A Spatio-Temporal Appearance Representation for Viceo-Based Pedestrian Re-Identification
Kan Liu, Bingpeng Ma, Wei Zhang, Rui Huang; Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015, pp. 3810-3818
Abstract
Pedestrian re-identification is a difficult problem due to the large variations in a person's appearance caused by different poses and viewpoints, illumination changes, and occlusions. Spatial alignment is commonly used to address these issues by treating the appearance of different body parts independently. However, a body part can also appear differently during different phases of an action. In this paper we consider the temporal alignment problem, in addition to the spatial one, and propose a new approach that takes the video of a walking person as input and builds a spatio-temporal appearance representation for pedestrian re-identification. Particularly, given a video sequence we exploit the periodicity exhibited by a walking person to generate a spatio-temporal body-action model, which consists of a series of body-action units corresponding to certain action primitives of certain body parts. Fisher vectors are learned and extracted from individual body-action units and concatenated into the final representation of the walking person. Unlike previous spatio-temporal features that only take into account local dynamic appearance information, our representation aligns the spatio-temporal appearance of a pedestrian globally. Extensive experiments on public datasets show the effectiveness of our approach compared with the state of the art.
Related Material
[pdf]
[
bibtex]
@InProceedings{Liu_2015_ICCV,
author = {Liu, Kan and Ma, Bingpeng and Zhang, Wei and Huang, Rui},
title = {A Spatio-Temporal Appearance Representation for Viceo-Based Pedestrian Re-Identification},
booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
month = {December},
year = {2015}
}