Robust Nonrigid Registration by Convex Optimization
Qifeng Chen, Vladlen Koltun; Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015, pp. 2039-2047
Abstract
We present an approach to nonrigid registration of 3D surfaces. We cast isometric embedding as MRF optimization and apply efficient global optimization algorithms based on linear programming relaxations. The Markov random field perspective suggests a natural connection with robust statistics and motivates robust forms of the intrinsic distortion functional. Our approach outperforms a large body of prior work by a significant margin, increasing registration precision on real data by a factor of 3.
Related Material
[pdf]
[
bibtex]
@InProceedings{Chen_2015_ICCV,
author = {Chen, Qifeng and Koltun, Vladlen},
title = {Robust Nonrigid Registration by Convex Optimization},
booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
month = {December},
year = {2015}
}