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Abstract

Subspace clustering has important and wide applica-
tions in computer vision and pattern recognition. It is a
challenging task to learn low-dimensional subspace struc-
tures due to the possible errors (e.g., noise and corruptions)
existing in high-dimensional data. Recent subspace clus-
tering methods usually assume a sparse representation of
corrupted errors and correct the errors iteratively. How-
ever large corruptions in real-world applications can not
be well addressed by these methods. A novel optimization
model for robust subspace clustering is proposed in this pa-
per. The objective function of our model mainly includes
two parts. The first part aims to achieve a sparse represen-
tation of each high-dimensional data point with other data
points. The second part aims to maximize the correntropy
between a given data point and its low-dimensional repre-
sentation with other points. Correntropy is a robust mea-
sure so that the influence of large corruptions on subspace
clustering can be greatly suppressed. An extension of our
method with explicit introduction of representation error
terms into the model is also proposed. Half-quadratic mini-
mization is provided as an efficient solution to the proposed
robust subspace clustering formulations. Experimental re-
sults on Hopkins 155 dataset and Extended Yale Database
B demonstrate that our method outperforms state-of-the-art
subspace clustering methods.

1. Introduction
It is desirable to achieve a low-dimensional representa-

tion of the complex and redundant high-dimensional da-

ta in the era of big data. The conventional solution is to

project the data points into a single low-dimensional sub-

space [2][8][9]. However, the data points may be drawn

from a union of multiple subspaces in practical applications.

Therefore the problem of subspace clustering (or segmenta-
tion) is proposed to divide high-dimensional data points in-
to multiple subspaces, and find a low-dimensional subspace

into which each group of data points can fit simultaneous-

ly [24].

Subspace clustering has attracted a great attention due

to its promising applications in computer vision and ma-

chine learning. The large number of subspace clustering

methods proposed in the literature can be classified into four

categories: iterative methods, algebraic methods, statistical

methods, and spectral clustering-based methods [24].

Iterative methods, such as K-subspaces [23], first assign

data to pre-defined multiple subspaces, then update the sub-

spaces and reassign each data point to the nearest subspace.

Repeating these two steps iteratively to convergence, we can

obtain the segmentation result. The disadvantage of these

methods is that they need to know the number of the sub-

spaces and their dimensions in advance. Generalized Prin-

cipal Component Analysis (GPCA) [25] uses an algebra-

ic way to model and segment the data. This method fits

the data with a polynomial, and the gradient of the poly-

nomial at a point gives the normal vector that the point be-

longs to. However, this method is sensitive to noise and out-

liers, and as the data dimension increases, its computation-

al complexity grows exponentially. Statistical approaches,

such as Mixture of Probabilistic PCA (MPPCA) [21] and

Multi-Stage Learning (MSL) [20], assume that the data are

drawn from a mixture of probabilistic distributions. Then

the ExpectationMaximization (EM) technique is used to es-

timate the subspaces and cluster data iteratively. Although

these methods have achieved good performance under con-

strained conditions, they are sensitive to noise and outliers

in real-world applications.

Recently spectral clustering-based methods have drawn

much attention, which assume that a data point can be rep-

resented as a combination of other data points in the same

subspace. Then representational coefficients are used to

construct the affinity matrix, and the spectral clustering al-

gorithms are applied to obtain correct segmentation. El-

hamifar and Vidal [5] introduced the sparse representation

technique in Compressed Sensing (CS) literature to sub-

space clustering and proposed the Sparse Subspace Clus-
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tering (SSC) algorithm. SSC aims to find the sparsest rep-

resentation of each data point by using the l1 norm regular-
ization on the coefficient matrix. Low-Rank Representation

(LRR) [14][13], in another way, seeks to find the lowest-

rank representation of all data points by using trace norm,

which can capture the global structures of the data. In [17],

Lu et al. first proved the Enforced Block Diagonal (EBD)
conditions, and then proposed the Least Square Regression

(LSR) method based on l2 norm regularization.
The main difference among these methods is the regular-

ization of the coefficient matrix. However, the main chal-

lenge of subspace clustering is to handle the errors (e.g.
random noise and large corruptions) existing in data [13],

which may lead to poor subspace clustering results due to

the large weight of errors in optimization. Despite the va-

riety of the regularization, most of these methods assume

that the errors have a sparse representation, and correct the

errors iteratively. However, large corruptions in real-world

problems can not be well addressed by these error correc-

tion methods.

This paper aims to propose a novel subspace clustering

method which is robust against large corruptions. Our ba-

sic idea is to minimize the influence of error data points on

subspace clustering based on a robust measure of the sim-

ilarity between data points and their subspace representa-

tions, correntropy [16]. The optimization model of the pro-

posed robust subspace clustering method aims to achieve

sparse representation coefficients and minimal reconstruc-

tion errors simultaneously. An efficient iterative solution to

the proposed problem based on half-quadratic (HQ) opti-

mization is provided. In each iteration, the complex opti-

mization problems are simplified to quadratic problems that

have a closed form solution in half-quadratic optimization.

The performance of our method is evaluated and compared

with state-of-the-art subspace clustering methods on motion

segmentation and face clustering problems.

2. Related work
To better illustrate the main idea of our method in the

context of sparse subspace clustering (SSC) [5], the algo-

rithm of SSC is described as follows.

2.1. Notations

Given a D × N data matrix X consisting of N vectors

{xi ∈ R
D}Ni=1, which are drawn from a union of linear

or affine subspaces {Si}Ki=1 of unknown dimensions dk =
dim(Sk), 0 < dk < D, the task of subspace clustering is to
find the number of subspacesK, their dimensions {dk}Kk=1

and segment the data vectors xi into these subspaces. Xî ∈
R

D×N stands for the matrix obtained from X by replacing

its i-th column xi with the vector 0 ∈ R
D of all zeros.

Given a vector z ∈ Rp, let diag(z) be the diagonal p × p
matrix whose i-th main diagonal element is the i-th entry

of z. The matrix I stands for the identity matrix and 1 for
a vector of all 1s. The j-th entry of the data point xi is

denoted by (xi)j .

2.2. Sparse Subspace Clustering

The idea of Sparse Subspace Clustering comes from the

assumption that each data point sampled from a union of

subspaces can be written as a linear combination of other

points in the dataset, which is defined as self-expressiveness

property in [5]. To be more precise, for a data point xi, we

want to find a coefficient vector ci that satisfies,

xi = Xîci (1)

In practice, this is an ill-posed problem since the solution

of (1) is not unique in general. A possible technique of this

problem is to find the sparsest representation of xi. That is,

for data point xi, one can minimize the number of nonzero

entries of the coefficient vector ci,

min
ci
‖ci‖1 s.t. xi = Xîci (2)

where ‖ci‖1 =
∑N

j=1 |cij |, which is the relaxation of the l0
norm.

Considering the case that the data points may be contam-

inated with some dense noise, a natural way is to extend the

original problem (2) to the following form by relaxing the

equality constraint and adding a penalty to cost,

min
ci
‖ci‖1+γ ‖xi −Xîci‖22 (3)

The l2 norm term ‖xi −Xîci‖22 measures the fidelity of
sparse representation.

In more practical and general scenarios, the data points

may be contaminated by both large corruptions and small

dense noise. SSC can be extended as the following model

using the technique in robust face recognition [26],

min
ci,ei

‖ci‖1+λ‖ei‖1+γ‖xi −Xîci − ei‖22 (4)

where the term ei ∈ R
D models large corruptions which

have sparse nonzero entries. This is the error correction

method in sparse representation [11].

3. Proposed method
3.1. Correntropy

In order to deal with non-Gaussian noise and impulsive

noise in signal processing, the concept of Correntropy was

proposed in [16]. According to Renyi’s quadratic entropy,

the correntropy of two arbitrary variables x and y is defined
as

Vσ(x,y) = E[kσ(x− y)] (5)
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where kσ(.) is a kernel function. And it is used to measure
the generalized similarity between x and y.
In practice, sometimes the joint probability density func-

tion may be unknown, and only a finite number of data

{(xi,yi)}Ni=1 are available. Therefore, a sample estimator

of correntropy is introduced,

Vσ(x,y) =
1

N

N∑
i=1

kσ(xi − yi) (6)

In this paper, we use the Gaussian kernel g(x) =
exp(−x2/σ2) where σ is the kernel size.
Liu et al. [16] further proposed a metric for any two

vectors in the sample space which is named as Correntropy

Induced Metric (CIM) on the basis of (6). It is defined as

follows,

CIM(x,y) = {k(0)− V (x,y)}1/2

= (g(0)− 1

N

N∑
i=1

g(xi − yi))
1/2

(7)

It should be noted that CIM is a decreasing function

of correntropy so maximization of correntropy is equally

minimization of CIM. Compared to the global metric mean

square error (MSE), the correntropy is a local metric. That

means, the value of correntropy is mainly decided by the

kernel function along the line x = y [16]. Moreover, it
becomes practical to choose an appropriate kernel size for

correntropy because of the close relationship between cor-

rentropy and M-estimators [16].

3.2. Proposed formulations

A main problem of the existing subspace clustering

methods is how to measure the reconstruction fidelity of

outlier data points using a robust function. So correntropy

is introduced as a robust measure in regularization terms

of subspace clustering. A novel formulation of robust sub-

space clustering is proposed as follows:

min
ci

N∑
j=1

φr((ci)j)+γ
D∑

j=1

φc((xi −Xîci)j) (8)

where φc(x) = (1− exp(−x2/σ2)) and φr(x) =
√

x2 + α
, which is called l1-l2 loss function in M-estimation. γ is a
positive scalar.

To be more specific, the first term in (8) controls the s-

parsity of the coefficient vector ci. Although l1 loss is con-
vex, it is non-differentiable at zero-point. The optimiza-

tion methods for l1 regularization often oscillate around the
true optimum and slowly converge towards the optimum.

Compared to l1 loss, l1-l2 loss around the zero-point is d-
ifferentiable and can be efficiently solved. Specially, when

α → 0, the l1-l2 loss turns to l1 loss. And the second term
is the squared CIM, which is a robust measure of the recon-

struction fidelity of high-dimensional data points with other

data. The parameter γ is used to keep a balance between
reconstruction fidelity and coefficient sparsity.

Because of the property of correntropy, the problem (8)

treats the representation of each entry of xi differently. For

example, if there exists noise or corruptions in xi, those en-

tries in xi only have limited influence to the correntropy.

So the data is weighted in a robust way depending on the

residuals. Compared with most existing subspace clustering

methods, our method can achieve a more robust solution be-

cause the subspace clustering optimization is mainly deter-

mined by the uncorrupted data entries and the errors caused

by noise or corruptions in data are greatly suppressed.

In practice, the errors in data are usually unpredictable.

An extension of our model by explicitly modeling error

terms is proposed as follows:

min
ci,ei

N∑
j=1

φr((ci)j)+λ
D∑

j=1

φs((ei)j)

+γ
D∑

j=1

φc((xi −Xîci − ei)j)

(9)

where φs(.) is also the l1-l2 loss function.
Here the term ei is used to model the errors existing in

data. And the error term ei is assumed to have a sparse rep-

resentation, which is expressed by the l1-l2 loss function.
The third term of the objective function is a robust recon-

struction fidelity measure of high-dimensional data using

subspace representation and residual errors based on cor-

rentropy. Compared with the first formulation of robust sub-

space clustering defined in (8), the second formulation (9)

is more suitable for the applications with large corruptions

since its optimization model explicitly has error terms.

4. Solution of the proposed formulations
An iterative regularization method based on half-

quadratic optimization is firstly proposed to solve the pro-

posed formulations in (8) and (9). And then the convergence

of the solution is analyzed. Finally the whole procedure of

our subspace clustering algorithm is given. Since the op-

timization problem in (8) is a special case of (9), only the

solution to (9) is provided here.

4.1. The half-quadratic approach

Since the problems (8) and (9) are not convex, it is d-

ifficult to optimize them directly. Fortunately, the half-

quadratic technique [19] can be utilized to optimize the non-

convex function by minimizing its augmented function al-

ternately.
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Table 1. Loss functions and their minimizer functions
Functions φ(.) Minimizer functions δ(.)√

α+ x2 1/
√

α+ x2

1− exp(− x2

σ2 ) exp(− x2

σ2 )

According to the conjugate function theory [3] and HQ

theory [19] [7], we have:

Lemma 1. Suppose that φ(x) is a function that satisfies
some conditions listed in [19], then for a fixed x, there exists
a dual potential function ψ(.), such that

φ(x) = inf
s∈R
{sx2 + ψ(s)} (10)

where s is an auxiliary variable which is determined by the
minimizer function δ(.) with respect to φ(x) (two specific
functions and their minimizer functions are listed in Table

1).

According to Lemma 1, the augmented cost-function J
of (9) reads

J (ci, ei, r, s, q) = ci
T Rci + λei

T Sei

+ γ(xi −Xîci − ei)
T Q(xi −Xîci − ei)

+
N∑

j=1

ψr(rj)+
D∑

j=1

ψs(sj)+
D∑

j=1

ψc(qj)

(11)

where r ∈ RN , s ∈ RD, q ∈ RD are auxiliary vectors, and

R = diag(r), S = diag(s), Q = diag(q).
Since the auxiliary vectors are only determined by their

minimizer functions, the analytic forms of ψ(.) in (11) can
be eliminated when the auxiliary vectors are fixed. And λ
is a positive constant scalar, so we can rewrite the function

(11) as follows,

J (ci, ei, r, s, q) = ci
T Rci + ei

T (λS)ei

+ γ(xi −Xîci − ei)
T Q(xi −Xîci − ei)

(12)

or

J (wi,p, q) = wT
i Pwi + γ(xi − Ywi)

T Q(xi − Ywi)
(13)

where wi = [cTi , eT
i ]

T ∈ R
(N+D), Y = [Xî, I] ∈

R
D×(N+D), p = [rT , λsT ]T and P = diag(p).
Based on the HQ optimization theory, the function

J (wi,p, q) can be alternately minimized as follows,

pt
j =

⎧⎪⎨
⎪⎩
1/

√
(wi)

2
j + α j ≤ N

λ/
√
(wi)

2
j + α otherwise

(14)

qt
k = exp(−(xi − Ywi)

2
k/σ2) (15)

wt
i = argmin

wi

J (wi,p
t, qt) (16)

where t is the iteration number.
The partial derivative of J (wi,p

t, qt) with respect to
wi is

∂J(wi,p
t, qt)

∂wi
= 2Pwi + 2γY T QYwi − 2γY T Qxi

(17)

By setting the derivative to zero, we obtain the closed

solution of (16)

w∗
i = γ(P + γY T QY )−1Y T Qxi (18)

Like any other kernel methods, the selection of kernel

size σ will affect the performance of the proposed method,
therefore σ should be carefully selected to guarantee a non-
increasing function for the objective function. The kernel

size σ of this paper is computed following the method in
[10]

σ2 =
1

2D
‖xi − Ywi‖22 (19)

The complete algorithm is summarized in Algorithm 1.

Algorithm 1 Solving Problem (9) via HQ Minimization
Input: A data point xi ∈ RD, the matrix X ∈ RD×N .

Output: ci ∈ RN and ei ∈ RD.

1: wi ← 0, Y ← [Xî, I] and t ← 1.
2: repeat

3: pt
j =

⎧⎨
⎩
1/

√
(wi)

2
j + α j ≤ N

λ/
√
(wi)

2
j + α otherwise

;

4: qt
k = exp(−(xi − Ywi)

2
k/σ2);

5: wt
i = γ(P + γY T QY )−1Y T Qxi;

6: σ2 = 1
2D ‖xi − Ywi‖22;

7: t = t+ 1;
8: until Converges
9: ci = wi(1 : N) and ei = wi(N + 1 : N +D).

4.2. Convergence analysis

According to the properties of HQ [10][19],

J(wt+1
i ,pt+1, qt+1) ≤ J(wt

i ,p
t+1, qt+1) ≤

J(wt
i ,p

t, qt). The cost function is non-increasing at

each alternating minimization step. And according to

the property of correntropy [16], the objective function

J(wt
i ,p

t, qt) is bounded and hence the objective function
in (9) should be decreased following Algorithm 1 step

by step until it converges. Since the loss function is

non-convex, Algorithm 1 may obtain a local minimization.

Algorithm 1 can be efficiently implemented using parallel

computing because the representation of each data point is

computed independently.
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4.3. Subspace clustering

For each data point xi, we solve the optimization prob-

lem (8) or (9) by the Algorithm 1. Then we obtain the

coefficient matrix C = [c1, ..., cN ], and the affinity matrix

is defined as W = |C| + |C|T . Similar to SSC, we ap-
ply the spectral clustering algorithm of Ng et al. [18] to the
affinity matrix and get the ultimate clustering results. The

whole procedure of our subspace clustering method can be

summarized in Algorithm 2.

Algorithm 2 Subspace Clustering via Half-Quadratic min-
imization (SCHQ)

Input: Data matrix X = [x1, ...,xN ] ∈ RD×N .

Output: Segmentation of the data.
1: For each data point xi, solve the problem (8) or (9) by

the Algorithm 1. Obtain the coefficients matrix C.
2: Define the affinity matrixW = |C|+ |C|T .
3: Apply the spectral clustering algorithm [18] to the affin-

ity matrix.

5. Experiments
Two real-world applications of subspace clustering, mo-

tion segmentation and face clustering, are used to evaluate

the proposed SCHQ (Subspace Clustering based on Half-

Quadratic Minimization) method and compare it with state-

of-the-art subspace clustering methods, e.g., Local Sub-

space Analysis (LSA) [27], Spectral curvature clustering

(SCC) [4], LRR [13], LSR [17], Low-Rank Subspace Clus-

tering (LRSC) [6], and SSC [5].

5.1. Datasets

The Hopkins 155 dataset [22], which is available

online at http://www.vision.jhu.edu/data/
hopkins155/, is used for motion segmentation exper-
iments. This dataset consists of 120 2-motion and 35

3-motion video sequences1 and each motion corresponds

to a single subspace. The feature trajectories in the video

sequences are automatically extracted with a tracker, and

outliers in the dataset have been removed manually.

The Extended Yale Dataset B [12] is adopted as the

benchmark for the face clustering problem. The dataset

consists of frontal face images of 38 subjects taken under

varying light conditions, and each image is cropped into

192× 148 pixels. The face clustering experiments only use
the facial images of the first 10 subjects for testing follow-

ing other subspace clustering experiments in the literature.

And each face image is resized to 48×42 pixels and stacked
into a 2016D-vector.

1Actually, there are total 156 video sequences in the dataset with one

sequence of 5 motions. However, only the results of 155 video sequences

are reported following the experimental settings of other methods.

5.2. Settings

The proposed subspace clustering method (SCHQ) is im-

plemented based on the Algorithm 2. Since the motion

segmentation experiment is a problem of clustering slightly

corrupted data points lying in a union of affine subspaces,

the formulation of (8) is used following the similar tech-

nique in [5]. The sum of the coefficients is enforced to be

1, e.g., 1T ci = 1. The optimization procedure is presented
in Appendix. The formulation (9) is used for face clus-

tering problem because there are sharp intensity variations

among intra-class face images in the Extended Yale Dataset

B.

The source code of state-of-the-art subspace clustering

methods downloaded or provided by the authors is imple-

mented for comparison. And we have tried our best to use

the same algorithm settings described in the publications of

compared methods. More specifically, the same setting of

SSC [5] is used in the experiments, i.e., the noisy variation

is used for motion segmentation and sparse outlying entries

variation is used for face clustering. Both two versions of

LSR described in [17], LSR1 and LSR2, are used in the

experiments. Since a post-processing step is used in [13]

to the coefficients matrix obtained by LRR, we report both

the results of LRR and LRR-H (with post-processing). It

should be noted the latest release of the algorithm [13] is

implemented in this paper, which is different to the version

in submission stage. The method in [6] is used for LRSC,

i.e., Lemma 1 for motion segmentation and an ALM variant

for face clustering. Because the authors do not provide the

clustering algorithm and it is also based on low-rank repre-

sentation, we use the same clustering algorithm as LRR-H

to achieve the best performance in comparison.

5.3. Motion segmentation

Motion segmentation problem is an important step in

video sequences analysis [5]. Given a set of feature points

tracked through the video sequences, the task of motion

segmentation is to separate the trajectories of those feature

points according to the motions belong to. As pointed out

in [5], the set of all feature trajectories lie in a union of affine

subspaces, which means the problem of motion segmenta-

tion can be reduced to segmenting the set of data points into

a union of subspaces.

Preprocessing steps like PCA are usually used to reduce

the dimension of the data [5] [17] so the structure of the

data may be damaged. Because the purpose of this paper

is to study the robustness of subspace clustering, all tested

methods are directly applied to the original 2F -dimensional
data.

The results of the clustering using different methods are

shown in Table 2. As we can see, our method performs the

best for the 2-motion case. And our result is just slightly

worse than LRR-H in the 3-motion case. In summary, our
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(a) SCHQ (b) SSC (c) LRR (d) LRR-H

Figure 1. Sparse coefficients for the 3-motion sequence cars10.

Table 2. Clustering error (%) on Hopkins 155 dataset with the original 2F -dimensional data

Algorithm LSA SCC LRR LRR-H LSR1 LSR2 LSRC SSC SCHQ

2 Motions
Mean 3.36 2.24 3.30 1.33 1.80 2.08 2.46 1.52 1.08
Median 0.50 0.00 0.34 0.00 0.11 0.10 0.00 0.00 0.00

3 Motions
Mean 8.48 6.69 7.39 2.51 4.14 4.85 6.03 4.40 2.73

Median 1.94 0.40 2.80 0.00 1.60 1.83 2.20 0.56 0.43

All
Mean 4.52 3.25 4.22 1.60 2.33 2.72 3.27 2.18 1.45
Median 0.57 0.00 0.53 0.00 0.31 0.31 0.00 0.00 0.00

method achieves the best overall performance for all 155

video sequences. In order to demonstrate the superiority of

our method in constructing sparse coefficients, the coeffi-

cients matrix C of the 3-motion sequence cars10 obtained

by the proposed SCHQ, SSC, LRR and LRR-H are shown

in Fig. 1. And the clustering error rates of these methods

are 0.67%, 4.04%, 10.44%, and 5.39%, respectively. Note

that the smaller number of non-zeros entries lying outside

the diagonal blocks, the better result in subspace clustering.

Obviously, the matrix obtained by our method is much more

clear than others outside the diagonal blocks. This may be

the reason why our method works.

Specially, we can also see that the post-processing of

the coefficient matrix makes the matrix more ’bright’ and

’clean’ for LRR, which helps improve the clustering perfor-

mance (LRR-H). The mean error rate of the method pro-

posed in [15] (a variation of LRR) is 2.95%, while the

mean error rate decreases significantly to 0.85% after the

post-processing step. To the best of our knowledge, this is

the best performance on the Hopkins 155 dataset under the

same setting. The results also demonstrate the importance

of post-processing in LRR method.

5.4. Face clustering

The face clustering problem refers to clustering face im-

ages of multiple subjects taken under fixed pose and vary-

ing illumination according to their subjects [5]. It has been

proved in [1] that, under the Lambertian assumption, im-

ages of a object obtained with varying illumination lie close

to a 9D linear subspace. Therefore, it implies that the set

of face images of different subjects with varying illumina-

tion can be approximated by a union of 9-dimensional linear

subspaces.

In order to evaluate our method’s effectiveness in dealing

with large corruptions, we use the Extended Yale Dataset B.

For the purpose of studying the effect of subject number in

face clustering, we test all the methods on the first 5 and

10 subjects respectively. Consistently, we apply the clus-

tering methods to the original data as we did in the motion

segmentation problem.

The clustering results of different methods are shown in

Table 3. As we can see, as the number of subject increases,

the clustering errors of all methods increase in different de-

grees. It may be the result of the expansion of the dictionary

X . Obviously, our method performs the best both on 5 and
10 subjects clustering problems. And the advantage of our

method is much more significantly on the 10-subject case

which implies that our method is more robust to the errors

caused by large corruptions or noise.

In Table 3, we also observe that the clustering errors of

LSA, SCC, LSR1, and LSR2 are larger than those of other

subspace clustering errors. This may be because LSA, SC-
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(a) (b) (c) (d) (e) (f) (g)

Figure 2. Examples of reconstruction images and errors of different methods (a) Original images (b) Reconstruction images by our method

(c) Reconstruction errors by our method (d) Reconstruction images by SSC. (e) Reconstruction errors by SSC. (f) Reconstruction images

by LRR-H. (g) Reconstruction errors by LRR-H.

Table 3. Clustering error (%) on the Extended Yale B dataset without pre-processing

Algorithm LSA SCC LRR LRR-H LSR1 LSR2 LSRC SSC SCHQ

5 Subjects
Error 54.06 60.56 14.69 1.88 13.75 5.31 3.75 0.00 0.00

10 Subjects
Error 67.34 73.59 33.75 8.91 37.81 34.38 10.47 9.38 2.03

C, LSR1 and LSR2 are based on MSE. Since large errors

will dominate the MSE, MSE based methods are prone to

the presence of outliers that are significantly far away from

the rest of the data points. Algorithmic robustness, which is

derived from the statistical definition of a breakdown point,

is the ability of an algorithm to tolerate a large number of

outliers. From the viewpoint of robustness, these four meth-

ods may fail to deal with large outliers albeit they can work

well on motion segmentation.

Some example reconstructed face images and sparse er-

rors of different methods are shown in Fig. 3. We can see

that even though the original face images are severely cor-

rupted by shadow, our method can still recover the nearly

perfect uncorrupted images while other methods all fail. It

emphasizes the fact that our method can detect and correct

the errors in data points simultaneously.

6. Conclusions
A novel optimization model for robust subspace cluster-

ing has been proposed in this paper. Correntropy has been

demonstrated as a robust regularization term in subspace

clustering. An efficient solution to the novel optimization

problem is proposed based on half-quadratic minimization.

Finally, experimental results on Hopkins 155 dataset and

Extended Yale Database B without any-preprocessing have

shown that our method have achieved the state-of-the-art

performance. Our future work is to try other possible robust

measures in subspace clustering since this paper has demon-

strated the success of introduction of robust measures to the

optimization problem of subspace clustering.
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A. Appendix

The following objective function is formulated if the

constraint 1T ci = 1 is integrated into problem (8):

min
ci

N∑
j=1

φr((ci)j)+γ
D∑

j=1

φc((xi −Xîci)j)

s.t. 1T ci = 1

(20)

And the following Lagrangian function is obtained by

introducing the Lagrangian multiplier λ to the function (20),

L(ci) =
∑N

j=1
φr((ci)j)− λ(1T ci − 1)

+ γ
∑D

j=1
φc((xi −Xîci)j)

(21)

Note that λ is different from the penalty-term λ in (9).
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The augmented cost-function J of (21) is as follows ac-

cording to Section 4.1,

J (ci,p, q) =ci
T Pci − λ(1T ci − 1)
+ γ(Y ci −Xîci)

T Q(Y ci −Xîci)
(22)

where Y = [xi, ...,xi] ∈ RD×N and Y ci = xi.

The function (22) is simplified as follows,

J (ci,p, q) = ci
T Gci − λ(1T ci − 1) (23)

where G = P + γ(Y −Xî)
T

Q(Y −Xî).
And the objective function can be solved alternately as

follows,

pt
j = 1/

√
(ci)

2
j + α (24)

qt
k = exp(−(xi −Xîci)

2
k
/σ2) (25)

cti = argmin
ci
J (ci,pt, qt) (26)

The partial derivatives of J (ci,pt, qt) with respect to ci
and λ are

∂J(ci,p
t, qt)

∂ci
= 2Gci − λ1 = 0 (27)

∂J(ci,p
t, qt)

∂λ
= 1T ci − 1 = 0 (28)

Then the closed solution of (26) is obtained,

c∗i =
λ

2
G−11 (29)

The parameter λ can be adjusted to ensure that the sum of
the entries of ci is equal to 1.
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