Multiple Feature Fusion via Weighted Entropy for Visual Tracking
Lin Ma, Jiwen Lu, Jianjiang Feng, Jie Zhou; Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015, pp. 3128-3136
Abstract
It is desirable to combine multiple feature descriptors to improve the visual tracking performance because different features can provide complementary information to describe objects of interest. However, how to effectively fuse multiple features remains a challenging problem in visual tracking, especially in a data-driven manner. In this paper, we propose a new data-adaptive visual tracking approach by using multiple feature fusion via weighted entropy. Unlike existing visual trackers which simply concatenate multiple feature vectors together for object representation, we employ the weighted entropy to evaluate the dissimilarity between the object state and the background state, and seek the optimal feature combination by minimizing the weighted entropy, so that more complementary information can be exploited for object representation. Experimental results demonstrate the effectiveness of our approach in tackling various challenges for visual object tracking.
Related Material
[pdf]
[
bibtex]
@InProceedings{Ma_2015_ICCV,
author = {Ma, Lin and Lu, Jiwen and Feng, Jianjiang and Zhou, Jie},
title = {Multiple Feature Fusion via Weighted Entropy for Visual Tracking},
booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
month = {December},
year = {2015}
}