the overall performance. This empirical result confirms the

intuition that the actual body movement is highly predic-

tive of the action class. For example on MSR-Action 3D

dataset, adding the speed of the joints (δP) improves the

accuracy by a substantial 25% margin over 3D pose (P)

alone, whereas the acceleration (δ2P) adds another signif-

icant 6%. The acceleration component is very important

for actions with curved movements, such as drawing a cir-

cle. Such movements cannot be captured by pose and speed

alone. A similar trend was observed on the actions dataset

from [7], where the accuracy dropped from 98.5% to 83.9%
using poses alone.

Table 4. Recognition accuracy for different feature types and ex-

tensions to the kNN method on Actions (MSR-Actions3D dataset)

and Activities (DailyActivities3D dataset).

Feature Actions Activities

joint angles 26.5 24.4

P 60.5 63.7

3P 71.1 62.5

5P 73.5 61.8

δP 77.0 51.3

δ2P 74.6 46.3

P δP 84.5 67.5

P δP δ2P 89.7 68.1

P δP δ2P + conf. 91.7 69.3

P δP δ2P + conf. + temp. 91.7 73.8

Figure 3. Improvement in accuracy as latency increases for MP.

We also plotted the accuracy reported by some of our competi-

tors after processing the entire sequence. Left column: recognition

accuracy on MSR-Actions3D. Right column: accuracy on Daily-

Activities3D. Top row: accuracy reported when stopping after ob-

serving a fixed percentage of the frames. Bottom row: the realistic

scenario, where the length of the input sequence is not known in

advance. We vary the threshold θ (Algorithm 2) and plot the accu-

racy vs. average latency as θ increases from 0 to 1.

5.4. Latency Analysis

Our method is well suited for action recognition with low

observational latency, since at any point in time we could

output the action that accumulated the largest number of

votes, at a given rejection threshold. The question is when

can we confidently classify the action. On one hand, we

have to observe a minimum number of frames and on the

other hand we need a measure of classifier response. The

decision function we use (Algorithm 2) is the value of the

accumulated votes for the winning class divided by the total

number of votes for all actions, counted from the beginning

of a sequence. The intuition is that the higher this value rel-

ative to the votes from the other classes, the more confident
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we are that our winning action is indeed correct. In fig.3 we

show that by varying a threshold θ on the function output we

can confidently classify actions long before the end of the

sequence. For example we outperform the method of [7],

as measured over entire sequences in MSR-Actions3D and

that of [15] in the DailyActivities3D dataset after observing

only ≈ 30% of the frames, on average. After ≈ 60 − 70%
of the frames are observed, the accuracy of MP supersedes

the state-of-the-art.

5.5. One-shot Learning

Another advantage of our non-parametric approach over

current methods is the ability to recognize actions using a

very limited amount of training data. Since we use a non-

parametric classification approach we can apply our method

in the case of one-shot learning, when only a single train-

ing sequence for each action is available. We tested the MP

approach in the one-shot learning scenario on both MSR-

Actions3D and DailyActivities: in the previous experiments

(Tables 1 and 3) there are about 13 training sequences per

action and 10 per activity. For the results presented in this

section (Table 5) we performed 100 different experiments

where a single training sequence was chosen randomly for

each action with decision performed based on such ‘early’

learners. As expected, recognition accuracy dropped, but

the system was still able to perform relatively well. For

example, on MSR-Actions3D dataset we obtain a similar

accuracy (using a single training sequence per action) to

that of [7] (using on average 13.3 training sequences per ac-

tion). Note that none of the methods we compared against

Table 5. Average recognition accuracy under one-shot learning.

Feature MSR-Actions3D DailyActivities3D

Poses only 44.1± 4.6% 41.6± 3.4%
Motion Poses 65.2± 5.2% 42.6± 4.0%

can perform one-shot learning. [24] uses a Multiclass-MKL

with actionlet mining. [7] uses multiple instance learning of

canonical action poses based on many training sequences.

Neural networks [13], motion templates [15], HMMs [12]

and action graphs [10] need sufficient data to learn models.

5.6. Action Detection in Unsegmented Sequences

We test the efficiency of our method on a significantly

more difficult scenario–that of action recognition and detec-

tion in unsegmented sequences. Our method can be easily

modified to handle low-latency action detection in unseg-

mented sequences. The action classification responses per

frame are obtained as before. Since in the unsegmented

case, we do not know the temporal length of the action

performed, we take a sliding window approach and learn

a window of size W by cross-validation. Given votes ac-

cumulated over this window, we estimate the probability of

observing action class c at a given moment t as:

R(c, t) =

∑t
f=t−W s(c, f)

∑
b

∑t
f=t−W s(b, f)

. (3)

Here s(c, f) is the frame-wise classification response of ac-

tion c computed exactly as in the unsegmented case. Af-

ter computing responses for each action, the winning action

produces the final frame label c∗(t) = argmax(R(c, t)).
The frame labeling procedure effectively produces a seg-

mentation of the whole sequence into contiguous (con-

nected component) segments having the same label. After

discarding very short segments (5 frames), we also record

the maximum response OS over each segment S. This max-

imum response is the classification output associated with

the entire segment, which will be used in detection evalua-

tion, together with the segment endpoints.

Since most published RGB-D datasets deal with classifi-

cation where actions are already pre-segmented, we created

two different experimental setups: first, we took the MSR-

Actions3D and DailyActivities datasets and randomly con-

catenated all test sequences into a single long test sequence,

one per dataset. We performed action detection, follow-

ing precision-recall experimental protocols widely used in

object detection from images, such as Pascal VOC Chal-

lenge [8] (our overlapping threshold is 0.2 as in [6]). For

each dataset we performed 100 random concatenations and

present the statistics of our results in Table 6. Note that

our method performs well even in the unsegmented case,

when all test sequences are concatenated into a single input

sequence. The very small standard deviation is also an indi-

cation that performance is not impacted by the ordering of

actions.

Table 6. Unsegmented action detection performance

Scoring method MSR-Actions3D Activities

Detection (AP) 0.890± 0.002 0.603± 0.011

For a more realistic testing setup, we also captured our

own dataset, with the Microsoft Kinect camera and using

software for 3D human pose estimation. The data contains

30 videos performed by 10 different actors with both 3D

joint and depth information gathered. Each subject was in-

structed to freely perform 3 sequences of multiple actions,

7 different actions per set, chosen randomly from the pool

of actions present in MSR-Actions3D. The subjects were

asked to perform them in any order and number of times,

with any intermediate actions in between the fixed ones.

The dataset was designed to imitate as closely as possible

typical user-computer interactions. For training, we used

only sequences from MSR-Actions3D. We present results
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(see Table 7) for both unsegmented action detection aver-

age precision as well as action classification for comparison

(when the ground truth segmentations were available). The

experiments indicate that our system is able to efficiently

detect actions in difficult unsegmented sequences, in the

presence of different subjects (than in training) and in un-

controlled environments.

Table 7. Experiments on our own test sequences using for train-

ing, the training set of MSR-Actions3D (Train Set 1) or the entire

MSR-Actions3D dataset (Train Set 2).

Scoring method Train Set 1 Train Set 2

Detection AP 0.765 0.776
Classification rate 0.853 0.870

6. Conclusions
We have presented a novel moving pose descriptor

framework for action recognition which uses pose and kine-

matic information encoded as differential 3D quantities. We

have also proposed a novel, modified non-parametric kNN

classifier, based on discriminative key frames with aug-

mented temporal information. We demonstrated the power

of our methodology by obtaining state of the art results

on recent, challenging benchmarks for action and activity

recognition. Moreover, we show that our techniques are

well suited for action detection in difficult unsegmented se-

quences and for low latency recognition, unlike most pre-

vious approaches. Our approach further enables one-shot

learning, all within a scalable real-time framework. In fu-

ture work, we plan to explore more powerful classifiers as

well as the design of human-object interaction descriptors.
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